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Specifically for the Lasso, one alternative strategy for logistic regression is
to use a quadratic approximation for the log-likelihood. Consider the Bayesian
version of Lasso with hyperparameter y (i.e., the penalized rather than constrained
version of Lasso):
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where A denotes the logistic link, d is the dimension of 8 and a;, b; and ¢; are
Taylor coefficients. Fu’s elegant coordinatewise “Shooting algorithm” [Fu (1998)],
can optimize this target starting from either the least squares solution or from zero.
In our experience the shooting algorithm converges rapidly.
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DISCUSSION

BY SAHARON ROSSET AND JI ZHU

IBM T. J. Watson Research Center and Sanford University

1. Introduction. We congratulate the authors on their excellent work. The
paper combines elegant theory and useful practical results in an intriguing manner.
The LAR-Lasso—boosting relationship opens the door for new insights on existing
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methods’ underlying statistical mechanisms and for the development of new and
promising methodology. Two issues in particular have captured our attention, as
their implications go beyond the squared error loss case presented in this paper,
into wider statistical domains: robust fitting, classification, machine learning and
more. We concentrate our discussion on these two results and their extensions.

2. Piecewise linear regularized solution paths. The first issue is the piece-
wise linear solution paths to regularized optimization problems. As the discussion
paper shows, the path of optimal solutions to the “Lasso” regularized optimization
problem

(1) B =argmﬁin||y—Xﬁ||§+kllﬂII1

is piecewise linear as a function of A; that is, there exist co > Ag > A1 > -+ >
Am =0suchthat VA >0, with A > A > Agy1, We have

B =B0w) — = MW

In the discussion paper’s terms, yx is the “LAR” direction for the kth step of the
LAR-Lasso algorithm.

This property allows the LAR-Lasso algorithm to generate the whole path of
Lasso solutions, B(1), for “practically” the cost of one least squares calculation on
the data (this is exactly the case for LAR but not for LAR-Lasso, which may be
significantly more computationally intensive on some data sets). The important
practical consequence is that it is not necessary to select the regularization
parameter A in advance, and it is now computationally feasible to optimize it based
on cross-validation (or approximate C,, as presented in the discussion paper).

The question we ask is: what makes the solution paths piecewise linear? Is it
the use of squared error loss? Or the Lasso penalty? The answer is that both play
an important role. However, the family of (loss, penalty) pairs which facilitates
piecewise linear solution paths turns out to contain many other interesting and
useful optimization problems.

We now briefly review our results, presented in detail in Rosset and Zhu (2004).
Consider the general regularized optimization problem

) A1) =arg mﬁinZL(y,-, X.B) + AJ(B).

where we only assume that the loss L and the penalty J are both convex functions
of g for any sample {x!, y;}_;. For our discussion, the data sample is assumed
fixed, and so we will use the notation L(8), where the dependence on the data is
implicit.

Notice that piecewise linearity is equivalent to requiring that
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is piecewise constant as a function of A. If L, J are twice differentiable functions
of B, then it is easy to derive that

e
® -

With a little more work we extend this result to “almost twice differentiable”
loss and penalty functions (i.e., twice differentiable everywhere except at a finite
number of points), which leads us to the following sufficient conditions for
piecewise linear A()):

(VZL(BOY) +AV2IBOD) VI (BM).

1. V2L(B(V) is piecewise constant as a function of A. This condition is met if
L is a piecewise-quadratic function of 8. This class includes the squared error
loss of the Lasso, but also absolute loss and combinations of the two, such as
Huber’s loss.

2. VJ(ﬁ(/\)) is piecewise constant as a function of A. This condition is met if J is
a piecewise-linear function of 8. This class includes the /1 penalty of the Lasso,
but also the /o, norm penalty.

2.1. Examples. Our first example is the “Huberized” Lasso; that is, we use the
loss

_ [ =xXp2, if |y —Xx'Bl <34,

“) L(y’xﬂ)_{82+28(|y—xﬁ| —s),  otherwise,
with the Lasso penalty. This loss is more robust than squared error loss against
outliers and long-tailed residual distributions, while still allowing us to calculate
the whole path of regularized solutions efficiently.

To illustrate the importance of robustness in addition to regularization, consider
the following simple simulated example: take » = 100 observations and p = 80
predictors, where all x;; are i.i.d. N(0, 1) and the true model is

®) yi = 10-x1+¢;,

(6) e 0.9.N(0,1) +0.1- N0, 100).

So the normality of residuals, implicitly assumed by using squared error loss, is
violated.

Figure 1 shows the optimal coefficient paths B() for the Lasso (right) and
“Huberized” Lasso, using § = 1 (left). We observe that the Lasso fails in
identifying the correct model E(Y|x) = 10x1 while the robust loss identifies it
almost exactly, if we choose the appropriate regularization parameter.

As a second example, consider a classification scenario where the loss we use
depends on the margin yx’ g rather than on the residual. In particular, consider the
1-norm support vector machine regularized optimization problem, popular in the
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Fic. 1. Coefficient paths for Huberized Lasso (left) and Lasso (right) for data example: 81 (%) is
the full line; the true model is E(Y |x) = 10x1.

machine learning community. It consists of minimizing the “hinge loss” with a
Lasso penalty:

gy [A=yX'p), iy Bg<1,

(") LG.xp) = {0, otherwise.

