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ABSTRACT

Motivation: The nearest shrunken centroid (NSC) method has been

successfully applied in many DNA-microarray classification prob-

lems. The NSC uses ‘shrunken’ centroids as prototypes for each

class and identifies subsets of genes that best characterize each

class. Classification is then made to the nearest (shrunken) centroid.

The NSC is very easy to implement and very easy to interpret,

however, it has drawbacks.

Results: We show that the NSC method can be interpreted in the

framework of LASSO regression. Based on that, we consider two

new methods, adaptive L1-norm penalized NSC (ALP-NSC) and

adaptive hierarchically penalized NSC (AHP-NSC), with two different

penalty functions for microarray classification, which improve over

the NSC. Unlike the L1-norm penalty used in LASSO, the penalty

terms that we consider make use of the fact that parameters

belonging to one gene should be treated as a natural group.

Numerical results indicate that the two new methods tend to remove

irrelevant genes more effectively and provide better classification

results than the L1-norm approach.

Availability: R code for the ALP-NSC and the AHP-NSC algorithms

are available from authors upon request.

Contact: jizhu@umich.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Class prediction with high-dimensional microarray data has

recently received much attention in many fields, such as

bioinformatics, machine learning, medicine and statistics

(Alizadeh et al., 2000; Dabney, 2005; Dudoit et al., 2002;

Eisen et al., 1998; Golub et al., 1999; Hastie et al., 2001; Khan

et al., 2001; Liu and Shen, 2006; Pan, 2002; Shen et al., 2006;

Wu, 2006; Zhang et al., 2006a). It is considered very helpful for

medical research if one can classify and predict the clinical

category of a sample based on its gene expression profile. The

microarray classification problem is a very challenging task,

however, because there are a huge number of variables (genes)

but a much smaller number of samples. Hence, finding

relevant genes that distinguish samples is also greatly desired

in practice.

Tibshirani et al. (2002) proposed the nearest

shrunken centroid (NSC) method for class prediction in

DNA-microarray studies. The NSC uses ‘shrunken’ centroids

as prototypes for each class and identifies subsets of genes that

best characterize each class. We describe the NSC algorithm

briefly in the next subsection.

1.1 The nearest shrunken centroids method

Assuming we have n samples, and for each sample, we have

expressions for p genes. Let xij be the expression for the jth gene

and the ith sample. Each sample belongs to one of K classes

1, 2, . . . ,K. Let Ck be the set of indices of the nk samples in

class k. The jth component of the centroid for class k is
�xkj ¼

P
i2Ck

xij=nk, the mean expression in class k for gene j;

the jth component of the overall centroid is �xj ¼
Pn

i¼1 xij=n.
Let

�0
kj ¼

�xkj � �xj
mk � sj

, ð1Þ

where, sj is the pooled within-class SD for the jth gene:

s2j ¼
1

n� K

XK
k¼1

X
i2Ck

ðxij � �xkjÞ
2, ð2Þ

and mk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=nk � 1=n

p
.

The NSC shrinks each �0
kj to

�̂kj ¼ sgnð�0
kjÞðj�

0
kjj � �Þþ, ð3Þ

where � is a tuning parameter, and the shrunken centroid in

class k for gene j is constructed as:

x̂kj ¼ �xj þ �̂kj �mk � sj: ð4Þ

Because many of the �xkj values are noisy and close to the

overall mean �xj, soft thresholding usually produces more

reliable estimates of the true means, and if � is large enough,

some of the �0
kj can be shrunken to zero, hence the

corresponding x̂kj are equal to �xj.
For the classification of a test sample, suppose we have one

with expression levels x� ¼ ðx�1, x
�
2, . . . , x

�
pÞ. We define the

discriminant score for class k as

�kðx
�Þ ¼

Xp
j¼1

ðx�j � x̂kjÞ
2

s2j
� 2 log�k, ð5Þ
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where �k ¼ nk=n, and the classification rule is given by

