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In this paper we propose a new method remMap—REgularized Mul-
tivariate regression for identifying MAster Predictors—for fitting multivari-
ate response regression models under the high-dimension–low-sample-size
setting. remMap is motivated by investigating the regulatory relationships
among different biological molecules based on multiple types of high di-
mensional genomic data. Particularly, we are interested in studying the in-
fluence of DNA copy number alterations on RNA transcript levels. For this
purpose, we model the dependence of the RNA expression levels on DNA
copy numbers through multivariate linear regressions and utilize proper reg-
ularization to deal with the high dimensionality as well as to incorporate de-
sired network structures. Criteria for selecting the tuning parameters are also
discussed. The performance of the proposed method is illustrated through
extensive simulation studies. Finally, remMap is applied to a breast cancer
study, in which genome wide RNA transcript levels and DNA copy num-
bers were measured for 172 tumor samples. We identify a trans-hub region
in cytoband 17q12-q21, whose amplification influences the RNA expression
levels of more than 30 unlinked genes. These findings may lead to a better
understanding of breast cancer pathology.

1. Introduction. In a few recent breast cancer cohort studies, microarray ex-
pression experiments and array CGH (comparative genomic hybridization) exper-
iments have been conducted for more than 170 primary breast tumor specimens
collected at multiple cancer centers [Sorlie et al. (2001), Sorlie et al. (2003),
Zhao et al. (2004), Kapp et al. (2006), Bergamaschi et al. (2006), Langerod et
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al. (2007) and Bergamaschi et al. (2008)]. The resulting RNA transcript levels
(from microarray expression experiments) and DNA copy numbers (from CGH
experiments) of about 20K genes/clones across all the tumor samples were then
used to identify useful molecular markers for potential clinical usage. While use-
ful information has been revealed by analyzing expression arrays alone or CGH
arrays alone, careful integrative analysis of DNA copy numbers and expression
data are necessary, as these two types of data provide complimentary information
in gene characterization. Specifically, RNA data give information on genes that are
over/under-expressed, but do not distinguish primary changes driving cancer from
secondary changes resulting from cancer, such as proliferation rates and differenti-
ation state. On the other hand, DNA data give information on gains and losses that
are drivers of cancer. Therefore, integrating DNA and RNA data helps to discern
more subtle (yet biologically important) genetic regulatory relationships in cancer
cells [Pollack et al. (2002)].

It is widely agreed that variations in gene copy numbers play an important
role in cancer development through altering the expression levels of cancer-related
genes [Albertson et al. (2003)]. This is clear for cis-regulations, in which a gene’s
DNA copy number alteration influences its own RNA transcript level [Hyman et
al. (2002) and Pollack et al. (2002)]. However, DNA copy number alterations can
also alter in trans the RNA transcript levels of genes from unlinked regions, for
example, by directly altering the copy number and expression of transcriptional
regulators, or by indirectly altering the expression or activity of transcriptional
regulators, or through genome rearrangements affecting cis-regulatory elements.
The functional consequences of such trans-regulations are much harder to estab-
lish, as such inquiries involve assessment of a large number of potential regulatory
relationships. Therefore, to refine our understanding of how these genome events
exert their effects, we need new analytical tools that can reveal the subtle and
complicated interactions among DNA copy numbers and RNA transcript levels.
Knowledge resulting from such analysis will help shed light on cancer mecha-
nisms.

The most straightforward way to model the dependence of RNA levels on DNA
copy numbers is through a multivariate response linear regression model with the
RNA levels being responses and the DNA copy numbers being predictors. While
the multivariate linear regression is well studied in statistical literature, the current
problem bears new challenges due to (i) high-dimensionality in terms of both pre-
dictors and responses; (ii) the interest in identifying master regulators in genetic
regulatory networks; and (iii) the complicated correlation relationships among re-
sponse variables. Thus, the naive approach of regressing each response onto the
predictors separately is unlikely to produce satisfactory results, as such methods
often lead to high variability and over-fitting. This has been observed by many au-
thors, for example, Breiman and Friedman (1997) show that taking into account
of the relation among response variables helps to improve the overall prediction
accuracy. More recently, Kim, Sohn and Xing (2009) propose a new statistical
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framework to explicitly incorporate the relationships among responses by assum-
ing the linked responses depend on the predictors in a similar way. The authors
show that this approach helps to select relevant predictors when the above assump-
tion holds.

When the number of predictors is moderate or large, model selection is often
needed for prediction accuracy and/or model interpretation. Standard model se-
lection tools in multiple regression such as AIC and forward stepwise selection
have been extended to multivariate linear regression models [Bedrick and Tsai
(1994), Fujikoshi and Satoh (1997) and Lutz and Bühlmann (2006)]. More re-
cently, sparse regularization schemes have been utilized for model selection under
the high dimensional multivariate regression setting. For example, Turlach, Ven-
ables and Wright (2005) propose to constrain the coefficient matrix of a multivari-
ate regression model to lie within a suitable polyhedral region. Lutz and Bühlmann
(2006) propose an L2 multivariate boosting procedure. Obozinski, Wainwright
and Jordan (2008) propose to use a �1/�2 regularization to identify the union
support set in the multivariate regression. Moreover, Brown, Vannucci and Fearn
(1998, 2002) and Brown, Fearn and Vannucci (1999) introduce a Bayesian frame-
work to model the relation among the response variables when performing vari-
able selection for multivariate regression. Another way to reduce the dimension-
ality is through factor analysis. Related work includes Izenman (1975), Frank and
Friedman (1993), Reinsel and Velu (1998), Yuan et al. (2007) and many oth-
ers.

