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SUMMARY

We study the effective degrees of freedom of a general class of reduced-rank estimators for
multivariate regression in the framework of Stein’s unbiased risk estimation. A finite-sample
exact unbiased estimator is derived that admits a closed-form expression in terms of the thresh-
olded singular values of the least-squares solution and hence is readily computable. The results
continue to hold in the high-dimensional setting where both the predictor and the response dimen-
sions may be larger than the sample size. The derived analytical form facilitates the investigation
of theoretical properties and provides new insights into the empirical behaviour of the degrees
of freedom. In particular, we examine the differences and connections between the proposed
estimator and a commonly-used naive estimator. The use of the proposed estimator leads to effi-
cient and accurate prediction risk estimation and model selection, as demonstrated by simulation
studies and a data example.

Some key words: Adaptive nuclear norm; Degrees of freedom; Model selection; Multivariate regression; Reduced-rank
regression; Singular value decomposition.

1. INTRODUCTION

Multivariate linear regression extends the classical univariate regression model to q > 1
responses and p predictors. It is commonly used in bioinformatics, chemometrics, economet-
rics, and other fields where one is interested in predicting several responses simultaneously. Let
X denote the n × p predictor or design matrix and Y the n × q response matrix. The regres-
sion parameters are given by the p × q coefficient matrix B. The kth column of B is the
regression coefficient vector for regressing the kth response on the predictors. Let ε denote
the n × q random error matrix with independent entries having mean zero and variance σ 2. Then
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the multivariate linear regression model is

Y = X B + ε. (1)

This reduces to the classical univariate regression model when q = 1. For notational simplicity we
assume that the responses and predictors are centred, and hence the intercept term can be omitted
without loss of generality. We assume p and q to be fixed but unrestricted by the sample size
n. When the Gram matrix X T X is invertible, the ordinary least-squares approach to estimating
B leads to B̂ols = (X T X)−1 X TY . It amounts to performing q separate univariate regressions and
completely ignores the multivariate aspect of the problem, where the responses may be highly
correlated and hence the effective dimensionality can be much smaller than q. Also, least squares
is unsuitable for the high-dimensional case where both p and q are greater than n. Many meth-
ods have been proposed to overcome these drawbacks, under the general class of linear factor
regression, where the responses are regressed against a small number of linear combinations
of predictors, commonly known as factors. Examples include principal components regression
(Massy, 1965), partial least squares (Wold, 1975) and canonical correlation analysis (Hotelling,
1935). These methods differ in the way they choose the factors. Recently, Witten et al. (2009)
introduced a penalized canonical correlation analysis using sparse matrix factorization that leads
to more interpretable factors and is more suitable for high-dimensional problems. Breiman &
Friedman (1997) proposed a two-step approach which borrows strength by performing a second
round of regression of the responses on the ordinary least-squares estimators, and they showed
connections of this approach with canonical correlation analysis.

Yet another line of research focuses on the rank of the regression coefficient matrix. Anderson
(1951) proposed a class of regression models that restrict the rank of the coefficient matrix to be
much smaller than the dimensionality of B; that is, rank(B) � r � min(p, q). This is reasonable
in many multivariate regression problems, and can be interpreted as follows: the q responses are
related to the p predictors only through r effective linear factors, leading to the optimization
problem

B̂(r) = arg min
{B: rank(B)�r}

‖Y − X B‖2
F, (2)

where ‖·‖F denotes the Frobenius norm of a matrix. Even though the rank constraint makes (2)
a nonconvex optimization problem, it admits a closed-form solution, as we shall see later. Izen-
man (1975) introduced the term reduced-rank regression for this class of models and derived the
asymptotic distributions and confidence intervals for such estimators. A non-exhaustive list of
notable work includes Rao (1978), Davies & Tso (1982) and Anderson (1999, 2002b); see Rein-
sel & Velu (1998) and Izenman (2008) for more comprehensive accounts. Recently, there has been
a revival of interest in reduced-rank methods. Instead of restricting the rank, Yuan et al. (2007)
proposed putting an �1 penalty on the singular values of B, also known as the nuclear norm.
The nuclear-norm-penalized least-squares criterion encourages sparsity among the singular val-
ues to achieve simultaneous rank reduction and shrinkage coefficient estimation (Neghaban &
Wainwright, 2011; Lu et al., 2012), but it is computationally intensive and tends to overestimate
the rank. Bunea et al. (2011) proposed a rank selection criterion that extends reduced-rank regres-
sion to high-dimensional settings, in which rank-constrained estimation was cast as a penalized
least-squares method with the penalty proportional to the rank of the coefficient matrix or, equiv-
alently, the �0-norm of its singular values. Chen et al. (2012) adopted sparsity penalties on sin-
gular vectors for reduced-rank regression problems, leading to more interpretable latent model
structures. Bunea et al. (2012) and Chen & Huang (2012) suggested imposing row sparsity on the
reduced-rank coefficient matrix for conducting predictor selection. Chen et al. (2013) proposed
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an adaptive nuclear-norm penalty on the signal matrix X B to close the gap between �0 and �1
penalties on singular values.

In this paper, we study the degrees of freedom of reduced-rank estimators in multivariate linear
regression models. Degrees of freedom is one of the most widely used terms in statistics, but it
has largely been overlooked in reduced-rank regression except for some heuristic suggestions
(Davies & Tso, 1982; Reinsel & Velu, 1998). For example, the number of free parameters in a
p × q matrix of rank r , (p + q − r)r , has been suggested as a naive estimate of the degrees of
freedom of the reduced-rank regression estimator when restricted to rank r � min(p, q). More
precisely, for an arbitrary design matrix, the number of free parameters should be (rx + q − r)r ,
where rx = rank(X) is the rank of the design matrix (Bunea et al., 2011). Henceforth, we refer to
this as the naive estimator of the degrees of freedom of a rank-r model. In this paper, we develop
a finite-sample unbiased estimator of the degrees of freedom for a general class of reduced-rank
estimators for the multivariate regression model and investigate its properties. Our results are
nonasymptotic, so the estimator is valid for any given model dimensions and sample size.

In a nutshell, the degrees of freedom quantifies the complexity of a statistical modelling pro-
cedure (Hastie & Tibshirani, 1990). In the case of the univariate linear regression model, the
degrees of freedom is the number of estimated parameters, p. However, in general there is no
exact correspondence between the degrees of freedom and the number of free parameters in the
model (Ye, 1998). For example, in best-subset selection for univariate regression (Hocking &
Leslie, 1967), we search for the best model of size p0 ∈ {1, 2, . . . , p} that minimizes the residual
sum of squares. The resulting model has p0 parameters, but intuitively the degrees of freedom
would be higher than p0, since the search for the optimal subset of size p0 increases model com-
plexity (Hastie et al., 2009). In other words, for best-subset selection the optimal p0-dimensional
subspace that minimizes the residual sum of squares clearly depends on Y . Thus, the final esti-
mator is highly nonlinear in Y , which results in the loss of correspondence between the degrees
of freedom and the number of parameters in the model.

