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The primary motivation and application in this article come from brain
imaging studies on cognitive impairment in elderly subjects with brain dis-
orders. We propose a regularized Haar wavelet-based approach for the anal-
ysis of three-dimensional brain image data in the framework of functional
data analysis, which automatically takes into account the spatial information
among neighboring voxels. We conduct extensive simulation studies to eval-
uate the prediction performance of the proposed approach and its ability to
identify related regions to the outcome of interest, with the underlying as-
sumption that only few relatively small subregions are truly predictive of the
outcome of interest. We then apply the proposed approach to searching for
brain subregions that are associated with cognition using PET images of pa-
tients with Alzheimer’s disease, patients with mild cognitive impairment and
normal controls.

1. Introduction. Alzheimer’s disease (AD) is the most frequent cause of de-
mentia in our increasingly aging societies, representing a significant impact on
the US population with 10% prevalence in individuals aged above 70 years old
[Plassman et al. (2007)]. Despite the prevalence, this disease remains quite a mys-
tery; there is neither a cure nor a definite treatment to arrest its course and, cur-
rently, the only definite way to diagnose AD is to examine the brain tissue after
death. According to recent studies [Leifer (2003)], early diagnosis of AD is of
great value since new drug therapies can be used to potentially delay the progres-
sion of the disease. To this end, much progress has been made in assisting the
early diagnosis of AD with neuroimaging techniques. One such widely used neu-
roimaging technique is positron emission tomography (PET) imaging, which is
one of the most promising tools for the early diagnosis of AD, and it is of great
scientific interest in understanding the association between PET images and cog-
nitive impairment. In particular, the fluorodeoxyglucose (FDG) PET has been used
to measure the cerebral glucose metabolic activity for over 20 years.
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FDG PET scans used in the preparation of this article were obtained from a
large multi-center follow-up study on Alzheimer’s disease and early dementia, the
Alzheimer’s Disease Neuroimaing Initiative (ADNI). A total of 403 FDG PET
scans were acquired for this application, including 102 normal control (NC) sub-
jects, 206 subjects with mild cognitive impairment (MCI) and 95 subjects diag-
nosed with AD. In this study, we consider the baseline FDG PET scans with a
standard 160 × 160 × 96 voxel image grid as the predictor to the cognitive perfor-
mance as measured by the mini-mental state exam (MMSE), which is a question-
naire test that is used to screen for cognitive impairment [Cockrell and Folstein
(1988)]. The maximum MMSE score is 30 and, on average, MMSE scores decline
as the disease progresses. The goal of our study is to identify brain subregions that
are most closely related to the prediction of MMSE scores.

Many methods have been developed for the analysis of brain image data in order
to identify disease-related brain subregions. Most of these methods focus on region
of interest (ROI) and voxel-based univariate analysis; see, for example, Luo and
Nichols (2003), Grimmer et al. (2009) and Shin et al. (2010), among many others.
For AD in particular, several studies have shown that reduced metabolic activ-
ity in some regions of the brain, such as the posterior cingulate and the temporal
and parietal cortices, are associated with the progression of cognitive impairment
[Foster et al. (1984), Minoshima et al. (1995, 1997)]. These methods are intended
to provide statistics by doing a separate analysis for each ROI or voxel and then to
draw inferences at the region- or voxel-level. As a result of testing millions of hy-
potheses, appropriate adjustments for multiple comparisons have to be considered.
In the neuroimaging literature, a distinction is often drawn between such univariat
analyses and an alternative, multiple covariate regression models that treat every
voxel as a covariate. Since the number of voxels is much larger than the number
of scans, the ordinary least squares for linear regression cannot be implemented
without applying, for example, some dimension reduction techniques. Such analy-
sis, however, may lead to difficulties in interpretations and practical implications.
Both the traditional univariate and multiple covariate approaches (if applicable)
have one major limitation in common: they are developed without considering the
spatial information of the brain, possibly resulting in some loss of information.
There is an emerging awareness of the importance of taking such information into
account. For example, multiple covariate analysis can be conducted with a focus on
extracting principal components from the images [Friston et al. (1996), Kerrouche
et al. (2006)]. More recently, a variety of Bayesian spatial modeling approaches
have been proposed to model the correlation between neighboring voxels, which
need to carefully specify the prior distributions; see, for example, Bowman et al.
(2008), Kang et al. (2011). Our way of addressing this issue is to treat the entire
3D image as a single functional input, which allows retaining all the information
from the original image without modeling the spatial correlation between voxels
explicitly. Specifically, in this article, we treat PET image data as the 3D func-
tional observations, and propose a novel Haar wavelet-based regularized approach
to analyze PET image data in the framework of functional data analysis.
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Functional regression models are known as one of the standard techniques in
functional data analysis. It is noted that the models can be defined as functional
in one or both of two ways: the response variable is functional; at least one of the
covariates is functional. In this article, we focus on the functional linear regression
model with a scalar response variable and a single functional predictor. Using the
1D case as an illustration, the functional linear regression model relates a scalar
response variable Y to a functional predictor X(t) as follows:

Yi = β0 +
∫ T

0
Xi(t)β(t) dt + εi, i = 1, . . . , n,(1.1)

where β(t) is the regression coefficient function and t refers to time or location.
For the 3D case we consider later, t is replaced by the coordinate (u, v,w). Reg-
ularization methods, such as the roughness penalty approach or using restricted
basis functions [Ramsay and Silverman (2005)], can be implemented to produce
an estimator of β(t) that is meaningful in interpretation and useful in prediction.

For the functional linear regression model (1.1), James, Wang and Zhu (2009)
proposed a regularized approach that focuses on producing sparse and highly in-
terpretable estimates of the coefficient function β(t). This approach involves first
dividing the domain into a fine grid of points, and then using appropriate vari-
able selection methods to determine whether the dth derivative of β(t) is zero
or not at each of the grid points, that is, β(d)(t) = 0 for one or more values of
d ∈ {0,1,2, . . .}. They proposed the Dantzig selector [Candes and Tao (2007)] and
a Lasso-type approach for the estimation of β(t) using piecewise constant basis,
where the Dantzig selector seems to be more natural. Empirical results show that
their methods perform well when p, the number of basis functions, is not too large.
When functional data are measured over a very fine grid such as brain image data,
the Dantzig selector faces the challenge of solving a huge linear programming
problem and the Lasso-type algorithm can be extremely slow; note that for the
latter the fast coordinate descent algorithm [Fu (1998), Daubechies, Defrise and
De Mol (2004), Friedman et al. (2007), Wu and Lange (2008)] does not apply due
to the penalty on derivatives. Without imposing sparsity, Reiss and Ogden (2010)
considered the functional principal component regression for image data.

In this article, we choose the Haar wavelet basis instead of the piecewise con-
stant basis for analyzing 3D image data and show that the Haar wavelet-based
approach presents a number of advantages. First, it yields regional sparseness with-
out imposing constraints on derivatives, which is needed in James, Wang and Zhu
(2009). In other words, by shrinking corresponding wavelet coefficients to zero,
the estimator of the regression coefficient function can be exactly zero over regions
where no relationship to the response variable is present. Second, the Haar wavelet
transform offers a way to overcome the issue of high multicollinearity caused by
high neighboring spatial correlations. Third, our approach is flexible enough to
allow the coefficient function to be estimated at different levels of smoothness
through choosing different levels of the Haar wavelet decomposition. Fourth, the



1048 X. WANG ET AL.

Haar wavelet transform can be applied as a dimension reduction technique prior
to model fitting for high-dimensional image data by setting a common set of close
to zero wavelet coefficients of PET images to zero, which is an effective way of
removing voxels outside the brain or in the ventricles. It should be noted that a re-
cent article by Zhao, Todd Ogden and Reiss (2012) considered a general wavelet-
based Lasso approach in functional linear regression, but only concerned 1D β(t).
The Haar wavelet transform is a useful tool for image and signal analysis and has
many other applications. For example, Picart, Butenschön and Shutler (2012) and
Lovejoy and Schertzer (2012) discussed the use of Haar wavelet transforms in
geophysics and climate research.

The rest of this article is organized as follows. In Section 2 we review some
background on wavelet decomposition and properties of Haar wavelet basis func-
tions using a 1D functional linear regression model as an illustration and then pro-
pose the �1 regularized shrinkage estimation for general functional data, including
both 1D and 3D cases. To evaluate the numerical performance of our approach, we
conduct extensive simulations in Section 3. We present the analysis of ADNI 3D
PET image data in Section 4 and make some concluding remarks in Section 5. We
also show that the proposed method achieves the desirable nonasymptotic error
bounds for prediction and estimation, the so-called oracle inequalities, meaning
that the method performs equally well (up to a constant) as if the true subregions
with nonzero regression coefficient were given. The theoretical results are provided
in the online supplementary material [Wang et al. (2014)].

2. Regularized Haar wavelets method. For ease of presentation, we de-
scribe the proposed methodology starting with the 1D case given in (1.1), then
extend it to the 3D case using a tensor product of three 1D wavelet expansions.