Cðx�Þ ¼ k�, where k� ¼ argmin
k

�kðx
�Þ: ð6Þ

So we can see, if for some j, all �̂kj, k ¼ 1, . . . ,K, are zero, hence

all x̂kj are equal to �xj, then the jth gene will not contribute to

the discriminant score, and it can be removed.
The NSC classifier is very easy to implement and very

easy to interpret; it has been shown to be very successful

in many high-dimensional classification problems. However,

it has drawbacks.
In this article, we re-derive the NSC method as a LASSO

regression on gene expression profiles. This re-interpretation

allows us to notice that the L1-norm penalty used by NSC may

not be the most effective way in analyzing microarray data.

The L1-norm penalty treats all centroids equally or ‘flatly’, but

centroids for the same gene are naturally ‘grouped’ together

and intuitively should be considered as a group. Also, centroids

for different genes, say relevant ones and irrelevant

ones, should be treated differently. Enlightened by these

observations, we consider two different penalty functions

different from the L1-norm penalty to make use of natural

grouping information within the data. As we will see

in the numerical study, the methods we consider tend to

remove irrelevant genes more effectively and provide better

classification results.
The remainder of this article is organized as follows.

In Section 2, we show how the NSC can be represented

as a LASSO regression, and based on that, we consider

two new methods: the adaptive L1-norm penalized NSC

(ALP-NSC) and the adaptive hierarchically penalized NSC

(AHP-NSC), which improve over the NSC. In Section 3,

we derive algorithms for the two methods in detail.

Numerical results are in Sections 4 and 5. A brief discussion

is in Section 6.

2 METHODS

2.1 LASSO interpretation of the nearest

shrunken centroids

Assume that the observation xi ¼ ðxi1, . . . , xipÞ from class k

follows a multivariate normal distribution: MVNð�k,�kÞ, where

�k ¼ ð�k1, . . . , �kj, . . . , �kpÞ is the mean vector for class k, and �k is

the covariance matrix for class k. We further assume that

Rk ¼ R ¼ diagð�2
1 , . . . , �

2
j , . . . , �

2
p Þ, i.e. the covariance matrices are

the same across different classes and are diagonal. Such assump-

tion is common when one works with high-dimension low

sample size data (Marron and Todd, 2002). Some theoretical

justification for this assumption can be found in Bickel and Levina

(2004).

We first center and scale each xij to be yij ¼ ðxij � �xjÞ=ðmk � sjÞ, and

consider the linear regression:

yij ¼
XK
k¼1

zik�kj þ �ij, ð7Þ

where �kj ¼ ð�kj � �xjÞ=ðmk:sjÞ; zik is the indicator for whether the ith

sample is in class k, i.e. zik ¼ 1 if the ith sample belongs to class k, and

zik ¼ 0 otherwise; �ij are independent of each other and approximately

follow Nð0, 1=m2
kÞ, if sample i belongs to class k.

Now we consider an LASSO-(Tibshirani, 1996) type estimator

for �kj:

�̂kj ¼ argmin
�kj

1

2

Xn
i¼1

Xp
j¼1

XK
k¼1

zik
nk
ð yij � �kjÞ

2
þ �

Xp
j¼1

XK
k¼1

j�kjj: ð8Þ

After some algebra, one can show that the solutions to (8) are

�̂kj ¼ sgn
X
i

zikyij

 ! P
i zikyijP
i zik

����
����� �

� �
þ

ð9Þ

¼ sgnð�0
kjÞðj�

0
kjj � �Þþ, k ¼ 1, . . . ,K; j ¼ 1, . . . , p ð10Þ

which matches exactly with (3). Therefore, the shrunken

centroids used in the NSC can be considered as the solutions

to (8). We acknowledge that Wu (2006) presented a similar

interpretation of NSC, but used different values of � for different

classes.