Similar arguments apply to reduced-rank regression. Instead of searching for the best p0 vari-
ables, as in best-subset selection, here we are searching for the best r linear combinations of
the predictors that minimize the squared loss, which should intuitively suggest increased model
complexity. Since the optimal rank-r subspace depends on the response matrix Y , the correspon-
dence between the number of free parameters and the degrees of freedom need not hold. Thus
reduced-rank regression is different from other linear factor regression methods such as princi-
pal components regression (Massy, 1965). In principal components regression, the factors are
principal components of the design matrix X , which do not depend on the response Y , and so the
final estimator is still linear in Y .

2. DEGREES OF FREEDOM

Stein (1981), in his theory of unbiased risk estimation, first introduced a rigorous definition of
the degrees of freedom of a statistical estimation procedure. Later, Efron et al. (2004) showed that
Stein’s treatment can be considered a special case of a more general notion under the assumption
of Gaussianity. Assume that we have data of the form (yn×1, Xn×p). Given X , the response
originates from the model y ∼ (μ, σ 2 I ) where μ is the true mean, which can be a function of
X , and σ 2 is the common variance. Then, for any estimation procedure m(·) with fitted values
μ̂ = m(X, y), the degrees of freedom of m(·) is defined as

df(m) =
n∑

i=1

cov(μ̂i , yi )/σ
2. (3)
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The rationale is that more complex models would try to fit the data better, and hence the covari-
ance between observed and fitted pairs would be higher. This expression is not directly observable
except in certain simple cases, such as when m(y) = Sy, a linear smoother; in that case, it is not
difficult to see that df(m) = tr(S), which agrees with the usual definition of degrees of freedom
(Hastie & Tibshirani, 1990). Stein was able to overcome this hurdle for a special case where
y ∼ N (μ, σ 2 I ). Using a simple equality for the Gaussian distribution, he proved that as long as
the partial derivative ∂μ̂i/∂yi exists almost everywhere for all i ∈ {1, . . . , n},

cov(μ̂i , yi ) = σ 2 E

(
∂μ̂i

∂yi

)
,

giving the following unbiased estimator of the degrees of freedom for the fitting procedure m(·):

d̂f(m) =
n∑

i=1

∂μ̂i

∂yi
. (4)

Using the definition of degrees of freedom in (3), Efron et al. (2004) employed a covariance
penalty approach to prove that the CP-type statistics of Mallows (1973) provide an unbiased
estimator of the true prediction error, namely

CP(μ̂) = 1

n
‖y − μ̂‖2 + 2 df(μ̂)

n
σ 2.

This reveals the important role played by the degrees of freedom in model assessment, provides
a principled way to select the optimal model without using computationally expensive methods
such as crossvalidation, and can in certain settings offer significantly better prediction accuracy
than those computationally expensive methods (Efron et al., 2004). Indeed, the degrees of free-
dom is an integral part of almost every popular model selection criterion, including the Bayesian
information criterion (Schwarz, 1978) and generalized crossvalidation (Golub et al., 1979). Many
important works followed Stein (1981) and Efron et al. (2004). Donoho & Johnstone (1995) used
the unbiased risk estimation framework to derive the degrees of freedom for the soft-thresholding
operator in wavelet shrinkage; Meyer & Woodroofe (2000) employed this framework to derive
the same for shape-restricted regression; and Li & Zhu (2008) used this approach to compute
an unbiased estimator of the degrees of freedom for penalized quantile regression. Zou et al.
(2007) applied Stein’s theory of unbiased risk estimation to the lasso (Tibshirani, 1996); this is
challenging due to the nonlinear nature of the lasso solution, which does not admit an analyti-
cal solution except in some special cases. Using sophisticated mathematical analysis, Zou et al.
(2007) were able to prove that the number of nonzero coefficients provides an unbiased estimator
of the degrees of freedom for the lasso. This result is of great practical importance, as it allows one
to use model selection criteria such as CP or BIC for the lasso without extra computational cost.

The degrees of freedom for reduced-rank estimators also presents challenges because of the
nonlinearity of the estimator. Even though it admits a closed-form solution, the solution is highly
nonlinear, depending on the singular value decomposition of the least-squares solution, to be
described in (5). Below we study the degrees of freedom of a general class of reduced-rank esti-
mators in the framework of unbiased risk estimation and propose a finite-sample exact unbiased
estimator. The importance of such an estimator has been emphasized by Shen & Ye (2002), Efron
et al. (2004), Zou et al. (2007) and others.

To overcome the analytical difficulties in computing the degrees of freedom, Ye (1998) and
Shen & Ye (2002) proposed the generalized degrees-of-freedom approach, where they evalu-
ate the partial derivatives in (4) numerically, using data-perturbation techniques to compute an
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approximately unbiased estimator. Efron et al. (2004) used a parametric bootstrap to arrive at
an approximately unbiased estimator of (3). In their method, the objective is to directly esti-
mate cov(ŷi , yi ) by drawing repeated samples from the underlying distribution and fitting the
model. In the absence of such samples, this can be achieved by using a parametric bootstrap to
simulate data from a larger unbiased model and computing the covariance between the fitted
and observed values. Although these simulation approaches allow one to extend the degrees-
of-freedom approach to many highly nonlinear modelling frameworks, they are computationally
expensive, and the lack of a closed-form expression makes investigation of the theoretical prop-
erties difficult.

3. A CLASS OF REDUCED-RANK ESTIMATORS

Recall the multivariate linear regression model in (1). Let Ŷ be the least-squares estimate,
which admits a singular value decomposition of the form

Ŷ = X (X T X)−X TY = W
n×r̄

D
r̄×r̄

V T

r̄×q
, (5)

where A− denotes the Moore–Penrose pseudo-inverse of a generic matrix A (Moore, 1920;
Penrose, 1955). The dimensions p and q are assumed to be fixed but are not restricted by
the sample size n. The Moore–Penrose pseudo-inverse is well-defined for an arbitrary choice
of (p, q, n) as well as for a rank-deficient design matrix X . In (5), W and V are orthogonal
matrices that represent the left and right singular vectors, and D = diag{di : i = 1, . . . , r̄} where
d1 � · · · � dr̄ > 0 are the nonzero singular values of Ŷ . Without loss of generality we assume that
rank(Ŷ ) = r̄ = min(rx , q), where rx denotes the rank of the design matrix. We will denote the
kth columns of W and V by wk and vk , respectively. Using the Eckart–Young theorem (Eckart &
Young, 1936), it is not difficult to show that the reduced-rank regression estimator for (2) can be
expressed as

Ŷ (r) = Ŷ
r∑

k=1

vkv
T
k = W (r)D(r)V (r)T (r = 1, . . . , r̄), (6)

where A(r) denotes the first r columns of a generic matrix A. This rank-constrained estimation
procedure can also be viewed under a more general penalized least-squares framework,

min
B

{
1

2
‖Y − X B‖2

F + λP(B)

}
, (7)

in which the penalty is proportional to the rank of the coefficient matrix B, i.e., P(B) = rank(B)

(Bunea et al., 2011). It leads to a hard-thresholding of the singular values of Ŷ . More generally,
under the regularized estimation framework (7), a set of reduced-rank estimators can be indexed
by the regularization parameter λ, which controls the penalty level and hence the model’s com-
plexity. In light of that, we consider a broad class of such reduced-rank estimators, defined by