2.1. Choice of basis. Basis expansions are commonly used in analyzing func-
tional data. Among a variety of choices of basis expansions, wavelets have the im-
portant ability to allow simultaneous time (or space in this article) and frequency
localization. Unlike many other commonly used basis systems, wavelet transforms
are highly adaptable to different levels of smoothness and more capable of captur-
ing edges, spikes and other types of discontinuities, especially for wavelet trans-
forms with relatively small support such as the Haar wavelets. Wavelet transforms
also provide a powerful tool to compress the data. A compressed approximation
of the signal can be achieved by penalizing the wavelet coefficients [Wand and
Ormerod (2011)], which involves shrinking small coefficients to zero and possibly
shrinking the large ones without affecting the main features of the data. Hence,
it is advantageous to use wavelet transforms to decompose images as well as the
regression coefficient function for estimation.

In many applications, it is often the case that the association between X(t) and
Y in model (1.1) is sparse and potentially discontinuous at the boundaries of subre-
gions. In particular, only few brain subregions in the aforementioned PET images
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are believed to be related to cognitive impairment. To better identify such patterns,
we choose to use Haar wavelets. The Haar wavelet transform is easily calculated
and affected less by discontinuities. In addition, sparsity of β(t) can be recovered
by shrinking its wavelet coefficients to zero. The scaling function (also called a
father wavelet) φ and the mother wavelet ψ of Haar wavelets defined on [0,1) are
given below:

φ(t) =
{

1, if 0 ≤ t < 1;

0, otherwise;

ψ(t) =
⎧⎪⎨
⎪⎩

1, if 0 ≤ t < 1/2;

−1, if 1/2 ≤ t < 1;

0, otherwise.

The Haar wavelet bases are then generated in the form of translations and dilations
of the above father and mother wavelet functions as

φj,k(t) =
√

2jφ
(
2j t − k

)
,

ψj,k(t) =
√

2jψ
(
2j t − k

)
,

where j = 0,1, . . . and k = 0,1, . . . ,2j − 1. The index j refers to dilations and k

refers to translations and
√

2j is the normalizing factor. It is noted that the basis
functions are orthonormal. Therefore, for a sufficiently fine resolution J , the coef-
ficient function β(t) in (1.1) defined on [0,1) can be expanded in a Haar wavelet
series:

β(t) =
2j0−1∑
k=0

aj0,kφj0,k(t) +
J∑

j=j0

2j−1∑
k=0

dj,kψj,k(t) + e(t),(2.1)

where aj0,k = ∫ 1
0 β(t)φj0,k(t) dt are the approximation coefficients at the coarsest

resolution j0, dj,k = ∫ 1
0 β(t)ψj,k(t) dt are the detail coefficients that characterize

the finer structures of β(t) as j grows, and e(t) is the approximation error that
goes to zero as J goes to infinity. The Haar wavelet representation of a signal
thus consists of approximations together with details that can provide the desirable
frequencies. See, for example, Walker (2008) for more details about Haar wavelets.

2.2. Model estimation. Rewrite β(t) in (2.1) by

β(t) = B(t)T η + e(t),(2.2)

where B(t) denotes the collection of all φj,k(t) and ψj,k(t) in the above Haar
wavelet expansion, and η is the corresponding wavelet coefficient vector of
length p. Plugging (2.2) into (1.1), we obtain

Yi = β0 +
∫ 1

0
Xi(t)B(t)T η dt + ε∗

i = β0 +CT
i η + ε∗

i , i = 1, . . . , n,(2.3)



1050 X. WANG ET AL.

where Ci = ∫ 1
0 Xi(t)B(t) dt and ε∗

i = εi + ∫ 1
0 Xi(t)e(t) dt . It should be noted that

Ci is the wavelet coefficient vector of Xi(t) when we decompose Xi(t) using the
same set of Haar wavelet basis functions as those in (2.2). Model (2.3) can then be
rewritten as follows:

Y = β0 + Cη + ε∗,(2.4)

where C = [C1,C2, . . . ,Cn]T is an n × p design matrix in linear model (2.4).
Once an estimator η̂ is obtained from (2.4), β(t) can then be estimated by B(t)T η̂.

In practice, X(t) is observed on only a finite set of grid points {t1, . . . , tp}, which
also determines the highest and yet practically meaningful level of decomposition
for β(t). For the discrete wavelet transform, p is required to be a power of 2. Using
the usual terminology for Haar wavelets [see, e.g., Walker (2008) and that used in
the MATLAB Wavelet Toolbox (2011b)], we define the level 1 Haar wavelet de-
composition by computing the average and the difference on each consecutive pair
of values, and the maximum level is log2 p. The level number is directly deter-
mined by the integer j0 in (2.1). For any level of Haar wavelet decomposition, the
total number of basis functions φj,k and ψj,k is always p, and the collection of
φj,k and ψj,k then forms a set of p-dimensional orthonormal basis functions.