We can see from (8) that by using the L1-norm penalty, the NSC

shrinks �kj continuously towards zero, and shrinks some of the fitted

�kj to be exactly zero when making � sufficiently large. In order to

remove the j th gene, we require all �kj, k ¼ 1, . . . ,K, to be zero.

However, we can also see from (8) that the L1-norm penalty treats all

�kj the same, i.e. it does not use the information that �kj and �k0 j are

associated with the same gene j. Intuitively, they belong to one ‘group’

and should be treated differently from �kj0 , which is associated

with a different gene j0. In the next two subsections, we consider

two different penalty functions, i.e. the L1-norm penalty and the

hierarchical penalty that incorporate this information into the modeling

procedure. In general, we consider

�̂kj ¼ argmin
�kj

1

2

Xn
i¼1

Xn
j¼1

XK
k¼1

zik
nk

ðyij � �kjÞ
2
þ � � Jð�Þ

¼ argmin
�kj

‘ð�Þ þ � � Jð�Þ, ð11Þ

where � ¼ f�kj, k ¼ 1, . . . ,K; j ¼ 1, . . . , pg, and J(�) is a penalty

function.

2.2 Method I: the adaptive L1-norm penalized

NSC (ALP-NSC)

For the ALP-NSC, we consider to estimate �kj by

�̂kj ¼ argmin
�kj

‘ð�Þ þ �
Xp
j¼1

max
k

ðj�1jj, . . . , j�kjj, . . . , j�KjjÞ

 !
, ð12Þ

where maxðj�1jj, . . . , j�KjjÞ ¼ kð�1j, . . . ,�KjÞk1. Different from penaliz-

ing every �kj individually, the L1-norm penalizes the maximum

absolute value of �kj, k ¼ 1, . . . ,K, for the jth gene. If the maximum

of j�kjj, k ¼ 1, . . . ,K, is shrunken to zero, all �kj are automatically

shrunken to zero. The L1-norm penalty has also been used in Zhang

et al. (2006b), Zhao et al. (2006) and Zou and Yuan (2006) for other

supervised problems.

To further improve the model (12), we borrow the adaptive

idea from Shen and Ye (2002) and Zou (2006), i.e. to penalize different

genes differently. We consider

min
�kj

‘ð�Þ þ �
Xp
j¼1

wj �max
k

ðj�1jj, . . . , j�kjj, . . . , j�KjjÞ

 !
, ð13Þ

where wj are pre-specified weights. The intuition is that if the jth gene is

relevant for distinguishing different classes from each other, we would

like the corresponding wj to be small, hence the jth gene is lightly

penalized, while if the jth gene is irrelevant and expressed similarly
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across different classes, we would like the corresponding wj to be large,

hence the jth gene is heavily penalized. How to pre-specify wj from the

data will be discussed in Section 2.4.

2.3 Method II: the adaptive hierarchically penalized

NSC (AHP-NSC)

The L1-norm penalty makes use of the information that �kj and �k0 j

are associated with the same gene by shrinking the maximum

absolute value of �kj within the jth gene. If we denote

Mj ¼ maxkðj�1jj, . . . , j�KjjÞ, the corresponding L1-norm penalty on

the jth gene is �Mj, and we can write �kj ¼ Mj�kj, where �1 � �kj � 1.

This motivates us to reparameterize �kj in a more general way:

�kj ¼ 	j 
kj, j ¼ 1, . . . , p; k ¼ 1, . . . ,K, ð14Þ

where 	j � 0 (for identifiability reasons). Notice that here 	 j plays

a similar role as Mj, but it does not have to be the maximum of j�kjj;

similarly 
kj does not have to be bounded between �1 and 1. This

decomposition reflects the information that �kj, k ¼ 1, . . . ,K, all belong

to one single gene xj, by treating each �kj hierarchically. 	 j is at the

first level of the hierarchy, controlling �kj, k ¼ 1, . . . ,K, as a group; 
kjs

are at the second level of the hierarchy, reflecting differences within

the jth gene.