Ỹ (λ) = X B̃(λ) =
r̄∑

k=1

sk(dk, λ)dkwkv
T
k = Ŷ

r̄∑
k=1

sk(dk, λ)vkv
T
k , (8)

where each sk(dk, λ) ∈ [0, 1] is a function of dk and λ, such that s1(d1, λ) � · · · � sr̄ (dr̄ , λ) �
0. For simplicity, we write sk(dk, λ) = sk(λ) = sk . The reduced-rank regression estimator can
be viewed as a special case of this general framework, with sk(dk, r) = 1(k � r) ∈ {0, 1}
(r = 1, . . . , r̄), where the solutions are indexed by the rank constraint r instead of a continuous
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penalty parameter λ. This class of estimators has the same set of singular vectors as the reduced-
rank regression estimator in (6), but may have different singular value estimates given by shrunk
or thresholded versions of the estimated singular values from least squares. Such estimators can
be obtained from a nonconvex singular value penalization or from thresholding operations (She,
2009, 2013; Chen et al., 2013). The class of estimators (8) is computationally efficient and pos-
sesses many desirable theoretical properties, such as rank selection consistency and attainment
of the minimax error bound (Bunea et al., 2011) in both the classical and the high-dimensional
regimes. Examples include the rank selection estimator (Bunea et al., 2011), the nuclear-
norm-penalized estimator under an orthogonal design (Yuan et al., 2007), and the adaptive
nuclear-norm estimator (Chen et al., 2013).

4. DEGREES OF FREEDOM OF REDUCED-RANK ESTIMATORS

In the previous section we discussed a broad class of reduced-rank estimators covering both
hard- and soft-thresholding of the singular values of Ŷ . Next, we apply definition (4) to such
multivariate regression estimators to estimate the degrees of freedom. We start by rewriting the
multivariate linear regression model (1) as

vec(Y )
nq×1

= (Iq ⊗ X)
nq×pq

vec(B)
pq×1

+ vec(ε)
nq×1

,

where ⊗ denotes the usual Kronecker product between matrices and vec(·) stands for the colum-
nwise vectorization operator on a matrix. We will first derive the results for the special case of
the reduced-rank regression estimator (6) and later extend them to the general class of model (8).
Applying definition (4), we get

d̂f(r) = tr

[
∂ vec{Ŷ (r)}
∂ vec(Y )

]
(r = 1, . . . , r̄), (9)

where tr(·) denotes the trace operator for a real square matrix.
Despite its simplicity, direct computation of d̂f(r) from (9) remains difficult. We now show

that the problem boils down to determining the divergence measure of a low-rank matrix approxi-
mation to a full-rank matrix, regardless of the model dimensionality. Recall that we have assumed
rank(Ŷ ) = r̄ = min(rx , q), which is not restrictive in general and does not depend on the dimen-
sions of the problem. Let X T X = QS2 QT be the eigendecomposition of X T X ; that is, Q ∈ R

p×rx

with QT Q = I , and S ∈ R
rx×rx is a diagonal matrix with positive diagonal elements. Then, the

Moore–Penrose inverse of X T X can be written as (X T X)− = QS−2 QT. Define

H = S−1 QT X TY.

It follows that H ∈ R
rx×q admits a singular value decomposition of the form

H = U DV T,

where U ∈ R
rx×r̄ with U TU = I , and V and D are as defined in (5). The matrix H has the

same set of singular values and right singular vectors as Ŷ in (5), because H T H = Ŷ TŶ = Y T X
(X T X)−X TY . Moreover, H is of full rank since Ŷ is of rank r̄ = min(rx , q). The matrix H plays
a key role in the derivation of a simple form for the degrees of freedom. In particular, this con-
struction allows us to avoid singularities arising from rx < p in the high-dimensional scenario.
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Upon simplifying (9) using matrix equalities, we obtain

d̂f(r) = tr

{
∂ vec(U (r)D(r)V (r)T)

∂ vec(H)

}
= tr

[
∂ vec{H(r)}
∂ vec(H)

]
=

rx∑
i=1

q∑
j=1

∂hi j (r)

∂hi j
, (10)

where H(r) = U (r)D(r)V (r)T = {hi j (r)}rx×q is the rank-r approximation to H . The details of
this derivation are given in the Appendix.

For the general class of reduced-rank estimators in (8), we have

Ỹ (λ) = X QS−1 H
r̄∑

k=1

sk(dk, λ)vkv
T
k = X QS−1U D̃(λ)V T,

where D̃(λ) = diag{sk(dk, λ)dk : k = 1, . . . , r̄}. Once again, by using familiar matrix algebra, we
arrive at a simpler expression for the degrees of freedom for the general class of reduced-rank
models:

d̃f(λ) = tr

[
∂ vec{U D̃(λ)V T}

∂ vec(H)

]
= tr

[
∂ vec{H̃(λ)}
∂ vec(H)

]
, (11)

where H̃(λ) = U D̃(λ)V T.
It is now clear that the problem reduces to computing the divergence of a low-rank approxima-

tion of the matrix H with respect to H itself. Such a computation would involve the derivatives
of singular values and singular vectors, which are not only highly nonlinear functions of the
underlying matrix but also discontinuous on certain subsets of matrices (O’Neil, 2005). This
makes calculation of the degrees of freedom for the reduced-rank regression challenging. Stein
(1981) used derivatives of the singular values of a positive-semidefinite matrix to estimate the
risk improvement for a class of estimators for the mean of a multivariate Gaussian distribution.
Tsukuma (2008) used a similar method to prove minimaxity of Bayes estimators for the mean
matrix of a Gaussian distribution. Our set-up is very different from those of Stein (1981) and
Tsukuma (2008). Specifically, we consider a regression setting where the design matrix makes
the derivation more difficult. Also, as we aim to estimate the degrees of freedom of the model,
we need the derivatives of both singular values and vectors to compute the right-hand side of
(11). A considerable amount of work has been done on the smoothness and differentiability of
the singular value decomposition of a real matrix; see Magnus & Neudecker (1998) and O’Neil
(2005). In view of this, we proceed in two main steps: (i) derive the partial derivatives in (10) and
(11) for the case where H does not have repeated singular values, i.e., d1 > d2 > · · · > dr̄ > 0,
and use them to obtain an explicit exact unbiased estimator of the degrees of freedom; (ii) prove
that the set where the partial derivatives do not exist has zero Lebesgue measure.

5. PROPOSED ESTIMATOR

We start by examining the derivatives of the singular values and singular vectors of a matrix
with respect to an entry of the matrix itself. All the proofs are given in the Appendix.

THEOREM 1. Suppose that H is a rx × q matrix of rank q, with rx � q. Let its singular value
decomposition be H = U DV T, where U ∈ R

rx×q with U TU = I , V ∈ R
q×q with V TV = I , and
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D = diag{di : i = 1, . . . , q} with d1 > · · · > dq > 0. Then, for each 1 � i � rx , 1 � j � q and 1 �
k � q,

∂vk

∂hi j
= −(H T H − d2

k I )−(H T Z (i j) + Z (i j)T H)vk,

∂dk

∂hi j
= 1

2dk
vT

k (H T Z (i j) + Z (i j)T H)vk,

where (H T H − d2
k I )− = V (D2 − d2

k I )−V T, with (·)− denoting the Moore–Penrose inverse, and
Z (i j) = ∂ H/∂hi j is a rx × q matrix of zeros for entry (i, j).