A key advantage of using Haar wavelets is as follows. When β(t) = 0 in large
regions of t ∈ [0,1) (in the ADNI brain image analysis where t is 3D, this would
correspond to that large regions in the brain are not associated with the cogni-
tive performance measured by MMSE), the coefficient vector η in (2.2) should
be sparse with e(t) = 0 for those regions, that is, β(t) can be well approximated
by an economical wavelet expansion with few nonzero coefficients. We consider
the Lasso approach [Tibshirani (1996)] and implement the method with the fast
coordinate descent algorithm to obtain a desirable sparse solution for the wavelet
coefficients.

For a given j0, which corresponds to a specific level of Haar wavelet expansion,
the Lasso estimator for η is given by

η̂ = arg min
η

{
1

n
‖Y − β0 − Cη‖2

2 + 2λ‖η‖1

}
,(2.5)

where ‖ · ‖1 and ‖ · ‖2 denote the �1 and �2 norms, respectively, and λ ≥ 0 is a
tuning parameter. In our estimating procedure, j0 is also a tuning parameter.

It should be noted that in general the Haar wavelet coefficients with large magni-
tudes are related to salient features. The magnitudes of detail coefficients should be
proportional to the differences between every pair of values, that is, larger magni-
tudes indicate sharper changes at corresponding locations and zero magnitudes in-
dicate no change. If both detail and approximation coefficients of the Haar wavelet
transform are close to zero, then β(t) is close to zero. Thus, we are able to obtain
a sparse solution of β(t) by shrinking its small wavelet coefficients to zero.
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2.3. Selection of tuning parameters. In addition to the Lasso tuning parameter
λ in (2.5), we also need to take into account the level of the Haar wavelet decom-
position. There should exist an optimal level of decomposition for β(t) in terms of
certain criterion, such as AIC, BIC or cross-validation. If the length of observed
Xi(t) is p, then the maximum possible level of the discrete Haar wavelet transform
is log2 p, which is relatively small. Moreover, lower levels are usually considered
in real applications. Therefore, including two tuning parameters does not increase
computational burden by much.

2.4. 3D case. The ADNI’s FDG PET brain images are 3D. A 3D function can
be decomposed using a tensor product of three 1D Haar wavelets. In particular, the
3D Haar wavelet transform can be considered as averaging and differencing oper-
ations [Muraki (1992)]. The averaging operation is constructed by the 3D scaling
function below:

φj,{k,l,m}(u, v,w) = φj,k(u)φj,l(v)φj,m(w).

The differencing operation is taken in seven directions constructed by the 3D
wavelet functions as follows:

ψ1
j,{k,l,m}(u, v,w) = φj,k(u)φj,l(v)ψj,m(w),

ψ2
j,{k,l,m}(u, v,w) = φj,k(u)ψj,l(v)φj,m(w),

ψ3
j,{k,l,m}(u, v,w) = φj,k(u)ψj,l(v)ψj,m(w),

ψ4
j,{k,l,m}(u, v,w) = ψj,k(u)φj,l(v)φj,m(w),

ψ5
j,{k,l,m}(u, v,w) = ψj,k(u)φj,l(v)ψj,m(w),

ψ6
j,{k,l,m}(u, v,w) = ψj,k(u)ψj,l(v)φj,m(w),

ψ7
j,{k,l,m}(u, v,w) = ψj,k(u)ψj,l(v)ψj,m(w).

Let the image Xi(u, v,w) be a 3D functional predictor and Yi be a scalar re-
sponse variable (MMSE, e.g.) for subject i, i = 1, . . . , n. The 3D functional linear
regression model can be written as

Yi = β0 +
∫ T1

0

∫ T2

0

∫ T3

0
Xi(u, v,w)β(u, v,w)dudv dw + εi.(2.6)

For a sufficiently fine resolution J , the 3D coefficient function β(u, v,w) can be
approximated by

2j0−1∑
k,l,m=0

aj0,{k,l,m}φj0,{k,l,m}(u, v,w)

(2.7)

+
J∑

j=j0

2j−1∑
k,l,m=0

7∑
q=1

d
q
j,{k,l,m}ψ

q
j,{k,l,m}(u, v,w).
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Denote the set of all basis functions φj,{k,l,m} and ψ
q
j,{k,l,m} in (2.7) by B(u, v,w)

and the wavelet coefficients in (2.7) by η, then β(u, v,w) can be written as

β(u, v,w) = B(u, v,w)T η + e(u, v,w).(2.8)