This problem obeys our conditions for piecewise linearity, and so we can
generate all regularized solutions for this fitting problem efficiently. This is
particularly advantageous in high-dimensional machine learning problems, where
regularization is critical, and it is usually not clear in advance what a good
regularization parameter would be. A detailed discussion of the computational
and methodological aspects of this example appears in Zhu, Rosset, Hastie, and
Tibshirani (2004).

3. Relationship between “boosting” algorithms and I;-regularized fitting.
The discussion paper establishes the close relationship between e-stagewise linear
regression and the Lasso. Figure 1 in that paper illustrates the near-equivalence in
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the solution paths generated by the two methods, and Theorem 2 formally states a
related result. It should be noted, however, that their theorem falls short of proving
the global relation between the methods, which the examples suggest.

In Rosset, Zhu and Hastie (2003) we demonstrate that this relation between the
path of /1-regularized optimal solutions [which we have denoted above by B(1)]
and the path of “generalized” e-stagewise (AKA boosting) solutions extends
beyond squared error loss and in fact applies to any convex differentiable loss.

More concretely, consider the following generic gradient-based “c-boosting”
algorithm [we follow Friedman (2001) and Mason, Baxter, Bartlett and Frean
(2000) in this view of boosting], which iteratively builds the solution path g®):

ALGORITHM 1 (Generic gradient-based boosting algorithm).

1. Set s =0.
2. Fort=1:T,

33 Ly XiBU—D)
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-1 Y Ly xipUih -1 .
(b) Set 7 = B —esign("= AT and B = 7Y, k.

Jt

(a) Let j; =argmax; |

This is a coordinate descent algorithm, which reduces to forward stagewise, as
defined in the discussion paper, if we take the loss to be squared error loss:
L(y;, x40y = (y; — xt pU=D)2. If we take the loss to be the exponential loss,

Ll xip ) =exp(-yp ),

we get a variant of AdaBoost [Freund and Schapire (1997)]—the original and most
famous boosting algorithm.

Figure 2 illustrates the equivalence between Algorithm 1 and the optimal
solution path for a simple logistic regression example, using five variables from
the “spam” dataset. We can see that there is a perfect equivalence between the
regularized solution path (left) and the “boosting” solution path (right).

In Rosset, Zhu and Hastie (2003) we formally state this equivalence, with
the required conditions, as a conjecture. We also generalize the weaker result,
proven by the discussion paper for the case of squared error loss, to any convex
differentiable loss.

This result is interesting in the boosting context because it facilitates a view
of boosting as approximate and implicit regularized optimization. The situations
in which boosting is employed in practice are ones where explicitly solving
regularized optimization problems is not practical (usually very high-dimensional
predictor spaces). The approximate regularized optimization view which emerges
from our results allows us to better understand boosting and its great empirical
success [Breiman (1999)]. It also allows us to derive approximate convergence
results for boosting.
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F1G. 2. Exact coefficient paths (left) for /1-constrained logistic regression and boosting coefficient
paths (right) with binomial log-likelihood loss on five variables from the “spam” dataset. The
boosting path was generated using ¢ = 0.003 and 7000 iterations.

4. Conclusion. The computational and theoretical results of the discussion
paper shed new light on variable selection and regularization methods for linear
regression. However, we believe that variants of these results are useful and
applicable beyond that domain. We hope that the two extensions that we have
presented convey this message successfully.
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DISCUSSION

BY ROBERT A. STINE
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I have enjoyed reading the work of each of these authors over the years, so
it is a real pleasure to have this opportunity to contribute to the discussion of
this collaboration. The geometry of LARS furnishes an elegant bridge between
the Lasso and Stagewise regression, methods that | would not have suspected to
be so related. Toward my own interests, LARS offers a rather different way to
construct a regression model by gradually blending predictors rather than using
a predictor all at once. | feel that the problem of “automatic feature generation”
(proposing predictors to consider in a model) is a current challenge in building
regression models that can compete with those from computer science, and LARS
suggests a new approach to this task. In the examples of Efron, Hastie, Johnstone
and Tibshirani (EHJT) (particularly that summarized in their Figure 5), LARS
produces models with smaller predictive error than the old workhorse, stepwise
regression. Furthermore, as an added bonus, the code supplied by the authors runs
faster for me than the step routine for stepwise regression supplied with R, the
generic version of S-PLUS that I use.

My discussion focuses on the use of C, to choose the number of predictors.
The bootstrap simulations in EHJT show that LARS reaches higher levels of
“proportion explained” than stepwise regression. Furthermore, the goodness-of-
fit obtained by LARS remains high over a wide range of models, in sharp contrast
to the narrow peak produced by stepwise selection. Because the cost of overfitting
with LARS appears less severe than with stepwise, LARS would seem to have a
clear advantage in this respect. Even if we do overfit, the fit of LARS degrades