Without loss of generality, we have assumed rx � q in the above theorem. When rx � q, the
same results could be stated for H T with rx and q interchanged. Theorem 1 can be established
from the general results in Magnus & Neudecker (1998) about the derivatives of a generalized
eigensystem. To ensure that the derivatives are well-defined, we have assumed that the singular
values are distinct. This is hardly a restriction in real applications, as the observed singular values
rarely coincide. The following theorem states that matrices of full rank and with nonrepeated
singular values are dense in the set of all real matrices of dimension rx × q.

THEOREM 2. Let R
rx×q be the space of all real-valued (rx × q)-dimensional matrices

equipped with the Lebesgue measure μ. Also, let S ⊆ R
rx×q denote the subset of matrices that

are of full rank and have no repeated singular values. Then μ(S) = 1.

It is not immediately clear whether the derived unbiased estimators in (10) and (11) admit an
explicit form. Examining the singular value decomposition of H sheds light on this. The pairs of
singular vectors (uk, vk) are orthogonal to each other, representing distinct directions in R

rx×q

without any redundancy. Intuitively, these directions are themselves indistinguishable, and their
relative importances in constituting the matrix H are entirely revealed by the singular values. This
suggests that the complexity of reduced-rank estimation, as reflected by the relative complexity
of a low-rank approximation H(r) or H̃(λ) with respect to H , may depend only on the singular
values of the matrix H and the mechanism of singular value shrinkage or thresholding. This
is the main intuition that motivated our results on explicit forms for (10) and (11), which are
summarized in the following two theorems.

THEOREM 3. Let Ŷ be the least-squares estimator in (5). Let rx = rank(X) and r̄ = rank(Ŷ ) =
min(rx , q). Suppose that the singular values of Ŷ satisfy d1 > · · · > dr̄ > 0. Consider the reduced-
rank estimator Ŷ (r) in (6). An unbiased estimator of the effective degrees of freedom is

d̂f(r) =

⎧⎪⎪⎨
⎪⎪⎩

max(rx , q)r +
r∑

k=1

r̄∑
l=r+1

d2
k + d2

l

d2
k − d2

l

, r < r̄ ,

rxq, r = r̄ .

The results are further generalized to the class of reduced-rank estimators in (8). The weights
sk(dk, λ) are treated as random quantities since they are usually functions of the singular values.

THEOREM 4. Let Ŷ be the least-squares estimator in (5). Let r̄ = rank(Ŷ ) = min(rx , q), and
suppose that the singular values of Ŷ satisfy d1 > · · · > dr̄ > 0. Consider the reduced-rank esti-
mator Ỹ (λ) in (8), and let r̃ = r̃(λ) = max{k : sk(dk, λ) > 0.}. An unbiased estimator of the
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effective degrees of freedom is

d̃f(λ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max(rx , q)

r̃∑
k=1

sk +
r̃∑

k=1

r̄∑
l=r̃+1

sk(d2
k + d2

l )

d2
k − d2

l

+
r̃∑

k=1

r̃∑
l |= k

d2
k (sk − sl)

d2
k − d2

l

+
r̃∑

k=1

dks′
k, r̃ < r̄ ,

max(rx , q)

r̃∑
k=1

sk +
r̃∑

k=1

r̃∑
l |= k

d2
k (sk − sl)

d2
k − d2

l

+
r̃∑

k=1

dks′
k, r̃ = r̄ ,

where for simplicity we write sk = sk(dk, λ) and s′
k = ∂sk(dk, λ)/∂dk.

The explicit formulae presented in the above theorems facilitate further exploration of the
behaviour and properties of the degrees of freedom. For example, consider the unbiased estimator
for reduced-rank regression in Theorem 3. It is always true that

d̂f(r) � max(rx , q)r +
r∑

k=1

r̄∑
l=r+1

d2
k + 0

d2
k − 0

= (rx + q − r)r (r = 1, . . . , r̄). (12)

This suggests that the proposed estimator is always greater than the naive estimator, i.e., the
number of free parameters (rx + q − r)r . Similar to the lasso in univariate regression problems
(Tibshirani, 1996; Zou et al., 2007), reduced-rank estimation can be viewed as a latent factor
selection procedure, in which we both construct and search over as many as r̄ latent linear fac-
tors. Therefore, the increments in the degrees of freedom as shown in (12) can be interpreted
as the price we have to pay for performing this latent factor selection. For the general methods
considered in Theorem 4, this inequality no longer holds, due to the shrinkage effects induced by
the weights 0 � sk � 1. The reduction in the degrees of freedom due to singular value shrinkage
can offset the price paid for searching over the set of latent variables. Therefore, similar to lasso,
adaptive singular-value penalization can provide effective control over the model complexity
(Tibshirani & Taylor, 2011).

Although the unbiased and naive estimators are quite different, there are some interesting
connections between them. For instance, they are close to each other when evaluated at the true
underlying rank, especially when the signal is strong relative to the noise level. This phenomenon
has also been noted in empirical studies. Suppose that the true model rank is rank(B) = r∗. Intu-
itively, the r̄ − r∗ smallest singular values from least squares may be close to zero and are not
comparable to the r∗ largest ones; using the approximation dk ≈ 0 (k = r∗ + 1, . . . , r̄ ), we obtain
d̂f(r∗) ≈ (rx + q − r∗)r∗. A more rigorous argument can be made based on classical large-
sample settings where p and q are fixed and n → ∞; under standard assumptions, consistency
of least-squares estimation can readily be established (Reinsel & Velu, 1998). Using techniques
such as perturbation expansion of matrices (Izenman, 1975), the consistency of Ŷ implies the con-
sistency of the estimated singular values; that is, the first r∗ estimated singular values converge
to their nonzero true counterparts, while the rest converge to zero in probability. It follows that

d̂f(r∗) → (rx + q − r∗)r∗, n → ∞,

in probability. An immediate implication is that for each r = 1, . . . , r̄ , if we assume the true model
to be of rank r , then in a classical asymptotic sense the number of free parameters, (rx + q − r)r ,
is the correct degrees of freedom. This clearly relates to the error degrees of freedom of the
classical asymptotic χ2 statistic from the likelihood ratio test of H0 : rank(B) = r for each
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r = 1, . . . , r̄ (Izenman, 1975). If p and q are allowed to diverge with the sample size n, these clas-
sical asymptotic results would break down, as the convergence of nonzero singular values fails
(Bai & Silverstein, 2009). In contrast, the unbiasedness property of our proposed exact estimator
is non-asymptotic and hence valid for any given (p, q, n). Recently, non-asymptotic prediction
error bounds have been developed for reduced-rank estimation methods, and the minimax conver-
gence rate is found to coincide with the number of free parameters (Bunea et al., 2011; Rohde &
Tsybakov, 2011). These results provide further justification of the proposed unbiased estimator
and reveal the limitations, underlying assumptions and asymptotic nature of the naive estimator.