For the problem we are interested in here, the dimensions of both predictors and
responses are large (compared to the sample size). Thus, in addition to assuming
that only a subset of predictors enter the model, it is also reasonable to assume
that a predictor may affect only some but not all responses. Moreover, in many
real applications, there often exists a subset of predictors which are more impor-
tant than other predictors in terms of model building and/or scientific interest. For
example, it is widely believed that genetic regulatory relationships are intrinsically
sparse [Jeong et al. (2001) and Gardner et al. (2003)]. At the same time, there ex-
ist master regulators—network components that affect many other components,
which play important roles in shaping the network functionality. Most methods
mentioned above do not take into account the dimensionality of the responses and,
thus, a predictor/factor influences either all or none of the responses, for exam-
ple, Turlach, Venables and Wright (2005), Yuan et al. (2007), the L2 row boosting
by Lutz and Bühlmann (2006), and the �1/�2 regularization by Obozinski, Wain-
wright and Jordan (2008). On the other hand, other methods only impose a sparse
model, but do not aim at selecting a subset of predictors, for example, the L2
boosting by Lutz and Bühlmann (2006). In this paper we propose a novel method
remMap—REgularized Multivariate regression for identifying MAster Predictors,
which takes into account both aspects. remMap uses an �1 norm penalty to control
the overall sparsity of the coefficient matrix of the multivariate linear regression
model. In addition, remMap imposes a “group” sparse penalty, which in essence
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is the same as the “group lasso” penalty proposed by Bakin (1999), Antoniadis
and Fan (2001), Yuan and Lin (2006), Zhao, Rocha and Yu (2009) and Obozinski,
Wainwright and Jordan (2008) (see more discussions in Section 2). This penalty
puts a constraint on the �2 norm of regression coefficients for each predictor, which
controls the total number of predictors entering the model, and consequently facil-
itates the detection of master predictors. The performance of the proposed method
is illustrated through extensive simulation studies.

We apply the remMap method on the breast cancer data set mentioned earlier
and identify a significant trans-hub region in cytoband 17q12-q21, whose amplifi-
cation influences the RNA levels of more than 30 unlinked genes. These findings
may shed some light on breast cancer pathology. We also want to point out that
analyzing CGH arrays and expression arrays together reveals only a small portion
of the regulatory relationships among genes. However, it should identify many
of the important relationships, that is, those reflecting primary genetic alterations
that drive cancer development and progression. While there are other mechanisms
to alter the expression of master regulators, for example, by DNA mutation or
methylation, in most cases one should also find corresponding DNA copy number
changes in at least a subset of cancer cases. Nevertheless, because we only identify
the subset explainable by copy number alterations, the words “regulatory network”
(“master regulator”) used in this paper will specifically refer to the subnetwork
(hubs of the subnetwork) whose functions change with DNA copy number alter-
ations, and thus can be detected by analyzing CGH arrays together with expression
arrays.

The rest of the paper is organized as follows. In Section 2 we describe the
remMap model, its implementation and criteria for tuning. In Section 3 the perfor-
mance of remMap is examined through extensive simulation studies. In Section 4
we apply the remMapmethod on the breast cancer data set. We conclude the paper
with discussions in Section 5. Technical details are provided in the supplementary
material [Peng et al. (2009b)].

2. Method.

2.1. Model. Consider multivariate regression with Q response variables
y1, . . . , yQ and P prediction variables x1, . . . , xP :

yq =
P∑

p=1

xpβpq + εq, q = 1, . . . ,Q,(2.1)

where the error terms ε1, . . . , εQ have a joint distribution with mean 0 and co-
variance �ε . In the above, we assume that all the response and prediction vari-
ables are standardized to have zero mean and, thus, there is no intercept term in
equation (2.1). The primary goal of this paper is to identify nonzero entries in
the P × Q coefficient matrix B = (βpq) based on N i.i.d. samples from the above
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model. Under normality assumptions, βpq can be interpreted as proportional to the
conditional correlation Cor(yq, xp|x−(p)), where x−(p) := {xp′ : 1 ≤ p′ �= p ≤ P }.
In the following, we use Yq = (y1

q, . . . , yN
q )T and Xp = (x1

p, . . . , xN
p )T to denote

the sample of the qth response variable and that of the pth prediction variable,
respectively. We also use Y = (Y1 : · · · : YQ) to denote the N ×Q response matrix,
and use X = (X1 : · · · : XP ) to denote the N × P prediction matrix.

In this paper we shall focus on the cases where both Q and P are larger than the
sample size N . For example, in the breast cancer study discussed in Section 4, the
sample size is 172, while the number of genes and the number of chromosomal re-
gions are on the order of a couple of hundred (after pre-screening). When P > N ,
the ordinary least square solution is not unique, and regularization becomes indis-
pensable. The choice of suitable regularization depends heavily on the type of data
structure we envision. In recent years, �1-norm based sparsity constraints such as
lasso [Tibshirani (1996)] have been widely used under such high-dimension-low-
sample-size settings. This kind of regularization is particularly suitable for the
study of genetic pathways, since genetic regulatory relationships are widely be-
lieved to be intrinsically sparse [Jeong et al. (2001) and Gardner et al. (2003)]. In
this paper we impose an �1 norm penalty on the coefficient matrix B to control
the overall sparsity of the multivariate regression model. In addition, we put con-
straints on the total number of predictors entering the model. This is achieved by
treating the coefficients corresponding to the same predictor (one row of B) as a
group, and then penalizing its �2 norm. A predictor will not be selected into the
model if the corresponding �2 norm is too small. Thus, this penalty facilitates the
identification of master predictors—predictors which affect (relatively) many re-
sponse variables. This idea is motivated by the fact that master regulators exist and
are of great interest in the study of many real life networks including genetic regu-
latory networks. Specifically, for model (2.1), we propose the following criterion:

L(B;λ1, λ2) = 1

2

∥∥∥∥∥Y −
P∑

p=1

XpBp

∥∥∥∥∥
2

F

+ λ1

P∑
p=1

‖Cp · Bp‖1

(2.2)

+ λ2

P∑
p=1

‖Cp · Bp‖2,

where Cp is the pth row of C = (cpq) = (CT
1 : · · · : CT

P )T , which is a pre-
specified P × Q 0–1 matrix indicating the coefficients on which penalization is
imposed; Bp is the pth row of B; ‖ · ‖F denotes the Frobenius norm of ma-
trices; ‖ · ‖1 and ‖ · ‖2 are the �1 and �2 norms for vectors, respectively; and
“·” stands for the Hadamard product (that is, entry-wise multiplication). The in-
dicator matrix C is prespecified based on prior knowledge: if we know in ad-
vance that predictor xp affects response yq , then the corresponding regression
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coefficient βpq will not be penalized and we set cpq = 0 (see Section 4 for
an example). When there is no such prior information, C can be simply set to
a constant matrix cpq ≡ 1. Finally, an estimate of the coefficient matrix B is
B̂(λ1, λ2) := arg minB L(B;λ1, λ2).