Plugging (2.8) into model (2.6), we obtain

Yi = β0 +
∫ T1

0

∫ T2

0

∫ T3

0
Xi(u, v,w)B(u, v,w)T η dudv dw + ε∗

i

(2.9)
= β0 + CT

i η + ε∗
i ,

where Ci = ∫ T1
0

∫ T2
0

∫ T3
0 Xi(u, v,w)B(u, v,w)dudv dw, which is equivalent to the

wavelet coefficient vector when we apply the 3D wavelet transform to Xi(u, v,w),
and ε∗

i = εi + ∫ T1
0

∫ T2
0

∫ T3
0 Xi(u, v,w)e(u, v,w)dudv dw. Then the methodology

proposed in the previous subsections for the 1D case can be applied directly.
Following the calculations of Bickel, Ritov and Tsybakov (2009), we can show

that our proposed method also enjoys the nonasymptotic oracle inequalities similar
to the linear model with high-dimensional covariates. All the theoretical results are
provided in the online supplementary material [Wang et al. (2014)]. It should be
noted that the results are derived using the 1D notation for the estimator β̂(t) for
simplicity, but they hold exactly for the 3D case of β̂(u, v,w).

3. Simulation studies. To investigate the performance of the proposed Haar
wavelet-based approach, we have conducted extensive simulations for both
1D and 3D functional data. The results for 1D cases can be easily visualized,
whereas the 3D case mimics the brain images more naturally.

3.1. 1D simulation. We consider a variety of settings of X(t) and β(t). For
X(t) = X∗(t) + E(t) defined on 0 ≤ t ≤ 1, where E(t) ∼ N(0, σ 2

E ) is the noise
term independent of time t , we consider the following two scenarios:

– Fourier: X∗(t) = a0 + a1 sin(2πt) + a2 cos(2πt) + a3 sin(4πt) + a4 cos(4πt).
– B-splines: X∗(t) is a linear combination of cubic B-splines with interior knots

at 1/7, . . . ,6/7 and coefficients ai , that is, X∗(t) = ∑
aiφi(t), where φi(t) are

the B-spline basis functions.

In both scenarios, the coefficients ai ∼ N(0,1). To assess the performance of the
proposed approach in identifying continuous and discontinuous signals, we con-
sider two cases of the regression coefficient function β(t):

– Case 1: β(t) is a smooth function,

β(t) =
{

0.5
(
sin(20t − π) + 1

)
, if π/8 ≤ t < 9π/40,

0, otherwise.
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– Case 2: β(t) is piecewise constant,

β(t) =
⎧⎪⎨
⎪⎩

1, if 0.2 ≤ t < 0.3,

0.5, if 0.5 ≤ t < 0.7,

0, otherwise.

For each curve X∗(t), we record p = 128 equally spaced measurements for con-
venience. The variance of the noise term E(t) is set to be σ 2

E = 1
p−1

∑p
j=1(X

∗(tj )−
	X∗(tj ))2, where 	X∗(tj ) is the mean of X∗(tj ). The error term ε in model (1.1)
also follows a normal distribution N(0, σ 2). The value of σ 2 is determined by the
signal-to-noise ratio

SNR = σ 2
g

σ 2 ,(3.1)

where σ 2
g is the sample variance of g(Xi) = ∫

Xi(t)β(t) dt . The simulation results
presented in this article are under SNR = 9, which is also considered in Example 4
of Tibshirani (1996). For the Lasso method, Zou (2006) observed that smaller SNR
usually yields smaller relative prediction error. For each of the settings, we use n =
100 training observations to fit the model. The optimal tuning parameter is selected
by using one of the following methods: (i) validating by a separate validation (SV)
data set of the same size; (ii) 5-fold cross-validation (CV); (iii) AIC and (iv) BIC
[Zou, Hastie and Tibshirani (2007)] given below:

AIC = ‖Y − ĝ(X)‖2

nσ̂ 2 + 2

n
d̂f,(3.2)

BIC = ‖Y − ĝ(X)‖2

nσ̂ 2 + log(n)

n
d̂f,(3.3)

where d̂f is the number of nonzero elements of η̂ in model (2.4). We estimate
σ 2 by the refitted cross-validation method introduced in Fan, Guo and Hao (2012).
We then generate n = 10,000 test observations to calculate the mean squared errors
(MSEs) of the corresponding selected models. The procedure is repeated 100 times
and the average MSEs and their standard errors (SE) for each of the models are
presented in Table 1. We also report the percentages of correctly identified zero
regions and nonzero regions in Table 1. We can see that all four methods perform
reasonably well, while the nonpractical SV method performs the best. The CV
method seems to have a nice trade-off between sparsity and prediction accuracy.
Averages of the estimates of β(t) using the CV method over 100 replications are
shown in Figure 1.