To estimate 	 j and 
kj, we consider

min
	j , 
kj

‘ð�Þ þ �	
Xp
j¼1

	j þ �

Xp
j¼1

XK
k¼1

j
kjj

 !
, ð15Þ

subject to 	j � 0. Notice that there are two tuning parameters �	 and �
.

�	 controls the estimates at the gene-specific level, and it can

effectively remove irrelevant genes: if 	 j is shrunken to zero, all �kj

for the jth gene will be equal to zero. �
 controls the estimates at the

class-specific level: if 	 j is not equal to zero, some of the 
kj hence some

of the �kj, k ¼ 1, . . . ,K, still have the possibility of being zero; in this

sense, the hierarchical penalty shares some of the properties of the

L1-norm penalty.

The adaptive idea in (13) also applies here. If the jth gene is relevant,

we would like to penalize its 	 j and 
kj lightly, and if the jth gene

is irrelevant, we would like to penalize its 	 j and 
kj heavily. Hence,

we consider the AHP-NSC:

min
	j� 0, 
kj

‘ð�Þ þ �	
Xp
j¼1

w	
j 	j þ �


Xp
j¼1

XK
k¼1

w

kjj
kjj

 !
, ð16Þ

where w	
j and w


kj are pre-specified weights.

2.4 Computing the adaptive weights

Regarding the adaptive weights wj in (13), w	
j and w


kj in (16), following

Breiman (1995) and Zou (2006), we can choose them using the

un-penalized estimates �0
kj. Specifically:

M 0
j ¼ max

k
ðj�0

1jj, . . . , j�
0
KjjÞ,

wj ¼ 1=M 0
j ,

w	
j ¼ 1=M 0

j ,

w

kj ¼ 1=j�0

kjj:

3 ALGORITHMS

In this section, we describe details of our algorithms

for estimating �kj in ALP-NSC and AHP-NSC.

Notice that both the L1-norm penalty and the hierarchical

penalty have non-differential points, so they pose optimization

challenges.

3.1 Estimating lkj in ALP-NSC

In ALP-NSC, (13) can be decomposed into p separate

minimization problems

min
�kj

1

2

Xn
i¼1

XK
k¼1

zik
nk

ðyij � �kjÞ
2
þ � � wj �maxðj�1jj, . . . , j�KjjÞ,

ð17Þ

where j ¼ 1, . . . , p. For each j, (17) can be transformed into

a quadratic programming problem:

min
�kj,Mj

1

2

Xn
i¼1

XK
k¼1

zik
nk

ðyij � �kjÞ
2
þ � � wj �Mj ð18Þ

subject to �Mj � �kj � Mj, k ¼ 1, . . . ,K ð19Þ

Mj � 0 ð20Þ

Hence, most commercially available packages can be used to

solve it.
We have also explored explicit forms for the solutions to (17),

which help us gain more insights into the nature of the

L1-norm penalty. We can show that �̂kj, the solution to

the minimization problem (17), can be achieved by shrinking an

average of �0
kj (1), i.e. the solution to (17) when there is no

penalty (or �¼ 0).

THEOREM 1. For the jth minimization problem (17), if there

exists an indices set C ¼ fk1, . . . , krg, such that

j�̂k1 jj ¼ � � � ¼ j�̂krjj > j�̂kjj, for k=2C ð21Þ

then

�̂kj ¼

�0
kj k=2C

sgnð�0
kjÞð

1
r

Pr
s¼1

��0
ksj

��� ���� �wj

r Þ k 2 C

8<
: ð22Þ

where ð:Þþ is the positive part of the argument.

Details of the proof are in the Supplementary Material.