In the above criterion function, the �1 penalty induces the overall sparsity of
the coefficient matrix B. The �2 penalty on the row vectors Cp · Bp induces
row sparsity of the product matrix C · B. As a result, some rows are shrunken
to be entirely zero (Theorem 2.1). Consequently, predictors which affect rela-
tively more response variables are more likely to be selected into the model. We
refer to the combined penalty in equation (2.2) as the MAP (MAster Predictor)
penalty. We also refer to the proposed estimator B̂(λ1, λ2) as the remMap (REgu-
larized Multivariate regression for identifying MAster Predictors) estimator. Note
that the �2 penalty is a special case (with α = 2) of the more general penalty
form,

∑P
p=1 ‖Cp · Bp‖α , where ‖v‖α := (

∑Q
q=1 |vq |α)1/α for a vector v ∈ RQ and

α > 1. In Turlach, Venables and Wright (2005), a penalty with α = ∞ is used
to select a common subset of prediction variables when modeling multivariate re-
sponses. In Yuan et al. (2007), a constraint with α = 2 is applied to the loading
matrix in a multivariate linear factor regression model for dimension reduction.
In Obozinski, Wainwright and Jordan (2008), the same constraint is applied to
identify the union support set in the multivariate regression. In the case of mul-
tiple regression, a similar penalty corresponding to α = 2 is proposed by Bakin
(1999) and by Yuan and Lin (2006) for the selection of grouped variables, which
corresponds to the blockwise additive penalty in Antoniadis and Fan (2001) for
wavelet shrinkage. Zhao, Rocha and Yu (2009) propose the penalty with a general
α > 1. However, none of these methods take into account the high dimensional-
ity of response variables and, thus, predictors/factors are simultaneously selected
for all responses. On the other hand, by combining the �2 penalty and the �1
penalty together in the MAP penalty, the remMap model not only selects a sub-
set of predictors, but also limits the influence of the selected predictors to only
some (but not necessarily all) response variables. Thus, it is more suitable for the
cases when both the number of predictors and the number of responses are large.
Last, we also want to point out a difference between the MAP penalty and the
ElasticNet penalty proposed by Zou and Hastie (2005), which combines the
�1 norm penalty with the squared �2 norm penalty. The ElasticNet penalty
aims to encourage a group selection effect for highly correlated predictors under
the multiple regression setting. However, the squared �2 norm itself does not in-
duce sparsity and thus is intrinsically different from the �2 norm penalty discussed
above.

In Section 3 we use extensive simulation studies to illustrate the effects of
the MAP penalty. We compare the remMap method with two alternatives: (i) the
joint method which only utilizes the �1 penalty, that is, λ2 = 0 in (2.2); (ii) the
sep method which performs Q separate lasso regressions. We find that if there
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exist large hubs (master predictors), remMap performs much better than joint
in terms of identifying the true model; otherwise, the two methods perform simi-
larly. This suggests that the “simultaneous” variable selection enhanced by the �2

penalty pays off when there exist a small subset of “important” predictors, and it
costs little when such predictors are absent. Moreover, by encouraging the selec-
tion of master predictors, the MAP penalty explicitly makes use of the correlations
among the response variables caused by sharing a common set of predictors. We
make a note that there are methods, such as Kim, Sohn and Xing (2009), that make
more specific assumptions on how the correlated responses depend on common
predictors. If these assumptions hold, it is possible that such methods can be more
efficient in incorporating the relationships among the responses. In addition, both
remMap and jointmethods impose sparsity of the coefficient matrix as a whole.
This helps to borrow information across different regressions corresponding to dif-
ferent response variables. It also amounts to a greater degree of regularization,
which is usually desirable for the high-dimension–low-sample-size setting. On the
other hand, the sep method controls sparsity for each individual regression sepa-
rately and thus is subject to high variability and overfitting. As can be seen by the
simulation studies (Section 3), this type of “joint” modeling greatly improves the
model efficiency. This is also noted by other authors, including Turlach, Venables
and Wright (2005), Lutz and Bühlmann (2006) and Obozinski, Wainwright and
Jordan (2008).

2.2. Model fitting. In this section we propose an iterative algorithm for solving
the remMap estimator B̂(λ1, λ2). This is a convex optimization problem when the
two tuning parameters are not both zero and, thus, there exists a unique solution.
We first describe how to update one row of B, when all other rows are fixed.

THEOREM 2.1. Given {Bp}p �=p0 in (2.2), the solution for minBp0
L(B;λ1, λ2)

is given by B̂p0 = (β̂p0,1, . . . , β̂p0,Q), which satisfies, for 1 ≤ q ≤ Q,

(i) If cp0,q = 0, β̂p0,q = XT
p0

Ỹq/‖Xp0‖2
2 (OLS), where Ỹq = Yq − ∑

p �=p0
Xpβpq ;

(ii) If cp0,q = 1,

β̂p0,q =
⎧⎪⎨⎪⎩

0, if ‖B̂ lasso
p0

‖2,C = 0,(
1 − λ2

‖B̂lasso
p0

‖2,C · ‖Xp0‖2
2

)
+
β̂ lasso

p0,q
, otherwise,

(2.3)

where

‖B̂ lasso
p0

‖2,C :=
{

Q∑
q=1

cp0,q(β̂ lasso
p0,q

)2

}1/2

,
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and

β̂ lasso
p0,q

=

⎧⎪⎪⎨⎪⎪⎩
XT

p0
Ỹq/‖Xp0‖2

2, if cp0,q = 0,

(|XT
p0

Ỹq | − λ1)+
sign(XT

p0
Ỹq)

‖Xp0‖2
2

, if cp0,q = 1.
(2.4)

The proof of Theorem 2.1 is given in Supplement A [Peng et al. (2009b)].
Theorem 2.1 says that, when estimating the p0th row of the coefficient matrix

B with all other rows fixed, if there is a prespecified relationship between the p0th
predictor and the qth response (i.e., cp0,q = 0), the corresponding coefficient βp0,q

is estimated by the (univariate) ordinary least square solution (OLS) using current
responses Ỹq ; otherwise, we first obtain the lasso solution β̂ lasso

p0,q
by the (univariate)

soft shrinkage of the OLS solution [equation (2.4)], and then conduct a group
shrinkage of the lasso solution [equation (2.3)]. From Theorem 2.1, it is easy to
see that, when the design matrix X is orthonormal, XT X = Ip and λ1 = 0, the
remMap method amounts to selecting variables according to the �2 norm of the
OLS estimates of the corresponding coefficients.