The derived formulae also reveal some interesting behaviour of rank reduction. In essence,
reduced-rank methods distinguish the signal from the noise by examining the estimated singular
values from least-squares estimation: the large singular values are more likely to represent the
signals, while the small singular values mostly correspond to noise. By rank reduction, we aim
to recover the signals that exceed a certain noise level. Suppose that dk and dk+1 are close for
some k = 1, . . . , r̄ − 1. It can be argued that the true model rank is unlikely to be k, because the
(k + 1)th and the kth layers are hardly distinguishable. Indeed, this is reflected in the degrees of
freedom: for r = k, the formula includes a term (dk + dk+1)/(dk − dk+1), which can be exces-
sively large; on the other hand, there is no such term for r = k + 1. Consequently, the unbiased
estimator of the degrees of freedom may not increase monotonically as the rank r increases, in
contrast to the naive estimator. In the above scenario, the estimates for r = k can even be larger
than for r = k + 1. This automatically reduces the chance of k being selected as the final rank.

6. SIMULATION STUDIES

6·1. Unbiasedness

In this simulation, our aim is to show that the degrees-of-freedom estimator defined via
Theorem 3 is unbiased and can be significantly larger than the naive estimator, which simply
counts the number of free parameters. Here unbiasedness is defined over the error distribution,
and we treat X as a fixed design matrix. We conduct the study for both low and high dimensions.
The parameters are as follows.

Setting I: n = 100, p = 20, q = 12, r0 = 6.
Setting II: n = 40, p = 80, q = 50, r0 = 10.

Here r0 denotes the true rank of B. Let � denote the covariance matrix of the predictor vari-
ables X , and set � j j ′ = 0·3| j− j ′|. The rows of the predictor matrix are generated independently
from Np(0, �). To control the singular structure of B through the covariance of signals X B,
BT�B, we take the left singular vectors of B to be the same as the eigenvectors of �; the right
singular vectors of B are generated by orthogonalizing a random standard normal matrix. The
difference between successive nonzero singular values of B is fixed at 2. The error matrix is
generated from independent and identical standard normal distributions. We replicate the pro-
cess 200 times with a fixed design matrix. We compare the proposed exact method with the
data-perturbation technique of Ye (1998) and the Monte Carlo estimator of the true degrees of
freedom computed from (3). For the data-perturbation method, we consider 50 perturbations of
the response matrix for each replication to estimate the partial derivatives numerically. We chose
0·1σ for the perturbation size, where σ is the error standard deviation. Ideally we would expect the
proposed exact estimator to be fairly close, on average, to the data-perturbation and Monte Carlo
estimators. We compare the estimators against the naive degrees-of-freedom estimate, namely
dfn(r) = (rx + q − r)r , which corresponds to the number of free parameters in a p × q matrix
of rank r ; this does not depend on the data.
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Fig. 1. Simulation results for the unbiased estimator of degrees of freedom in the low-dimensional
setting (panels (a), (c) and (e)) and in the high-dimensional setting (panels (b), (d) and (f)). In panels
(a) and (b), the average over 200 replications of the estimated degrees of freedom is plotted against the
rank, for the exact estimator (asterisks), data-perturbation estimator (crosses), Monte Carlo estimator
(triangles) and naive estimator (circles). Panels (c) and (d) plot the difference between the estimated
degrees of freedom and the naive degrees of freedom for the same estimators. Panels (e) and (f) show
the standard errors of the estimated degrees of freedom for the exact estimator (dark grey bars) and the

perturbation estimator (light grey bars).

In Fig. 1(a) and (b) we see that for both high-dimensional and low-dimensional settings, the
proposed exact estimator, the data-perturbation estimator and the Monte Carlo estimator yield
nearly identical results. Further, as shown in Fig. 1(c) and (d), these estimates are significantly
higher than the naive estimate; the difference is especially large once we go above the correct rank.
This supports our theoretical intuition that the exact estimators seem to match the naive estimator
very closely at the true rank. From Fig. 1(e) and (f) we can get a sense of the variability of the
estimation procedures. The standard error for the proposed exact method is orders of magnitude
smaller than that of data perturbation below the true rank; but once we go above the true rank, the
standard error of the exact estimator becomes drastically greater. This arises from the fact that
once we go above the true rank, the singular values of Ŷ basically correspond to noise, and can
be very close to each other. Hence, slight perturbations of the data may lead to different singular
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Table 1. Comparison of the prediction performance of different model selection criteria

Setting SNR Measure GCV[e] GCV[n] BIC[e] BIC[n]

Low-dimensional

SNR ≈ 1
Est 1·56 (0·4) 1·80 (0·8) 1·56 (0·4) 1·76 (0·7)
Pred 11·95 (2·2) 12·97 (3·4) 11·95 (2·2) 12·80 (2·2)
Rank 3·01 (0·1) 3·18 (0·4) 3·01 (0·1) 3·12 (0·4)

SNR ≈ 0·5
Est 6·00 (2·7) 7·47 (3·4) 5·92 (2·7) 7·31 (3·4)
Pred 50·64 (10·8) 54·31 (10·8) 50·27 (10·8) 53·88 (10·7)
Rank 2·41 (0·6) 2·86 (0·6) 2·34 (0·6) 2·77 (0·6)

High-dimensional

SNR ≈ 1
Est 3·25 (0·5) 3·30 (0·5) 3·10 (0·5) 3·30 (0·5)
Pred 22·89 (1·5) 28·28 (4·3) 22·15 (1·4) 27·32 (4·1)
Rank 4·84 (0·4) 5·30 (0·5) 4·75 (0·4) 5·22 (0·4)

SNR ≈ 0·5
Est 3·77 (0·5) 4·00 (0·6) 3·61 (0·5) 3·90 (0·6)
Pred 78·48 (6·2) 89·93 (17·4) 76·85 (6·1) 87·83 (17·2)
Rank 4·00 (0·3) 4·46 (0·6) 3·92 (0·4) 4·34 (0·5)

[n], naive degrees-of-freedom estimator; [e], exact degrees-of-freedom estimator.

directions being selected, implying higher variability in model complexity. This phenomenon has
also been noted by Ye (1998); that is, if one is trying to fit pure error components, the degrees of
freedom tends to be high and unstable. This sudden change of standard deviation could be used
as a tool to identify the underlying true rank. Presence of a strong changepoint in the variance
profile would most certainly suggest a model of lower rank.

6·2. Prediction performance

Degrees-of-freedom estimates are commonly used in various model selection criteria. In this
subsection we show that for reduced-rank regression, we can gain in prediction accuracy by using
the exact degrees-of-freedom estimator instead of the naive one in a model selection criterion.
We report the error metrics with respect to two model selection criteria, namely the generalized
crossvalidation criterion (Golub et al., 1979) and the Bayesian information criterion (Schwarz,
1978). In the context of multivariate regression these are defined as follows:

GCV(r) = nq ‖Y − Ŷ (r)‖2
F

{nq − df(r)}2
, BIC(r) = log

{
1

nq
‖Y − Ŷ (r)‖2

F

}
+ log(nq)

nq
df(r).

We select the model that minimizes the model selection criterion over 1 � r � min(n, rx , q).
Once again, we choose two settings for a comprehensive comparison.

Low-dimensional setting: n = 50, p = 12, q = 10, r0 = 3.
High-dimensional setting: n = 40, p = 80, q = 50, r0 = 5.