From Theorem 1, we can see when there are r maximums

among j�̂kjj, only the corresponding �0
kj will be shrunken

by the L1-norm penalty, and they are shrunken to the

same absolute value. This value is based on an average of �0
kj

of the corresponding r classes. We can also see that if the jth

gene is irrelevant and all j�0
kjj are close to zero, then the L1-

norm penalty tends to shrink all of them to zero (with an

appropriately chosen �wj).
To implement Theorem 1, we need to decide r, the number of

maximums among �̂kj, and the set fk1, . . . , krg, which indicates

which r �0
kj should be shrunken. When K is not very large,

say K � 20, we can use an exhaustive search to find r and

fk1, . . . , krg, i.e. for each 1 � r � K, we search over all possible

sets fk1, . . . , krg. For each possible set, we estimate �̂kj using

(22), then check whether the estimates satisfy the assumption

(21). If the assumption is satisfied, we compute the correspond-

ing value for the objective function (17). Finally, we choose
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�̂kj that give the smallest value for the objective function.

When K is large, we will resort to the quadratic programming

(18)–(20).

3.2 Estimating lkj in AHP-NSC

In AHP-NSC (16), we can use an iterative approach to estimate

	j and 
kj, i.e. we first fix 
kj and estimate 	 j, then we fix 	 j and
estimate 
kj, and we iterate between these two steps until the

solution converges. Since at each step, the value of the objective

function (16) decreases, the solution is guaranteed to converge.

We have the following theorem that helps us solve for 	j and 
kj
at each step.

THEOREM 2.

� When 
kj, j ¼ 1, . . . ,p and k ¼ 1, . . . ,K, are fixed,

	̂j ¼ IIð9k, 
kj 6¼0Þ �
XK
k¼1

�k
�0
kj


kj
�

�	w
	
jPK

k¼1 

2
kj

 !
þ

; ð23Þ

where �k ¼ 
2kj=
PK

k¼1 

2
kj.

� When 	 j, j ¼ 1, . . . ,p, are fixed,


̂kj ¼ IIð	j>0Þ � sgnð�
0
kjÞ

j�0
kjj

	j
�
�
w



kj

	2j

 !
þ

ð24Þ

Equations (23) and (24) show that both 	̂j and 
̂kj are soft-

thresholding estimates. Details of the proof are in the

Supplementary Material. Here we give some intuitive

explanation.
We first look at 	̂j (23). If all 
kj are zero, it is natural to

estimate 	 j also to be zero because of the penalty on 	j. If not
all 
kj are 0, say, 
k1j, . . . , 
krj are not zero, then from our

reparameterization, we have 	j ¼ �ksj=
ksj, 1 � s � r. Plugging

in �0
ksj

for �ksj, we obtain r estimates for 	 j : ~	j ¼ �0
ksj
=
ksj,

1 � s � r. A natural estimate for 	 j is then a weighted average

of the ~	j, and Equation (23) provides such a (shrunken)

average, with weights proportional to �k.
Now considering 
̂kj (24). If 	¼ 0, it is natural to estimate all


kj also to be zero because of the penalty on 
kj. When 	j > 0,

we have 
kj ¼ �kj=	j. Again, plugging in �0
kj for �kj, we obtain

~
kj ¼ �0
kj=	j. Equation (24) shrinks ~
kj and the amount of

shrinkage is inversely proportional to 	2j . When 	 j is large,

which indicates the jth gene is relevant, the amount of

shrinkage is small, while when 	 j is small, which indicates the

jth gene is less relevant, the amount of shrinkage is large.

4 SIMULATION STUDY

In this section, we use simulated data to demonstrate our

methods ALP-NSC and AHP-NSC, and compare the results

with that of the NSC. We also compare our methods with an

improved version of NSC, i.e. NSC with adaptive choice of

thresholds (Tibshirani et al., 2003). The ‘adaptive’ in Tibshirani

et al. (2003) has a different meaning from that in our two

methods: it still treats different genes ‘flatly’, but uses large

thresholds for classes easy to classify and small thresholds for

classes difficult to classify.

We first considered a two-class classification scenario.