We also conduct permutation tests to assess the significance of the regularized
estimates of β(t). For each of the training data sets, we generate 200 permutation
data sets by randomly shuffling the response values. Using the same model selec-
tion technique for each of the 200 permutation data sets, 200 sets of β̂perm(t) are
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TABLE 1
Average MSEs with standard errors (SE, in parentheses) and average percentage of correctly

identified nonzero and zero elements over 100 replications for 1D cases

Average percentage (%)

Average MSE (SE) (×10−3) Case 1 Case 2

Type Method Case 1 Case 2 Nonzero Zero Nonzero Zero

B-spline SV 0.11 (0.05) 0.19 (0.08) 84.30 69.20 96.00 57.26
CV 0.15 (0.11) 0.23 (0.11) 82.95 69.68 95.03 58.90
BIC 0.60 (1.96) 1.63 (3.10) 72.70 96.14 83.26 79.36
AIC 0.56 (1.96) 1.56 (3.12) 75.80 93.80 82.51 82.27

Fourier SV 0.65 (0.30) 1.20 (0.49) 84.00 70.59 95.87 58.93
CV 0.92 (0.56) 1.46 (0.63) 82.30 71.39 95.56 55.76
BIC 1.12 (0.86) 10.62 (20.69) 72.75 96.59 84.03 67.07
AIC 1.05 (1.28) 10.29 (20.82) 75.80 93.64 83.85 69.01

obtained. At each tj , j = 1, . . . , p, the two-sided critical values are set to be the
2.5th and 97.5th percentiles of β̂perm(tj ) for the significance level of 0.05. Suppos-
ing the null hypothesis is β(tj ) = 0 at each tj , we will reject the null hypothesis if
β̂(tj ) is within the critical region. Repeating this permutation process 100 times,
we can compute the percentages that we reject the null hypothesis at each tj . The
results of the permutation tests using the CV method are presented in Figure 2,
which shows high rejection frequency in the regions where β(t) is nonzero.

FIG. 1. Average of β̂(t) estimated using 5-fold cross-validation with 100 replications (solid line).
The dashed line is the true β(t). The top panel is for case 1, and the bottom panel is for case 2.
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FIG. 2. Frequency of rejecting the null hypothesis β(t) = 0 using 5-fold cross-validation based on
100 permutation repetitions. The thick solid horizontal segments indicate the true nonzero regions.
The top panel is for case 1, and the bottom panel is for case 2.

3.2. 3D simulation. For the 3D case, we generate the following type of images
X(u, v,w) = X∗(u, v,w) + E(u, v,w) with

X∗(u, v,w)

= a0 + a1 sin(2πu) + a2 cos(2πu) + a3 sin(2πv)

+ a4 cos(2πv) + a5 sin(2πw) + a6 cos(2πw), 0 ≤ u, v,w ≤ 1,

where ai ∼ N(0,1) and E(u, v,w) ∼ N(0, σ 2
E ) with σ 2

E similarly defined as in the
1D case. For simplicity, we record 32 × 32 × 32 equally spaced measurements in
the unit cube. We define the coefficient function β(u, v,w) as follows:

β(u, v,w)

=
⎧⎪⎨
⎪⎩

a
(
sin(bu + c) + 1

)(
sin(bv + c) + 1

)(
sin(bw + c) + 1

)
,

if (u − 7π/40)2 + (v − 7π/40)2 + (w − 7π/40)2 ≤ (3π/40)2;
0, otherwise,

where a = 1/8, b = 40/3 and c = π/6. Note that β(u, v,w) is zero outside a ball
that is located in the center of the unit cube. The error term ε in model (2.6) also
follows a normal distribution N(0, σ 2) with SNR = 9. We generate 400 training
images and apply the 3D Haar wavelet transform to decompose each image and
obtain the wavelet coefficient matrix. Optimal tuning parameters are selected using
the same procedures as for the 1D case. The results are summarized in Table 2.
Figure 3 illustrates the comparison of the true β(u, v,w) and the mean estimates
of β(u, v,w) over 100 replications at five different slices, which shows that our
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TABLE 2
Average MSEs with standard errors (SE, in parentheses), and
average percentages of correctly identified nonzero and zero

elements over 100 replications for 3D case

Average percentage (%)

Method Average MSE (SE) (×10−4) Nonzero Zero

SV 0.97 (0.29) 77.15 61.97
CV 1.21 (0.51) 74.25 57.04
BIC 4.78 (1.52) 39.48 99.42
AIC 4.11 (2.13) 41.86 98.74

approach performs reasonably well in detecting signals based on visual inspection
and on the high percentage of correctly identified nonzeros and zeros reported in
Table 2.