Theorem 2.1 naturally leads to an algorithm which updates the rows of B iter-
atively until convergence. In particular, we adopt the active-shooting idea
proposed by Peng et al. (2009a) and Friedman, Hastie and Tibshirani (2008), which
is a modification of the shooting algorithm proposed by Fu (1998) and also
Friedman, Hastie and Tibshirani (2007), among others. The algorithm proceeds as
follows:

1. Initial step: for p = 1, . . . ,P ; q = 1, . . . ,Q,

β̂ 0
p,q =

⎧⎪⎪⎨⎪⎪⎩
XT

p Yq/‖Xp‖2
2, if cp,q = 0,

(|XT
p Yq | − λ1)+

sign(XT
p Yq)

‖Xp‖2
2

, if cp,q = 1.
(2.5)

2. Define the current active-row set � = {p : current ‖B̂p‖2,C �= 0}.
(2.1) For each p ∈ �, update B̂p with all other rows of B fixed at their current

values according to Theorem 2.1.
(2.2) Repeat (2.1) until convergence is achieved on the current active-row set.

3. For p = 1 to P , update B̂p with all other rows of B fixed at their current values
according to Theorem 2.1. If no B̂p changes during this process, return the
current B̂ as the final estimate. Otherwise, go back to step 2.

It is clear that the computational cost of the above algorithm is in the order of
O(NPQ).

2.3. Tuning. In this section we discuss the selection of the tuning parame-
ters (λ1, λ2) by v-fold cross validation. To perform the v-fold cross validation,
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we first partition the whole data set into V nonoverlapping subsets, each con-
sisting of approximately 1/V fraction of the total samples. Denote the ith sub-
set as D(i) = (Y(i),X(i)), and its complement as D−(i) = (Y−(i),X−(i)). For a
given (λ1, λ2), we obtain the remMap estimate: B̂(i)(λ1, λ2) = (β̂

(i)
pq ) based on

the ith training set D−(i). We then obtain the ordinary least square estimates
B̂(i)

ols(λ1, λ2) = (β̂
(i)
ols,pq) as follows: for 1 ≤ q ≤ Q, define Sq = {p : 1 ≤ p ≤

P, β̂
(i)
pq �= 0}. Then set β̂

(i)
ols,pq = 0 if p /∈ Sq ; otherwise, define {β̂ (i)

ols,pq :p ∈ Sq}
as the ordinary least square estimates by regressing Y

−(i)
q onto {X−(i)

p :p ∈ Sq}.
Finally, prediction error is calculated on the test set D(i):

remMap.cvi (λ1, λ2) := ‖Y(i) − X(i)B̂(i)
ols(λ1, λ2)‖2

2.(2.6)

The v-fold cross validation score is then defined as

remMap.cv(λ1, λ2) =
V∑

i=1

remMap.cvi (λ1, λ2).(2.7)

The reason for using OLS estimates in calculating the prediction error is because
the true model is assumed to be sparse. As noted by Efron et al. (2004), when there
are many noise variables, using shrunken estimates in the cross validation criterion
often results in overfitting. Similar results are observed in our simulation studies: if
in (2.6) and (2.7), the shrunken estimates are used, the selected models are all very
big, which result in large numbers of false positive findings. In addition, we also
try AIC and GCV for tuning and both criteria result in overfitting as well. These
results are not reported in the next section due to space limitation.

In order to further control the false positive findings, we propose a method called
cv.vote. The idea is to treat the training data from each cross-validation fold
as a “bootstrap” sample. Then variables being consistently selected by many cross
validation folds should be more likely to appear in the true model than the variables
being selected only by few cross validation folds. Specifically, for 1 ≤ p ≤ P and
1 ≤ q ≤ Q, define

spq(λ1, λ2) =
⎧⎪⎨⎪⎩ 1, if

V∑
i=1

I
(
β̂ (i)

pq (λ1, λ2) �= 0
)
/V > Va ,

0, otherwise,

(2.8)

where Va is a prespecified proportion. We then select edge (p, q) if spq(λ1,

λ2) = 1. In the next section we use Va = 0.5 and, thus, cv.vote amounts to a
“majority vote” procedure. Simulation studies in Section 3 suggest that cv.vote
can effectively decrease the number of false positive findings while only slightly
increasing the number of false negatives.

An alternative tuning method is by a BIC criterion. Compared to v-fold cross
validation, BIC is computationally cheaper. However, it requires many more as-
sumptions. In particular, the BIC method uses the degrees of freedom of each
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remMap model which is difficult to estimate in general. In Supplement B [Peng
et al. (2009b)], we derive an unbiased estimator for the degrees of freedom of the
remMap models when the predictor matrix X has orthonormal columns. In Sec-
tion 3 we show by extensive simulation studies that, when the correlations among
the predictors are complicated, this estimator tends to select very small models.
For more details, see Supplement B [Peng et al. (2009b)].

3. Simulation. In this section we investigate the performance of the remMap
model and compare it with two alternatives: (i) the joint model with λ2 = 0
in (2.2); (ii) the sep model which performs Q separate lasso regressions. For
each model, we consider three tuning strategies, which results in nine methods in
total:

1. remMap.cv, joint.cv, sep.cv: The tuning parameters are selected
through 10-fold cross validation;

2. remMap.cv.vote, joint.cv.vote, sep.cv.vote: The cv.vote
procedure with Va = 0.5 is applied to the models resulted from the correspond-
ing ∗.cv approaches;

3. remMap.bic, joint.bic, sep.bic: The tuning parameters are selected
by a BIC criterion. For remMap.bic and joint.bic, the degrees of free-
dom are estimated according to equation (S-6) in Supplement B [Peng et al.
(2009b)]; for sep.bic, the degrees of freedom of each regression are esti-
mated by the total number of selected predictors [Zou, Hastie and Tibshirani
(2007)].

We simulate data as follows. Given (N,P,Q), we first generate the predic-
tors (x1, . . . , xP )T ∼ NormalP (0,�X), where �X is the predictor covariance ma-

trix [for simulations 1 and 2, �X(p,p′) := ρ
|p−p′|
x ]. Next, we simulate a P × Q