There were a total of p ¼ 10 000 variables with only the

first 20 relevant while the other 9980 irrelevant in forming

two classes. Specifically, the first 20 variables were i.i.d. Nð0, 1Þ

for the first class and i.i.d. Nð1, 1Þ for the second class,

whereas the remaining 9980 variables were all i.i.d. Nð0, 1Þ for

both classes.

We generated n¼ 100 training observations, with 70 in the

first class and 30 in the second one; similarly, we also generated

1000 test observations, with the same class prior and the

same within-class distribution. We denote this as the ‘70-30’

example. Tuning parameters were chosen using 5-fold cross-

validation (CV) on the training data. We then computed

the misclassification error rate of the chosen model on the

test data. We also recorded both the number of relevant

variables and the number of irrelevant variables that

were selected. We repeated this 100 times. The results are

summarized in Table 1.
As we can see, our ALP-NSC and AHP-NSC methods

performed similarly to the NSC method in terms of selecting

relevant variables, but tended to keep much fewer irrelevant

variables. The error rates of ALP-NSC and AHP-NSC also

seemed to be smaller than that of the NSC.
We then considered two three-class classification scenarios,

with highly unbalanced classes. In both scenarios, there were

a total of p ¼ 4000 variables with the first 2 relevant while

the other 3998 irrelevant in forming three classes. The first

2 variables were i.i.d. from Nð0, 1Þ for the first class, i.i.d.

Nð2:5, 1Þ for the second class and i.i.d. Nð5, 1Þ for the third

class, whereas the remaining 3998 variables were all i.i.d. from

Nð0, 1Þ for all three classes. In the first scenario, we generated

20 observations for each of the first class and the third class,

and 100 for the second class We denote it as the ‘20-100-20’

example. In the second scenario, we generated 100 observations

for each of the first class and the third class, and 20 for the

second class. We denote it as the ‘100-20-100’ example.

For each scenario, we also generated test observations with

the same class prior and the same within-class distribution,

but with the sample size 10 times larger than that of the

training datasets. We repeated this 100 times. The results are

summarized in Table 2.

Table 1. Simulation results for the ‘70-30’ example

Method # Info # Non-info CV error Test error

NSC-No-Noise – – – 0.03 (0.01)

NSC 19 (1) 90 (89) 0.10 (0.03) 0.09 (0.02)

NSC-Ada 19 (1) 90 (89) 0.10 (0.03) 0.09 (0.02)

ALP-NSC 18 (2) 39 (38) 0.04 (0.02) 0.04 (0.01)

AHP-NSC 16 (3) 10 (8) 0.00 (0.01) 0.04 (0.02)

‘# Info’ is the average number of selected relevant variables (out of 20) over 100

repetitions. ‘# Non-info’ is the average number of irrelevant variables (out of

9980) that were kept. ‘CV error’ is the average misclassification error rate in

5-fold cross-validation. ‘Test error’ is the average misclassification error rate on

test data. The numbers in the parentheses are the corresponding SDs. ‘NSC-No-

Noise’ is to apply the NSC method to the dataset with only the first 20 relevant

variables, and its ‘Test Error’ can be considered as an ‘oracle’ benchmark.

‘NSC-Ada’ refers to the NSC with adaptive thresholds.
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As we can see, our ALP-NSC and AHP-NSC methods

removed all 3998 irrelevant variables for every repetition

(out of 100), and the classification error rates were just slightly

higher than that of the NSC using only the first 2 relevant

variables, i.e., the ‘oracle’. In contrast, the NSC method and
the NSC with adaptive thresholds tended to select more noise

variables and have higher error rates.

5 REAL DATA ANALYSIS

In this section, we apply the ALP-NSC and the AHP-NSC
methods to three gene microarray datasets.

The first dataset we considered is the Leukemia dataset in

Golub et al. (1999). This dataset consists of 38 training data
and 34 test data for two types of acute leukemia, acute myeloid

leukemia (AML) and acute lymphoblastic leukemia (ALL).