4. ADNI PET analysis. The FDG PET data used in the preparation of this ar-
ticle were obtained from the ADNI database (adni.loni.ucla.edu). The ADNI was

FIG. 3. The left panel is true β(u, v,w) at five selected slices and the right panel is the average of
β̂(u, v,w) estimated using 5-fold cross-validation over 100 replications at the same five slices.

http://adni.loni.ucla.edu
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launched in 2003 by NIA, NIBIB, FDA, private pharmaceutical companies and
nonprofit organizations, as a $60 million, 5-year public-private partnership. The
primary goal of ADNI has been to test whether serial magnetic resonance imag-
ing (MRI), PET, other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of MCI and early AD.
Determination of sensitive and specific markers of very early AD progression is
intended to aid researchers and clinicians in developing new treatments, monitor-
ing treatment effectiveness, and lessening the time and cost of clinical trials. The
Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical
Center and University of California, San Francisco. ADNI is the result of efforts
of many co-investigators from a broad range of academic institutions and private
corporations, and subjects have been recruited from over 50 sites across the U.S.
and Canada. The initial goal of ADNI was to recruit 800 adults, ages 55 to 90, to
participate in the research, approximately 200 cognitively normal older individuals
to be followed for 3 years, 400 people with MCI to be followed for 3 years and
200 people with early AD to be followed for 2 years. For up-to-date information,
see www.adni-info.org.

In the ADNI’s FDG PET study, the injected dose of FDG was 5.0 ± 0.5 mCi,
and subjects were scanned from 30 to 60 minutes post-injection acquiring 6
five-minute frames. The scans were preprocessed by the following steps: each
frame was co-registered to the first frame of the raw image file; six co-registered
frames were averaged to create a single 30-minute PET image; each subject’s co-
registered, averaged PET image from the baseline PET scan was reoriented into
a standard 160 × 160 × 96 voxel image grid with 1.5 mm cubic voxels and the
anterior-posterior axis of the subject is parallel to a line connecting the anterior
and posterior commissures (the AC–PC line). It should be noted that the number
of voxels in each image is over 2.4 million, so the approach via linear program-
ming, as in James, Wang and Zhu (2009), is too computationally expensive for this
application. The data set consists of 403 scans, including 102 NCs, 206 subjects
with MCI and 95 subjects diagnosed with AD. The demographic characteristics
of the 403 subjects are described in Table 3. The goal of our analysis is to iden-
tify brain subregions that are most closely related to MMSE scores; we therefore
choose not to adjust for age and other demographic variables. The summary of
MMSE scores among the three groups of participants is given in Figure 4. We

TABLE 3
Demographics of ADNI participants (n = 403)

Category Sex (% male) Age (SD) MMSE (SD)

NC (n = 102) 60.8% 80.9 (4.7) 28.9 (1.1)
MCI (n = 206) 67.0% 79.7 (7.3) 27.2 (1.7)
AD (n = 95) 58.9% 80.4 (7.5) 23.4 (2.1)

http://www.adni-info.org
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FIG. 4. Box plots of MMSE scores among AD, MCI and NC.

treat each PET image as a realization of the 3D functional predictor and then fit
the 3D functional linear regression model (2.6). The voxel values outside the brain
are set to zero prior to implementing the 3D Haar wavelet transform. We further re-
duce the computational cost by excluding those columns of the wavelet coefficient
matrix where all the elements are zero.

In terms of applying the 3D Haar wavelet transforms to each subject’s PET
image data, we consider all the possible levels of the Haar wavelet decompositions.
Two tuning parameters are therefore included in the model selection procedure: the
level of the 3D Haar wavelet decomposition and the lasso regularization parameter.

First, we employ a 10-fold cross-validation to evaluate the predictive power of
the proposed method. Specifically, for each set of 10% observations, we leave them
out as a test set, use the remaining data as the training data to fit a model (including
selecting the tuning parameters via 5-fold cross-validation) and compute the pre-
diction error on the data points that have been left out. We aggregate these quan-
tities by using the predictive R-square given by 1 − ∑

(yi − ŷi,−i )
2/

∑
(yi − ȳ)2,

where ŷi,−i denotes the predicted value of yi calculated by using the estimator
obtained from the training data generated from the cross-validation. The result is
0.26 for the ADNI data set, whereas the standard R-square is 0.51, suggesting a
moderate predictive power of the model.