0–1 adjacency matrix A, which specifies the topology of the network between
predictors and responses, with A(p, q) = 1 meaning that xp influences yq or,
equivalently, βpq �= 0. In all simulations, we set P = Q and the diagonals of
A equal to one, which is viewed as prior information (thus, the diagonals of C
are set to zero). This aims to mimic cis-regulations of DNA copy number
alternations on its own expression levels. We then simulate the P × Q regres-
sion coefficient matrix B = (βpq) by setting βpq = 0, if A(p, q) = 0; and βpq ∼
Uniform([−5,−1] ∪ [1,5]), if A(p, q) = 1. After that, we generate the residu-

als (ε1, . . . , εQ)T ∼ NormalQ(0,�ε), where �ε(q, q ′) = σ 2
ε ρ

|q−q ′|
ε . The residual

variance σ 2
ε is chosen such that the average signal to noise ratio equals a pre-

specified level s. Finally, the responses (y1, . . . , yQ)T are generated according to
model (2.1). Each data set consists of N i.i.d. samples of such generated predic-
tors and responses. For all methods, predictors and responses are standardized to
have (sample) mean zero and standard deviation one before model fitting. Re-
sults reported for each simulation setting are averaged over 25 independent data
sets.
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For all simulation settings, C = (cpq) is taken to be cpq = 0, if p = q; and
cpq = 1, otherwise. Our primary goal is to identify the trans-edges—the
predictor-response pairs (xp, yq) with A(p, q) = 1 and C(p, q) = 1, that is, the
edges that are not prespecified by the indicator matrix C. Thus, in the following,
we report the number of false positive detections of trans-edges (FP) and the
number of false negative detections of trans-edges (FN) for each method. We
also examine these methods in terms of predictor selection. Specifically, a predic-
tor is called a cis-predictor if it does not have any trans-edges; oth-
erwise, it is called a trans-predictor. Moreover, we say a false positive
trans-predictor (FPP) occurs if a cis-predictor is incorrectly identified as
a trans-predictor; we say a false negative trans-predictor (FNP) occurs if it
is the other way around.

SIMULATION I. We first assess the performances of the nine methods un-
der various combinations of model parameters. Specifically, we consider the fol-
lowing: P = Q = 400,600,800; s = 0.25,0.5,0.75; ρx = 0,0.4,0.8; and ρε =
0,0.4,0.8. For all settings, the sample size N is fixed at 200. The networks (adja-
cency matrices A) are generated with 5 master predictors (hubs), each influencing
20 ∼ 40 responses; and all other predictors are cis-predictors. We set the
total number of tran-edges to be 132 for all networks. Results on trans-
edge detection are summarized in Figures 1 and 2. From these figures, it is clear
that remMap.cv and remMap.cv.vote perform the best in terms of the to-
tal number of false detections (FP+FN), followed by remMap.bic. The three
sep methods result in too many false positives (especially sep.cv). This is ex-
pected since there are in total Q tuning parameters selected separately, and the
relations among responses are not utilized at all. This leads to high variability and
overfitting. The three joint methods perform reasonably well, though they have
considerably larger numbers of false negative detections compared to remMap
methods. This is because the joint methods incorporate less information about
the relations among the responses caused by the master predictors. Finally, com-
paring cv.vote to cv, we can see that the cv.vote procedure effectively de-
creases the false positive detections and only slightly inflates the false negative
counts.

As to the impact of different model parameters, signal size s plays an im-
portant role for all methods: the larger the signal size, the better these meth-
ods perform [Figure 1(a)]. Dimensionality (P,Q) also shows consistent impacts
on these methods: the larger the dimension, the more false negative detections
[Figure 1(b)]. With increasing predictor correlation ρx , both remMAP.bic and
joint.bic tend to select smaller models, and consequently result in less false
positives and more false negatives [Figure 2(a)]. This is because when the de-
sign matrix X is further away from orthogonality, (S-6) in Supplement B [Peng
et al. (2009b)] tends to overestimate the degrees of freedom and consequently
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(a) Impact of signal size s. P = Q = 600, N = 200; ρx = 0.4; ρε = 0; the total number of

trans-edges is 132.

(b) Impact of predictor and response dimensionality P (Q = P). N = 200; s = 0.25; ρx = 0.4;

ρε = 0; the total number of trans-edges is 132.

FIG. 1. Impact of signal size and dimensionality. Heights of solid bars represent numbers of false
positive detections of trans-edges (FP); heights of shaded bars represent numbers of false neg-
ative detections of trans-edges (FN). All bars are truncated at height = 132.

smaller models are selected. The residual correlation ρε seems to have little im-
pact on joint and sep, and some (though rather small) impacts on remMap
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(a) Impact of predictor correlation ρx . P = Q = 600, N = 200; s = 0.25; ρε = 0; the total number

of trans-edges is 132.

(b) Impact of residual correlation ρε . P = Q = 600, N = 200; s = 0.25; ρx = 0.4; the total number

of trans-edges is 132.

FIG. 2. Impact of correlations. Heights of solid bars represent numbers of false positive detections
of trans-edges (FP); heights of shaded bars represent numbers of false negative detections of
trans-edges (FN). All bars are truncated at height = 132.

[Figure 2(b)]. Moreover, remMap performs much better than joint and sep
on master predictor selection, especially in terms of the number of false pos-
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TABLE 1
Simulation II. Network topology: uniform network with 151 trans-edges and
60 trans-predictors. P = Q = 600,N = 200; s = 0.25; ρx = 0.4; ρε = 0

Method FP FN TF FPP FNP

remMap.bic 4.72 (2.81) 45.88 (4.5) 50.6 (4.22) 1.36 (1.63) 11 (1.94)

remMap.cv 18.32 (11.45) 40.56 (5.35) 58.88 (9.01) 6.52 (5.07) 9.2 (2)

remMap.cv.vote 2.8 (2.92) 50.32 (5.38) 53.12 (3.94) 0.88 (1.26) 12.08 (1.89)

joint.bic 5.04 (2.68) 52.92 (3.6) 57.96 (4.32) 4.72 (2.64) 9.52 (1.66)

joint.cv 16.96 (10.26) 46.6 (5.33) 63.56 (7.93) 15.36 (8.84) 7.64 (2.12)

joint.cv.vote 2.8 (2.88) 56.28 (5.35) 59.08 (4.04) 2.64 (2.92) 10.40 (2.08)

sep.bic 78.92 (8.99) 37.44 (3.99) 116.36 (9.15) 67.2 (8.38) 5.12 (1.72)

sep.cv 240.48 (29.93) 32.4 (3.89) 272.88 (30.18) 179.12 (18.48) 2.96 (1.51)

sep.cv.vote 171.00 (20.46) 33.04 (3.89) 204.04 (20.99) 134.24 (14.7) 3.6 (1.50)

FP: false positive; FN: false negative; TF: total false; FPP: false positive trans-predictor; FNP: false
negative trans-predictor. Numbers in the parentheses are standard deviations.

itive trans-predictors (results not shown). This is because the �2 norm
penalty is more effective than the �1 norm penalty in excluding irrelevant pre-
dictors.

SIMULATION II. In this simulation we study the performance of these meth-
ods on a network without big hubs. The data are generated similarly as before with
P = Q = 600, N = 200, s = 0.25, ρx = 0.4, and ρε = 0. The network consists
of 540 cis-predictors, and 60 trans-predictors with 1 ∼ 4 trans-
edges. This leads to 151 trans-edges in total. As can be seen from Table 1,
remMap methods and joint methods now perform very similarly and both are
considerably better than the sepmethods. Indeed, under this setting, λ2 is selected
(either by cv or bic) to be small in the remMap model, making it very close to
the joint model.