Each sample is a vector of p ¼ 7129 genes. We applied the

ALP-NSC and the AHP-NSC methods to the training data.
Tuning parameters were chosen using 10-fold CV, and the

chosen models were evaluated on the test data. The

results are summarized in the upper part of Table 3. Both

the ALP-NSC and the AHP-NSC had two misclassification

on the test data, and they selected 16 exactly same genes.
Figure 1 shows the corresponding heatmap. Clear separation of

the two classes is evident.
The second dataset we considered consists of microarray

experiments of small round blue cell tumors (SRBCT) of

childhood cancer (Khan et al., 2001). The tumors are

classified as Burkitt lymphoma (BL), Ewing sarcoma (EWS),

neuroblastoma (NB) or rhabdomyosarcoma (RMS). A total
of 63 training samples and 20 test samples were provided. Each

sample consists of expression measurements on p ¼ 2308 genes.

We analyzed this dataset in the similar way as with the

Leukemia dataset. Tuning parameters were chosen using 8-fold
CV. The results are summarized in Table 3. The CV errors and

the test errors are all zero. The ALP-NSC selected 38 genes,

and the AHP-NSC selected 40 genes. The 38 genes selected

by ALP-NSC and the 40 genes selected by AHP-NSC have

34 overlapping genes. Figures 2 and 3 show the heatmaps of the

selected genes. Similar as in Figure 1, genes that distinguish

each class from other classes are also evident.
To further assess the genes that were selected from the

Leukemia and the SRBCT datasets, we randomly split each

dataset into the training and the test sets for 100 times. The

sizes of the two sets and the class priors were kept the same as

the original training/test split. Each training/test split was also

analyzed in the same way as for the original training/test split.

The results are summarized in Tables 4–6. For the Leukemia

dataset, out of the 16 genes selected from the original training/

test split, 10 genes were selected for more than 70 times out of

the 100 random training/test splits. For the SRBCT dataset,

out of the 44 genes that were selected by ALP-NSC and

AHP-NSC from the original training/test split, 29 genes were

Table 2. Simulation results for ‘20-100-20’ and ‘100-20-100’ examples:

the upper part is for the ‘20-100-20’ example, and the lower part is for

the ‘100-20-100’ example

Method # Info # Non-info CV error Test error

‘20-100-20’

NSC-No-Noise – – – 0.04 (0.01)

NSC 2 (0) 41 (67) 0.17 (0.03) 0.17 (0.02)

NSC-Ada 2 (0) 41 (67) 0.17 (0.03) 0.17 (0.02)

ALP-NSC 2 (0) 0.1 (0.3) 0.07 (0.02) 0.07 (0.01)

AHP-NSC 2 (0) 0.0 (0.0) 0.04 (0.02) 0.05 (0.01)

‘100-20-100’

NSC-No-Noise – – – 0.02 (0.00)

NSC 2 (0) 97 (148) 0.09 (0.00) 0.09 (0.00)

NSC-Ada 2 (0) 62 (120) 0.09 (0.00) 0.09 (0.00)

ALP-NSC 2 (0) 0.1 (0.2) 0.03 (0.01) 0.03 (0.01)

AHP-NSC 2 (0) 0.0 (0.0) 0.03 (0.01) 0.03 (0.00)

Descriptions for the columns are the same as those in the caption of Table 1.

Table 3. Results on the real datasets: the upper part is for the Leukemia

dataset, and the lower part is for the SRBCT dataset

Method Number

of genes

Number of

CV errors

Number of

test errors

The Leukemia dataset

Golub et al. (1999) 50 3/38 4/34

NSC 21 1/38 2/34

ALP-NSC 16 1/38 2/34

AHP-NSC 16 1/38 2/34

The SRBCT dataset

Kahn et al. (2001) 96 0/63 0/20

NSC 43 0/63 0/20

ALP-NSC 38 0/63 0/20

AHP-NSC 40 0/63 0/20
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Heatmap of 16 genes chosen by ALP-NSC and AHP-NSC

Fig. 1. Heatmap of the 16 genes selected by both the ALP-NSC and the

AHP-NSC from the Leukemia dataset.
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selected for more than 70 times out of the 100 random splits.