For each setting we consider two different levels of error variance, σ 2 = 1 and σ 2 = 4. This
allows us to control the signal-to-noise ratio, SNR = dr∗(X B)/d1(ε); the numerator is the smallest
nonzero singular value of the signal matrix, a measure of the signal strength, and the denomina-
tor is the largest singular value of the error matrix, which is a measure of the noise strength
(Bunea et al., 2011). Correlation among prediction variables is kept at a moderate level of
0·5. The data-generation scheme remains the same as in § 6·1. We report the estimation error
Est = 100‖B − B̂‖2

F/(pq), the prediction error Pred = 100‖X B − X B̂‖2
F/(nq) and the selected

rank. Table 1 summarizes the results. We report the averages over 100 replications, with standard
errors in parentheses.
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Fig. 2. Boxplots of the relative gain in prediction error obtained with the exact degrees-
of-freedom estimator as compared to the naive estimator, in (a) the low-dimensional
setting and (b) the high-dimensional setting. In each panel the two columns correspond

to high and low levels of signal-to-noise ratio, SNR.

Using the proposed exact degrees-of-freedom estimator leads to better performance in terms
of both GCV and BIC. The proposed estimator results in lower average estimation error and pre-
diction error in all the settings. The relative gain is larger for the prediction error. Similar results,
not shown here, were obtained at other levels of correlation. For the low-dimensional setting
where an estimator for σ 2 is available, we also studied the performance of Mallows’ CP crite-
rion; once again the results were very close to those reported and are thus omitted. We observe
that BIC and GCV give nearly identical results, but BIC provides a slightly higher degree of regu-
larization, especially in high-dimensional settings. When the signal-to-noise ratio is moderate to
high, the naive degrees-of-freedom estimator tends to overestimate the rank, leading to inflated
error measures. On the other hand, in low-signal settings, often the smallest nonzero singular
values have very little explanatory power, and therefore selecting a lower-rank model enables
us to do better in terms of prediction accuracy due to the bias-variance trade-off. As the exact
degrees-of-freedom estimator usually gives higher values than the naive estimator, it penalizes
the model complexity more strictly and leads to the selection of simpler models that yield better
prediction. The difference between the mean prediction errors reported in Table 1 are within the
ranges of the standard errors shown in parentheses. In order to demonstrate the superior predic-
tion performance of the exact degrees-of-freedom estimator, we conduct a comparison on a per-
dataset basis in terms of relative gain in accuracy. For each dataset, the pairwise relative gain is
defined as

100 × Pred[n] − Pred[e]

Pred[e]
%,

where Pred[e] and Pred[n] denote the prediction errors when using the exact and naive degrees-
of-freedom estimators, respectively. Since the results for GCV and BIC were very similar, we plot
only the results for GCV. As can be seen in Fig. 2, the boxplots tend to stay above zero, indicating
that the exact degrees-of-freedom estimator outperforms the naive estimator consistently. Also,
the relative gain is larger in the high-dimensional scenario.
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Fig. 3. Boxplots of prediction performance in the Arabidopsis thaliana data application: (a) mean
squared prediction error of each method over 100 random splits for three model selection criteria,
where [e] denotes use of the proposed exact degrees-of-freedom estimator and [n] denotes use of
the naive degrees-of-freedom estimator in computing the model selection criteria; (b) relative gain in
prediction error for each model selection method from using the exact degrees-of-freedom estimator

over the naive degrees-of-freedom estimator.

7. ANALYSIS OF ARABIDOPSIS THALIANA DATA

In this section, we use the proposed method to select a reduced-rank model in the genetic asso-
ciation study of Wille et al. (2004). The goal of this microarray experiment was to understand the
regulatory control mechanisms in the isoprenoid gene network of the plant Arabidopsis thaliana,
more commonly known as thale cress or mouse-ear cress. Isoprenoids have many important bio-
chemical functions in plants. To monitor the gene expression levels, 118 GeneChip microarray
experiments were carried out. The predictors consist of 39 genes from two isoprenoid biosyn-
thesis pathways, MVA and MEP, and the responses consist of the expression levels of 795 genes
from 56 metabolic pathways, many of which are downstream of the two pathways considered as
predictors. Thus some of the responses are expected to show significant association with the pre-
dictor genes. We select two downstream pathways, the carotenoid and phytosterol pathways, as
our responses. It has already been shown experimentally that the carotenoid pathway is strongly
linked to the MEP pathway, whereas the phytosterol pathway is significantly related to the MVA
pathway; see Wille et al. (2004) and the references therein for a detailed discussion. Finally,
we have 118 observations on p = 39 predictors and q = 36 responses, all logarithmically trans-
formed to reduce the skewness. We also standardized the responses to make them comparable.

We split the dataset randomly into training and test sets of equal size. We fitted the model
using the training samples and then used it to predict on the test set. The performance measure
is the mean squared prediction error

2

nq
‖Ytest − Ŷtest‖2

F.

The entire process was repeated 100 times based on random splits. We used Mallows’ CP , GCV
and BIC with the exact degrees of freedom and the naive degrees of freedom to select the opti-
mal rank.
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Table 2. Prediction accuracy and rank selection performance of the competing methods
on the Arabidopsis thaliana data

CP [e] CP [n] GCV[e] GCV[n] BIC[e] BIC[n] OLS

Mean(Pred. err.) 2·20 2·24 2·19 2·282 1·30 1·39 2·59
Std(Pred. err.) 0·3 0·25 0·25 0·246 0·1 0·2 0·3
Mean(Est. rank) 8·76 9·71 8·68 10·52 1·09 1·48 –
Std(Est. rank) 1·2 0·8 1·3 1·0 0·4 0·8 –

Pred. err., prediction error; Est. rank, estimated rank; Std, standard error; [n], naive degrees-of-freedom
estimator; [e], exact degrees-of-freedom estimator; OLS, ordinary least squares.

The mean squared prediction errors for each method are summarized in Fig. 3. For all three
model selection criteria considered, the exact unbiased estimator outperforms the naive estimator
in prediction accuracy. The relative gain is almost always positive, as shown by Fig. 3(b). Among
the three model selection criteria, BIC appears to be the clear winner in terms of prediction error,
by virtue of its selecting a very parsimonious model; see Table 2.

8. CONCLUDING REMARKS

We have proposed an exact unbiased estimator of the degrees of freedom for a general class
of reduced-rank estimators for the multivariate linear regression model. The proposed estimator
can be computed explicitly, leading to a model selection procedure that is more efficient than
the computationally expensive crossvalidation or data-perturbation methods. The closed form
also gives us insight into the connection between the exact and naive degrees-of-freedom esti-
mators. The proposed method assumes no conditions on the dimensions of the problem or the
rank of the design matrix, and is suitable for application to high-dimensional problems where
p, q > n. The methods developed can be extended to other related estimation procedures that
employ regularization of the singular values, such as reduced-rank ridge regression (Mukherjee &
Zhu, 2011).