SIMULATION III. In this simulation we try to mimic the true predictor co-
variance and network topology in the real data discussed in the next section. We
observe that, for chromosomal regions on the same chromosome, the correspond-
ing copy numbers are usually positively correlated, and the magnitude of the cor-
relation decays slowly with genetic distance. On the other hand, if two regions
are on different chromosomes, the correlation between their copy numbers could
be either positive or negative and, in general, the magnitude is much smaller than
that of the regions on the same chromosome. Thus, in this simulation, we first
partition the P predictors into 23 distinct blocks, with the size of the ith block
proportional to the number of CNAI (copy number alteration intervals) on the ith
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chromosome of the real data (see Section 4 for the definition of CNAI). Denote
the predictors within the ith block as xi1, . . . , xigi

, where gi is the size of the ith

block. We then define the within-block correlation as Corr(xij , xil) = ρ
0.5|j−l|
wb for

1 ≤ j, l ≤ gi ; and define the between-block correlation as Corr(xij , xkl) ≡ ρik for
1 ≤ j ≤ gi,1 ≤ l ≤ gk and 1 ≤ i �= k ≤ 23. Here, ρik is determined in the follow-
ing way: its sign is randomly generated from {−1,1}; its magnitude is randomly
generated from {ρbb, ρ

2
bb, . . . , ρ

23
bb}. In this simulation we set ρwb = 0.9, ρbb = 0.25

and use P = Q = 600,N = 200, s = 0.5, and ρε = 0.4. The heatmaps of the (sam-
ple) correlation matrix of the predictors in the simulated data and that in the real
data are given by Figure S-2 in the Supplement [Peng et al. (2009b)]. The network
is generated with five large hub predictors each having 14 ∼ 26 trans-edges;
five small hub predictors each having 3 ∼ 4 trans-edges; 20 predictors having
1 ∼ 2 trans-edges; and all other predictors being cis-predictors.

The results are summarized in Table 2. Among the nine methods, remMap.
cv.vote performs the best in terms of both edge detection and master predictor
prediction. remMAP.bic and joint.bic result in very small models due to
the complicated correlation structure among the predictors. While all three cross-
validation based methods have large numbers of false positive findings, the three
cv.vote methods have many reduced false positive counts and only slightly in-
creased false negative counts. These findings again suggest that cv.vote is an ef-
fective procedure in controlling false positive rates while not sacrificing too much
in terms of power.

We also carried out an additional simulation where some columns of the coef-
ficient matrix B are related, and the results are reported in Table S-1 of Supple-

TABLE 2
Simulation III. Network topology: five large hubs and five small hubs with 151 trans-edges and

30 trans-predictors. P = Q = 600,N = 200; s = 0.5; ρwb = 0.9, ρbb = 0.25;ρε = 0.4

Method FP FN TF FPP FNP

remMap.bic 0 (0) 150.24 (2.11) 150.24 (2.11) 0 (0) 29.88 (0.33)

remMap.cv 93.48 (31.1) 20.4 (3.35) 113.88 (30.33) 15.12 (6.58) 3.88 (1.76)

remMap.cv.vote 48.04 (17.85) 27.52 (3.91) 75.56 (17.67) 9.16 (4.13) 5.20 (1.91)

joint.bic 7.68 (2.38) 104.16 (3.02) 111.84 (3.62) 7 (2.18) 10.72 (1.31)

joint.cv 107.12 (13.14) 39.04 (3.56) 146.16 (13.61) 66.92 (8.88) 1.88 (1.2)

joint.cv.vote 63.80 (8.98) 47.44 (3.90) 111.24 (10.63) 41.68 (6.29) 2.88 (1.30)

sep.bic 104.96 (10.63) 38.96 (3.48) 143.92 (11.76) 64.84 (6.29) 1.88 (1.17)

sep.cv 105.36 (11.51) 37.28 (4.31) 142.64 (12.26) 70.76 (7.52) 1.92 (1.08)

sep.cv.vote 84.04 (10.47) 41.44 (4.31) 125.48 (12.37) 57.76 (6.20) 2.4 (1.32)

FP: false positive; FN: false negative; TF: total false; FPP: false positive trans-predictor; FNP: false
negative trans-predictor. Numbers in parentheses are standard deviations.
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ment C [Peng et al. (2009b)]. The overall picture of the performances of different
methods remains similar as other simulations.

4. Real application. In this section we apply the proposed remMap method
to the breast cancer study mentioned earlier. Our goal is to search for genome re-
gions whose copy number alterations have significant impacts on RNA expression
levels, especially on those of the unlinked genes, that is, genes not falling into
the same genome region. The findings resulting from this analysis may help to
cast light on the complicated interactions among DNA copy numbers and RNA
expression levels.

4.1. Data preprocessing. The 172 tumor samples were analyzed using cDNA
expression microarray and CGH array experiments as described in Sorlie et al.
(2001, 2003), Zhao et al. (2004), Kapp et al. (2006), Bergamaschi et al. (2006,
2008) and Langerod et al. (2007). Below, we outline the data preprocessing steps.
More details are provided in Supplement D [Peng et al. (2009b)].

Each CGH array contains measurements (log2 ratios) on about 17K mapped
human genes. A positive (negative) measurement suggests a possible copy num-
ber gain (loss). After proper normalization, cghFLasso [Tibshirani and Wang
(2008)] is used to estimate the DNA copy numbers based on array outputs. Then,
we derive copy number alteration intervals (CNAIs)—basic CNA units (genome
regions) in which genes tend to be amplified or deleted at the same time within one
sample—by employing the Fixed-Order Clustering (FOC) method [Wang (2004)].
In the end, for each CNAI in each sample, we calculate the mean value of the es-
timated copy numbers of the genes falling into this CNAI. This results in a 172
(samples) by 384 (CNAIs) numeric matrix.

Each expression array contains measurements for about 18K mapped human
genes. After global normalization for each array, we also standardize each gene’s
measurements across 172 samples to median = 0 and MAD (median absolute de-
viation) = 1. Then we focus on a set of 654 breast cancer related genes, which
is derived based on 7 published breast cancer gene lists [Sorlie et al. (2003), van
de Vijver et al. (2002), Chang et al. (2004), Paik et al. (2004), Wang et al. (2005),
Sotiriou et al. (2006) and Saal et al. (2007)]. This results in a 172 (samples) by 654
(genes) numeric matrix.