Second, we investigate the voxels that are selected by our method. We use 5-fold
cross-validation to the full data set to choose the optimal set of tuning parameters.
The identified clusters of voxels [β̂(u, v,w) 
= 0] are shown on selected axial slices
in Figure 5, which are presented from the bottom of the brain to the top. The clus-
ters of voxels with hot colors show a positive association to prediction of MMSE
scores, whereas those with cold colors show a negative association. Each small
square represents a small cluster of voxels. To assess the significance of the se-
lected voxels, similar to what we have done in simulation studies, we permute the
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FIG. 5. Clusters of voxels identified using our approach for the ADNI data.

response variable MMSE score 200 times. It turns out that 95.3% of the selected
voxels are significant at the 5% level. In addition to this pointwise testing, we also
consider the global test described by Nichols and Holmes (2001), which provides a
way to control the family-wise error rate by comparing β̂(tj ) to a “maximal statis-
tic.” It turns out that only 15.6% of the selected voxels are significant at the 5%
level, which is more conservative than the pointwise testing procedure. To further
evaluate the stability of the selection, we generate 100 bootstrap samples and for
each bootstrap sample, we apply our method including the tuning parameter selec-
tion via 5-fold cross-validation. Similar approaches also have been employed by
other researchers, such as Sauerbrei and Schumacher (1992), Royston and Sauer-
brei (2008) and Meinshausen and Bühlmann (2010). To summarize the results,
we count the number of times that each voxel is selected over 100 bootstrap sam-
ples and denote it as the bootstrap inclusion frequency (BIF). The voxel BIFs are
presented in Figure 6. The locations of these more frequently selected voxels are
also presented in the 3D sagittal view in Figure 7 for ease of understanding. It
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FIG. 6. Bootstrap inclusion frequencies of the voxels over 100 bootstrap samples.

can be seen that the highly selected brain regions agree well with the results in
Figure 5. We note that the clusters of voxels identified in our analysis shown in
Figures 5 and 6 reveal high associations of the expected anatomical regions with
cognitive deficits. For example, the orange ones on slices “+12” and “+18” in
Figure 5 and the big cluster on the same slices in Figure 6 indicate that the pos-
terior cingulate/precuneus cortex is significantly related to cognitive impairment;

FIG. 7. Locations of the frequently selected voxels in the 3D sagittal view.



REGULARIZED FUNCTIONAL REGRESSION 1061

the blue ones on slices “−60,” “−54” and “−48” in Figure 5 and the clusters on
the same slices in Figure 6 suggest that the medial temporal/hippocampal cortex is
also closely involved; the red ones on slices “−42,” “−36” and “−30” in Figure 5
and the corresponding clusters on the same slices in Figure 6 correspond to the
lateral temporal cortex. Many studies have demonstrated that the most prominent
metabolic abnormalities are found in these regions; see, for example, Foster et al.
(1984), Minoshima et al. (1995, 1997), Mueller et al. (2005). In our study, we have
particularly found the most predictive voxels of the cognitive impairment in these
regions. Other involved regions include the superior lateral parietal cortex and the
frontal cortex, which are all known to be related to the progression of Alzheimer’s
disease.

5. Discussion. In this article we propose a highly effective Haar wavelet-
based regularization approach that can be easily applied to analyzing multidi-
mensional functional data. Analysis of the PET image data demonstrates that our
approach is useful in finding brain subregions that are most responsible for cog-
nitive impairment in elderly people. It has great potential to efficiently assist the
diagnosis of disease in neuroimaging studies, yielding easily interpretable results.
Our approach is also computationally fast because of the implementation of the
coordinate descent algorithm with the MATLAB glmnet package. For example,
the real data analysis of 403 subjects’ PET image data can be finished in less than
two hours on a 64-bit Intel Xeon 3.33 GHz server with about 35 GB of RAM,
including the selection of tuning parameters. We should note that another practi-
cal advantage of our approach is that the wavelet transform itself can reduce the
dimensionality of the large volume of brain image data. As a result, we can then
apply the proposed approach on reduced data sets. In such situations, although the
resolution of the original PET images is decreased, the results remain largely the
same since the related subregions are usually not comprised of a single voxel but
of a cluster of voxels.
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SUPPLEMENTARY MATERIAL

Appendix (DOI: 10.1214/14-AOAS736SUPP; .pdf). The online supplementary
material contains the technical appendix showing the theoretical results of the pro-
posed approach and an illustrative example showing the desirable feature of Haar
wavelets.
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