There are several possible directions for future research. Although we have demonstrated
numerically that using the unbiased degrees-of-freedom estimator improves model selection, it
remains difficult to theoretically justify and quantify this performance gain in the finite-sample
setting. We have mainly considered reduced-rank estimators which share the same set of sin-
gular vectors with the least-squares solution. It would be interesting to extend the results to
other reduced-rank methods, such as nuclear-norm-penalized regression (Yuan et al., 2007).
Since reduced-rank estimation can be more effective when combined with sparse estimation,
e.g., selecting latent factors of a sparse subset of original variables, it would be very interesting
to extend the method to sparse and low-rank models (Zou et al., 2007; Bunea et al., 2012; Chen
et al., 2012). Another challenging problem is to extend the solutions to the case of general cor-
related errors, which is often encountered in practice. This is much more difficult, as B̂ does not
admit a closed-form solution for a general unknown error covariance matrix �. One possible
approach would be to employ an iterative generalized least-squares-type algorithm to converge
to the exact degrees of freedom. This also leads to the more general problem of investigating
the degrees of freedom in rank-constrained generalized linear models (Yee & Hastie, 2003; Li &
Chan, 2007; She, 2013). Finally, as reduced-rank methods are commonly used in the analysis
of multiple time series, the proposed approach can be extended to such settings, for example to
reduced-rank models with multiple sets of regressors (Velu, 1991) and co-integration (Anderson,
2002a).
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APPENDIX

Proof of Equation (10). Upon using the Moore–Penrose inverse to simplify the ordinary least-squares
solution, we get Ŷ = X QS−1 H and Ŷ (r) = X QS−1 H(r) for r = 1, . . . , r̄ . Using the trace identity
tr(AB) = tr(B A), the equality vec(ABC) = (CT ⊗ A)vec(B) and the chain rule of differentiation, we
obtain

d̂f(r) = tr

[
∂ vec{Ŷ (r)}
∂ vec(Y )

]

= tr

((
Iq ⊗ X QS−1

) [∂ vec{H(r)}
∂ vec(Y )

])

= tr

((
Iq ⊗ X QS−1

) [∂ vec{H(r)}
∂ vec(H)

]{
∂ vec(H)

∂ vec(Y )

})

= tr

((
Iq ⊗ X QS−1

) [∂ vec{H(r)}
∂ vec(H)

] (
Iq ⊗ S−1 QT X T

))

= tr

[
∂ vec{H(r)}
∂ vec(H)

]
. �

Proof of Theorem 1. The proof is based mainly on results of Magnus & Neudecker (1998) concerning
the derivatives of a generalized eigensystem. We have assumed rx � q; the same results can be stated for
H T when rx � q. Let A = H T H , and let (d2, v) denote an eigenvalue-eigenvector pair for A. Suppose that
A is twice continuously differentiable at θ , e.g., θ = hi j for any i = 1, . . . , rx and j = 1, . . . , q. Then the
eigenvalues and eigenvectors are also differentiable at θ . As Av = d2v, it follows that

∂ A

∂θ
v + A

∂v

∂θ
= d2 ∂v

∂θ
+ ∂d2

∂θ
v,

and this gives

(A − d2 I )
∂v

∂θ
= −

(
∂ A

∂θ
− ∂d2

∂θ
I

)
v. (A1)

Premultiplying both sides of (A1) by vT gives

vT(A − d2 I )
∂v

∂θ
= −vT

∂ A

∂θ
v + ∂d2

∂θ
.

It is obvious that the left-hand side equals zero; it then follows that

∂d

∂θ
= 1

2d
vT

∂ A

∂θ
v. (A2)

Define (A − d2 I )− = V (D2 − d2 I )−V T, where (·)− denotes the Moore–Penrose inverse. Then (A −
d2 I )−(A − d2 I ) = I − vvT and (A − d2 I )−v = 0. Premultiplying both sides of (A1) by (A − d2 I )− gives

(I − vvT)
∂v

∂θ
= −(A − d2 I )−

∂ A

∂θ
v.
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As vTv = 1, we have that vT(∂v/∂θ) = 0, and so

∂v

∂θ
= −(A − d2 I )−

∂ A

∂θ
v. (A3)

Define Z (i j) = ∂ H/∂hi j , a rx × q matrix of zeros with only its (i, j)th entry equal to 1. For any θ = hi j ,

∂ A

∂hi j
= H T Z (i j) + Z (i j)T H. (A4)

The proof is completed by combining (A2), (A3) and (A4). �

Proof of Theorem 3. For simplicity and without loss of generality, we assume rx � q. When rx � q,
one can repeat the same proof using H T. When r = q, the statement d̂f(q) = rx q holds trivially. So in
the following we assume r < q. Consider ∂ H (r)/∂hi j for any 1 � i � rx and 1 � j � q. Because H (r) =
H
∑r

k=1 vkv
T
k , by the chain rule we have that

∂ H (r)

∂hi j
= ∂ H

∂hi j

r∑
k=1

vkv
T
k + H

r∑
k=1

∂vk

∂hi j
vT

k + H
r∑

k=1

vk
∂vT

k

∂hi j

= Z (i j)V (r)V (r)T − H
r∑

k=1

{
(H T H − d2

k I )−(H T Z (i j) + Z (i j)T H)vkv
T
k

}

− H
r∑

k=1

{
vkv

T
k(H T Z (i j) + Z (i j)T H)(H T H − d2

k I )−
}
. (A5)

Consider the first term on the right-hand side of (A5). Its (i, j)th entry equals
∑r

k=1 v2
jk , so its contribution

to the degrees of freedom (10) is
rx∑

i=1

q∑
j=1

r∑
k=1

v2
jk = rxr, (A6)

because
∑q

j=1 v2
jk = 1. We know that

(H T H − d2
k I )− =

q∑
l |= k

1

d2
l − d2

k

vlv
T
l ,

and we also have

H T Z (i j) + Z (i j)T H =

⎛
⎜⎜⎜⎜⎜⎜⎝

hi1
...

hi1 · · · 2hi j · · · hiq
...

hiq

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Now consider the second term on the right-hand side of (A5). After some algebra, its (i, j)th entry can
be written as uT

i Da(i j), where a(i j) ∈ R
q with

a(i j)
k = −

r∑
l |= k

1

d2
k − d2

l

(v jkv jl h
T
i vl + v2

jl h
T
i vk) (k = 1, . . . , q).

Similarly, the (i, j)th entry of the third term on the right-hand side of (A5) is uT
i Db(i j), where b(i j) ∈ R

q

with

b(i j)
k = −

q∑
l |= k

1

d2
l − d2

k

(v jkv jl h
T
i vl + v2

jl h
T
i vk) (k = 1, . . . , r)
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and b(i j)
k = 0 for k = r + 1, . . . , q whenever r < q. Consider the second and third terms together. Since

a(i j)
k + b(i j)

k =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q∑
l=r+1

1

d2
k − d2

l

(v jkv jl h
T
i vl + v2

jl h
T
i vk) (k = 1, . . . , r),

r∑
l=1

1

d2
l − d2

k

(v jkv jl h
T
i vl + v2

jl h
T
i vk) (k = r + 1, . . . , q),

it follows that the contribution from the second and third terms equals

rx∑
i=1

q∑
j=1

{
r∑

k=1

uikdk

q∑
l=r+1

1

d2
k − d2

l

(v jkv jl h
T
i vl + v2

jl h
T
i vk)

}

+
rx∑

i=1

q∑
j=1

{
q∑

k=r+1

uikdk

r∑
l=1

1

d2
l − d2

k

(v jkv jl h
T
i vl + v2

jl h
T
i vk)

}

=
rx∑

i=1

⎧⎨
⎩

r∑
k=1

uikdk

q∑
l=r+1

1

d2
k − d2

l

q∑
j=1

(v jkv jl h
T
i vl + v2

jl h
T
i vk)

⎫⎬
⎭

+
rx∑

i=1

⎧⎨
⎩

q∑
k=r+1

uikdk

r∑
l=1

1

d2
l − d2

k

q∑
j=1

(v jkv jl h
T
i vl + v2

jl h
T
i vk)

⎫⎬
⎭

=
rx∑

i=1

{
r∑

k=1

q∑
l=r+1

dk

d2
k − d2

l

uik(h
T
i vk) +

q∑
k=r+1

r∑
l=1

dk

d2
l − d2

k

uik(h
T
i vk)

}

=
rx∑

i=1

{
r∑

k=1

q∑
l=r+1

dk

d2
k − d2

l

uik(h
T
i vk) +

r∑
k=1

q∑
l=r+1

dl

d2
k − d2

l

uil(h
T
i vl)

}

=
r∑

k=1

q∑
l=r+1

(
dk

d2
k − d2

l

uT
k Hvk + dl

d2
k − d2

l

uT
l Hvl

)

=
r∑

k=1

q∑
l=r+1

d2
k + d2

l

d2
k − d2

l

.