When the copy number change of one CNAI affects the RNA level of an un-
linked gene, there are two possibilities: (i) the copy number change directly affects
the RNA level of the unlinked gene; (ii) the copy number change first affects the
RNA level of an intermediate gene (either linked or unlinked), and then the RNA
level of this intermediate gene affects that of the unlinked gene. Figure 3 gives an
illustration of these two scenarios. In this study we are more interested in finding
the relationships of the first type. Therefore, we first characterize the interactions
among RNA levels and then account for these relationships in our model so that we
can better infer direct interactions. For this purpose, we apply the space (Sparse
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FIG. 3. (a) Direct interaction between CNAI A and the expression of gene B; (b) indirect interaction
between CNAI A and the expression of Gene B through one intermediate gene.

PArtial Correlation Estimation) method to search for associated RNA pairs through
identifying nonzero partial correlations [Peng et al. (2009a)]. The estimated (con-
centration) network (referred to as Exp.Net.664 hereafter) has in total 664 edges—
664 pairs of genes whose RNA levels significantly correlate with each other after
accounting for the expression levels of other genes.

Another important factor one needs to consider when studying breast cancer
is the existence of distinct tumor subtypes. Population stratification due to these
distinct subtypes might confound our detection of associations between CNAIs
and gene expressions. Therefore, we introduce a set of subtype indicator variables,
which later on is used as additional predictors in the remMap model. Specifi-
cally, following Sorlie et al. (2003), we divide the 172 patients into 5 distinct
groups based on their expression patterns. These groups correspond to the same
5 subtypes suggested by Sorlie et al. (2003)—Luminal Subtype A, Luminal Sub-
type B, ERBB2-overexpressing Subtype, Basal Subtype and Normal Breast-like
Subtype.

4.2. Interactions between CNAIs and RNA expressions. We then apply the
remMap method to study the interactions between CNAIs and RNA transcript
levels. For each of the 654 breast cancer genes, we regress its expression level on
three sets of predictors: (i) expression levels of other genes that are connected to
the target gene (the current response variable) in Exp.Net.664; (ii) the five sub-
type indicator variables derived in the previous section; and (iii) the copy num-
bers of all 384 CNAIs. We are interested in whether any unlinked CNAIs are se-
lected into this regression model (i.e., the corresponding regression coefficients
are nonzero). This suggests potential trans-regulations (trans-edges) between
the selected CNAIs and the target gene expression. The coefficients of the linked
CNAI of the target gene are not included in the MAP penalty (this corresponds to
cpq = 0; see Section 2 for details). This is because the DNA copy number changes
of one gene often influence its own expression level, and we are less interested in
this kind of cis-regulatory relationships (cis-edges) here. Furthermore, based
on Exp.Net.664, no penalties are imposed on the expression levels of connected
genes either. In other words, we view the cis-regulations between CNAIs and their
linked expression levels, as well as the inferred RNA interaction network, as “prior
knowledge” in our study.

Note that, different response variables (gene expressions) now have different
sets of predictors, as their neighborhoods in Exp.Net.664 are different. However,
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the remMap model can still be fitted with a slight modification. The idea is to
treat all CNAI (384 in total), all gene expressions (654 in total), as well as the
subtype indicators, as nominal predictors. Then, for each target gene, we force
the coefficients of those gene expressions that do not link to it in Exp.Net.664 to
be zero. We can easily achieve this by setting those coefficients to zero without
updating them throughout the iterative fitting procedure.

We select tuning parameters (λ1, λ2) in the remMap model through a 10-fold
cross validation as described in Section 2.3. The optimal (λ1, λ2) corresponding
to the smallest CV score from a grid search is (355.1,266.7). The resulting model
contains 56 trans-regulations in total. In order to further control false positive find-
ings, we apply the cv.vote procedure with Va = 0.5, and filter away 13 out of
these 56 trans-edges which have not been consistently selected across differ-
ent CV folds. The remaining 43 trans-edges correspond to three contiguous
CNAIs on chromosome 17 and 31 distinct (unlinked) RNAs. Figure 4 illustrates
the topology of the estimated regulatory relationships. The detailed annotations
of the three CNAIs and 31 RNAs are provided in Tables 3 and 4. Moreover, the

FIG. 4. Network of the estimated regulatory relationships between the copy numbers of the 384
CNAIs and the expressions of the 654 breast cancer related genes. Each blue node stands for one
CNAI, and each green node stands for one gene. Red edges represent inferred trans-regulations (43
in total). Grey edges represent cis-regulations.
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TABLE 3
Genome locations of the three CNAIs having (estimated) trans-regulations

Index Cytoband Begin1 End1 # of clones2 # of Trans-Reg3

1 17q12-17q12 34811630 34811630 1 12
2 17q12-17q12 34944071 35154416 9 30
3 17q21.1-17q21.2 35493689 35699243 7 1

1. Nucleotide position (bp).
2. Number of genes/clones on the array falling into the CNAI.
3. Number of unlinked genes whose expressions are estimated to be regulated by the CNAI.

Pearson-correlations between the DNA copy numbers of CNAIs and the expres-
sion levels of the regulated genes/clones (including both cis-regulation and
trans-regulation) across the 172 samples are reported in Table 4. As ex-
pected, all the cis-regulations have much higher correlations than the potential
trans-regulations. In addition, none of the subtype indicator variables are selected
into the final model. We also apply the remMap model while forcing these indi-
cators in the model (i.e., not imposing the MAP penalty on these variables). Even
though this results in a slightly different network, the hub CNAIs remain the same
as before. These imply that the three hub CNAIs are unlikely due to the stratifica-
tion of tumor subtypes.