These results imply that the highly frequently selected genes

may have certain power in differentiating the corresponding

cancer classes from each other.
The Leukemia and the SRBCT datasets are relatively ‘easy’

for classification. We also considered the NCI-60 dataset

(Dudoit et al., 2002). In this study, cDNA microarrays were

used to examine the variation in gene expressions among 60 cell

lines from the National Cancer Institute’s anti-cancer drug

screen. The cell lines are derived from tumors with eight

different sites of origin: breast, central nervous system (CNS),

colon, leukemia, melanoma, non-small-cell-lung-carcinoma

(NSCLC), ovarian and prostate. A total of 61 samples were

provided. Each sample consists of expression measurements on

p ¼ 5244 genes. The class sizes are all small, and some of the

classes (e.g. breast and NSCLS) are known to be hetero-

geneous. So this is a more difficult dataset for classification

than the Leukemia and the SRBCT datasets. The NCI-60

dataset came without pre-specified training/test split, so we

randomly split the data into the training and the test sets

comma; with sample sizes 40 and 21, respectively. We repeat it

100 times. The results are summarized in the lower part of

Table 4 and Figure 4. We can see that ALP-NSC and AHP-

NSC had similar misclassification errors as NSC and adaptive-

NSC, but selected much fewer genes. Then, 777 genes were

selected for more than 70 times out of the 100 trials. Our

methods selected on average about 1000 genes, while NSC

selected more than 3000 genes.

6 CONCLUSION

In this article, we first re-interpreted the popular NSC

method in the framework of LASSO regression. Based on the

penalized linear regression framework, we have considered

two new methods for microarray classification, which improve

over the NSC. Unlike the L1-norm penalty used in LASSO,

the penalty terms that we consider make use of the fact

that parameters belonging to one gene should be treated as

a natural group. We have presented some evidence that the

two new methods tend to remove irrelevant genes more

effectively and provide better classification results than the

L1-norm approach.
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Heatmap of 40 genes chosen by AHP-NSC

Fig. 3. Heatmap of the 40 genes selected by AHP-NSC from the

SRBCT dataset.

Table 4. Results on 100 random splits of the real datasets: the first part

is for the Leukemia dataset, the second part is for the SRBCT dataset

and the third part is for the NCI-60 dataset

Method Number

of genes

Number of

CV errors

Number of

test errors

The Leukemia dataset

NSC 146 (320) 1.4 (1.1) 2.3 (1.4)

NSC-Ada 183 (322) 1.4 (1.1) 2.2 (1.5)

ALP-NSC 94 (102) 1.6 (1.2) 2.0 (1.1)

AHP-NSC 57 (43) 1.9 (1.2) 2.5 (1.2)

The SRBCT dataset

NSC 47 (14) 0.0 (0.0) 0.3 (0.6)

NSC-Ada 49 (15) 0.0 (0.0) 0.3 (0.6)

ALP-NSC 36 (14) 0.2 (0.5) 0.1 (0.3)

AHP-NSC 34 (7) 0.2 (0.4) 0.1 (0.2)

The NCI-60 dataset

NSC 3723 (1741) 11.9 (2.3) 6.3 (1.6)

NSC-Ada 3597 (1838) 11.9 (2.3) 6.2 (1.5)

ALP-NSC 1314 (128) 13.5 (2.7) 5.9 (1.3)

AHP-NSC 995 (131) 12.8 (2.5) 5.5 (1.3)

The errors are the averages of the number of misclassified samples over 100

random splits of the corresponding dataset. The numbers in the arentheses are the

corresponding SDs.
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Fig. 2. Heatmap of the 38 genes selected by ALP-NSC from the

SRBCT dataset.
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