Upon combining this with (A6), the proof is completed. �

Proof of Theorem 4. Again, we assume rx � q. When rx � q, one can repeat the same proof using H T.
Recall that H̃(λ) = U D̃(λ)V T. Consider ∂ H̃(λ)/∂hi j for any fixed λ > 0, 1 � i � rx and 1 � j � q. Let

r̃ = r̃(λ) = max{k : sk > 0}. Because H̃(λ) = H
∑r̃

k=1 skvkv
T
k , by the chain rule we have that

∂ H̃(λ)

∂hi j
= ∂ H

∂hi j

r̃∑
k=1

skvkv
T
k + H

r̃∑
k=1

sk
∂vk

∂hi j
vT

k + H
r̃∑

k=1

skvk
∂vT

k

∂hi j
+ H

r̃∑
k=1

∂sk

∂hi j
vkv

T
k

= Z (i j)V (r̃) D(r̃)−1 D̃(r̃)V (r̃)T − H
r̃∑

k=1

{
sk(H T H − d2

k I )−(H T Z (i j) + Z (i j)T H)vkv
T
k

}

− H
r̃∑

k=1

{
skvkv

T
k(H T Z (i j) + Z (i j)T H)(H T H − d2

k I )−
}

+ H
r̃∑

k=1

[
s ′

k

{
1

2dk
vT

k(H T Z (i j) + Z (i j)T H)vk

}
vkv

T
k

]
, (A7)
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where s ′
k = ∂sk/∂dk . It can be shown that the (i, j)th entry of the first term on the right-hand side of (A7)

equals
∑r̃

k=1 skv
2
jk , so its contribution to the degrees of freedom (10) is

rx∑
i=1

q∑
j=1

r̃∑
k=1

skv
2
jk = rx

r̃∑
k=1

sk, (A8)

because
∑q

j=1 v2
jk = 1. Similar to the proof of Theorem 3, the (i, j)th entry of the second and third terms

on the right-hand side of (A7) can be shown to be uT
i D(ã(i j) + b̃(i j)), where ã(i j) ∈ R

q and b̃(i j) ∈ R
q with

ã(i j)
k + b̃(i j)

k =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

q∑
l |= k

sk − sl

d2
k − d2

l

(v jkv jl h
T
i vl + v2

jl h
T
i vk) (k = 1, . . . , r̃),

r̃∑
l=1

sl

d2
l − d2

k

(v jkv jl h
T
i vl + v2

jl h
T
i vk) (k = r̃ + 1, . . . , q).

After some algebra, one can show that the contribution of the second and third terms to the degrees of
freedom equals

rx∑
i=1

q∑
j=1

⎧⎨
⎩

r̃∑
k=1

uikdk

q∑
l |= k

sk − sl

d2
k − d2

l

(v jkv jl h
T
i vl + v2

jl h
T
i vk)

⎫⎬
⎭

+
rx∑

i=1

q∑
j=1

{
q∑

k=r̃+1

uikdk

r̃∑
l=1

sl

d2
l − d2

k

(v jkv jl h
T
i vl + v2

jl h
T
i vk)

}

=
r̃∑

k=1

q∑
s=r̃+1

{
d2

k (sk − sl) + d2
l sk

d2
k − d2

l

}
+

r̃∑
k=1

r̃∑
l |= k

{
d2

k (sk − sl)

d2
k − d2

l

}
. (A9)

Consider the fourth term on the right-hand side of (A7). Note that vT
k(H T Z (i j) + Z (i j)T H)vk = 2v jk(v

T
khi ).

The (i, j)th entry of the fourth term is
∑r̃

k=1 s ′
kuikv

2
jk(v

T
khi ), so the contribution of the fourth term to the

degrees of freedom is

rx∑
i=1

q∑
j=1

r̃∑
k=1

s ′
kuikv

2
jk(v

T
khi ) =

rx∑
i=1

r̃∑
k=1

s ′
kuik(v

T
khi ) =

r̃∑
k=1

s ′
k

rx∑
i=1

uikhT
i vk =

r̃∑
k=1

dks ′
k .

Upon combining this with (A8) and (A9), the proof is completed. �

Proof of Theorem 2. We start with a few definitions and facts from algebraic geometry and matrix
analysis.

DEFINITION A1. An algebraic variety over R
k(or C

k) is defined as the set of points satisfying a system
of polynomial equations { f�(x1, x2, . . . , xk) = 0 : � ∈ I}.

Here each f�(·) is a polynomial function of its arguments and I denotes an index set. If at least one of
the f�(·) is not identically zero, it is called a proper subvariety. A proper subvariety must be of dimension
less than k and therefore has Lebesgue measure zero in R

k (Allman et al., 2009). For a more detailed
discussion, we refer the reader to Hartshorne (1977) or Cox et al. (2007).

PROPOSITION A1 (Laub, 2004). Any square symmetric matrix M ∈ R
k×k has at least one repeated

eigenvalue if and only if rank(M ⊗ Ik − Ik ⊗ M) < (k2 − k).
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Define

S1 = {A ∈ R
rx ×q : A has at least one singular value that is 0},

S2 = {A ∈ R
rx ×q : A has at least one repeated singular value}.

Note that Sc = S1 ∪ S2, so it is enough to show that μ(S1) = 0 and μ(S2) = 0. By Definition A1 and the
discussion above, it suffices to show that S1 and S2 are proper subvarieties of R

rx ×q . The set S1 can be
rewritten as

S1 = {A ∈ Rrx ×q : det(AT A) = 0},
where det(·) denotes the determinant of a square matrix. Now, det(AT A) is a nontrivial polynomial in the
entries of A, and hence S1 is a proper subvariety and has Lebesgue measure zero. For S2, observe that
if A ∈ R

p×q has at least one repeated singular value, then AT A ∈ R
p×q must have at least one repeated

eigenvalue. Therefore, in view of Proposition A1, S2 can be reformulated as

S2 = {A ∈ Rrx ×q : rank(AT A ⊗ Iq − Iq ⊗ AT A) < (q2 − q)}.

This is an algebraic variety, since it can be expressed as the solution to all minors of order at least q2 − q
being equal to zero, which are all polynomial equations in the entries of A. Thus we have shown that
μ(S1 ∪ S2) = 0. �
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