The three CNAIs being identified as trans-regulators sit closely on chromo-
some 17, spanning from 34811630bp to 35699243bp and falling into cytoband
17q12-q21.2. This region (referred to as CNAI-17q12 hereafter) contains 24
known genes, including the famous breast cancer oncogene ERBB2, and the
growth factor receptor-bound protein 7 (GRB7). The overexpression of GRB7
plays pivotal roles in activating signal transduction and promoting tumor growth
in breast cancer cells with chromosome 17q11-21 amplification [Bai and Louh
(2008)]. In this study CNAI-17q12 is highly amplified (normalized log2 ratio> 5)
in 33 (19%) out of the 172 tumor samples. Among the 654 genes/clones con-
sidered in the above analysis, 8 clones (corresponding to six genes, including
ERBB2, GRB7 and MED24) fall into this region. The expressions of these 8
clones are all up-regulated by the amplification of CNAI-17q12 (see Table 4 for
more details), which is consistent with results reported in the literature [Kao and
Pollack (2006)]. More importantly, as suggested by the result of the remMap
model, the amplification of CNAI-17q12 also influences the expression levels of
31 unlinked genes/clones. This implies that CNAI-17q12 may harbor transcrip-
tional factors whose activities closely relate to breast cancer. Indeed, there are 4
transcription factors (NEUROD2, IKZF3, THRA, NR1D1) and 2 transcriptional
co-activators (MED1, MED24) in CNAI-17q12. It is possible that the amplifica-
tion of CNAI-17q12 results in the overexpression of one or more transcription
factors/co-activators in this region, which then influence the expressions of the
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TABLE 4
RNAs1 being influenced by the amplifications of the three CNAIs in Table 3

Clone ID Gene symbol Cytoband Correlation

753692 ABLIM1 10q25 0.199
896962 ACADS 12q22-qter −0.22
753400 ACTL6A 3q26.33 0.155
472185 ADAMTS1 21q21.2 0.214
210687 AGTR1 3q21-q25 −0.182
856519 ALDH3A2 17p11.2 −0.244
270535 BM466581 19 0.03
238907 CABC1 1q42.13 −0.174
773301 CDH3 16q22.1 0.118
505576 CORIN 4p13-p12 0.196
223350 CP 3q23-q25 0.184
810463 DHRS7B 17p12 −0.151

50582 FLJ25076 5p15.31 0.086
669443 HSF2 6q22.31 0.207
743220 JMJD4 1q42.13 −0.19

43977 KIAA0182 16q24.1 0.259
810891 LAMA5 20q13.2-q13.3 0.269
247230 MARVELD2 5q13.2 −0.214
812088 NLN 5q12.3 0.093
257197 NRBF2 10q21.2 0.275
782449 PCBP2 12q13.12-q13.13 −0.079
796398 PEG3 19q13.4 0.169
293950 PIP5K1A 1q22-q24 −0.242
128302 PTMS 12p13 −0.248
146123 PTPRK 6q22.2-q22.3 0.218
811066 RNF41 12q13.2 −0.247
773344 SLC16A2 Xq13.2 0.24

1031045 SLC4A3 2q36 0.179
141972 STT3A 11q23.3 0.182
454083 TMPO 12q22 0.175
825451 USO1 4q21.1 0.204

68400 BM455010 17 0.748
756253,365147 ERBB2 17q11.2-q12–17q21.1 0.589
510318,236059 GRB7 17q12 0.675
245198 MED24 17q21.1 0.367
825577 STARD3 17q11-q12 0.664
7827562 TBPL1 6q22.1-q22.3 0.658

1. The first part of the table lists the inferred trans-regulated genes. The second part of the table lists
cis-regulated genes.
2. This cDNA sequence probe is annotated with TBPL1, but actually maps to one of the 17q21.2
genes.
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unlinked 31 genes/clones. In addition, some of the 31 genes/clones have been re-
ported to have functions directly related to cancer and may serve as potential drug
targets (see Supplement D.5 [Peng et al. (2009b)] for more details). In the end, we
want to point out that, besides RNA interactions and subtype stratification, there
could be other unaccounted confounding factors. Therefore, caution must be ap-
plied when one tries to interpret these results.

5. Discussion. In this paper we propose the remMap method for fitting mul-
tivariate regression models under the large P,Q setting. We focus on model se-
lection, that is, the identification of relevant predictors for each response variable.
remMap is motivated by the rising needs to investigate the regulatory relation-
ships between different biological molecules based on multiple types of high di-
mensional omics data. Such genetic regulatory networks are usually intrinsically
sparse and harbor hub structures. Identifying the hub regulators (master regulators)
is of particular interest, as they play crucial roles in shaping network functionality.
To tackle these challenges, remMap utilizes a MAP penalty, which consists of an
�1 norm part for controlling the overall sparsity of the network, and an �2 norm
part for further imposing a row-sparsity of the coefficient matrix, which facilitates
the detection of master predictors (regulators). This combined regularization takes
into account both model interpretability and computational tractability. Since the
MAP penalty is imposed on the coefficient matrix as a whole, it helps to borrow
information across different regressions. As illustrated in Section 3, this type of
“joint” modeling greatly improves model efficiency. Also, the combined �1 and �2
norm penalty further enhances the performance on both edge detection and master
predictor identification. We also propose a cv.vote procedure to make better use
of the cross validation results. As suggested by the simulation study, this procedure
is very effective in decreasing the number of false positives while only slightly in-
creasing the number of false negatives. Moreover, cv.vote can be applied to
a broad range of model selection problems when cross validation is employed.
In the real application, we apply the remMap method on a breast cancer data
set. The resulting model suggests the existence of a trans-hub region on cytoband
17q12-q21. This region harbors the oncogene ERBB2 and may also harbor other
important transcriptional factors. While our findings are intriguing, clearly addi-
tional investigation is warranted. One way to verify the above conjecture is through
a sequence analysis to search for common motifs in the upstream regions of the 31
RNA transcripts, which remains as our future work.

Besides the above application, the remMap model can be applied to investi-
gate the regulatory relationships between other types of biological molecules. For
example, it is of great interest to understand the influence of single nucleotide
polymorphism (SNP) on RNA transcript levels, as well as the influence of RNA
transcript levels on protein expression levels. Such investigation will improve our
understanding of related biological systems as well as disease pathology. In ad-
dition, we can utilize the remMap idea to other models. For example, when se-
lecting a group of variables in a multiple regression model, we can impose both
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the �2 penalty (that is, the group lasso penalty), as well as an �1 penalty, to
encourage within group sparsity. Similarly, the remMap idea can also be applied
to vector autoregressive models and generalized linear models.

R package remMap is publicly available through CRAN (http://cran.r-project.
org/).
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SUPPLEMENTARY MATERIAL

Supplement A–D [Peng et al. (2009b)] (DOI: 10.1214/09-AOAS271SUPP;
.pdf).

Supplement A: This section provides the detailed proof of Theorem 2.1.
Supplement B: In this section we describe the BIC criterion for selecting

(λ1; λ2). We also derive an unbiased estimator of the degrees of freedom of the
remMap estimator under orthogonal design.

Supplement C: This section contains one simulation study. We consider the sce-
nario where some columns of the coefficient matrix B are dependent.

Supplement D: In this section we describe the preprocessing analysis before
fitting the remMap model on the real data set.
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