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SUMMARY

In many biological and other scientific applications, predictors are often naturally grouped.
For example, in biological applications, assayed genes or proteins are grouped by biological roles
or biological pathways. When studying the dependence of survival outcome on these grouped
predictors, it is desirable to select variables at both the group level and the within-group level.
In this article, we develop a new method to address the group variable selection problem in the
Cox proportional hazards model. Our method not only effectively removes unimportant groups,
but also maintains the flexibility of selecting variables within the identified groups. We also show
that the new method offers the potential for achieving the asymptotic oracle property.

Some key words: Cox model; Group variable selection; Lasso; Microarray; Oracle property; Regularization.

1. INTRODUCTION

A problem of interest in censored survival data analysis is to study the dependence of survival
time T on a p-dimensional vector of predictors X . The proportional hazards model (Cox, 1972) is
one of the most popular models in the literature and has been widely studied. The hazard function
of a subject given predictors X is specified by

h(t | X ) = h0(t) exp(β ′X ), (1)

where h0(t) is a completely unspecified baseline hazard function and β = (β1, . . . , βp)′ is an
unknown vector of regression coefficients.

In practice, predictors are rarely all important, i.e. some components of β are zeros. Effective
variable selection often leads to parsimonious models with better prediction accuracy and easier
interpretation.

In this article, we investigate the variable selection problem in the Cox model when predictors
can be naturally grouped. We are interested in selecting important groups as well as important in-
dividual variables within identified groups. We propose a hierarchically penalized Cox regression
model for simultaneous variable selection at both the group and within-group levels. One moti-
vation arises from genomic research. Genomic data can often be naturally divided into small sets
based on biological knowledge. For example, when analyzing microarray gene expression data,
one can group genes into functionally similar sets as in The Gene Ontology Consortium (2000),
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or into known biological pathways such as the Kyoto encyclopedia of genes & genomes pathways
(Kanehisa & Goto, 2002). Making use of the group information can help to identify both path-
ways and genes within the pathways related to the phenotypes, and hence improves understanding
of biological processes.

Many variable selection methods based on penalized partial likelihood have been proposed for
the Cox proportional hazards model, such as the lasso (Tibshirani, 1996, 1997) and the smoothly
clipped absolute deviation (Fan & Li, 2001, 2002). By shrinking some of the regression coeffi-
cients to be exactly zero, these methods automatically remove unimportant variables. However,
when the predictors are grouped, one drawback of these methods is that they treat variables
individually and hence tend to perform variable selection based on the strength of the individual
variables rather than the strength of the group.

The variable selection problem with grouped predictors has recently been tackled by several
authors. Antoniadis & Fan (2001) and Cai (2001) discussed blockwise thresholding, P. Zhao,
G. Rocha and B. Yu, in an unpublished technical report for the University of California at
Berkley, proposed a method that penalizes the L∞-norm of the coefficients within each group.
Yuan & Lin (2006) extended the lasso to penalize the L2-norm of the coefficients within each
group for linear regression models, and Wang & Leng proposed an adaptive grouped lasso in
their 2006 unpublished technical report from the National University of Singapore. Based on
the boosting technique, Luan & Li (2008) and Wei & Li (2007), respectively, proposed a group
additive regression model and a nonparametric pathway-based regression model to identify groups
of genomic features that are related to several clinical phenotypes including the survival outcome.
All of these group variable selection methods have a common limitation: they select variables
in an all-in-all-out fashion, i.e. when one variable in a group is selected, all other variables in
the same group are also selected. Thus, these methods do not do variable selection within an
identified group. The reality, however, may be that, for example, some genes in a pathway may
not be related to the phenotype, although the pathway as a whole is involved in the biological
process.

In this article, we propose a new method based on the lasso criterion to address the group
variable selection problem in the Cox model, which we call the hierarchically penalized
Cox regression method. Our method not only effectively removes unimportant groups, but
also maintains the flexibility of selecting variables within identified groups. Furthermore,
we show that our method achieves the asymptotic oracle property of Fan & Li (2001,
2002), i.e. the method performs as well as if the correct underlying model were provided in
advance.

2. VARIABLE SELECTION VIA PENALIZED PARTIAL LIKELIHOOD

We assume that the p variables in X can be divided into K groups. Let the kth group have
pk variables, denoted by X(k) = (Xk1, . . . , Xkpk )′, and let β(k) = (βk1, . . . , βkpk )′ represent the
corresponding regression coefficients. We first assume that the K groups do not overlap, i.e.
each variable belongs to only one group. In § 6, we allow variables to belong to multiple
groups.

Suppose that a random sample of n subjects is observed. Let Ti and Ci be the survival time and
the censoring time for subject i , let Yi = min{Ti , Ci } be the observed time and let δi = I(Ti � Ci )
be the censoring indicator. We use Xi,(k) = (Xi,k1, . . . , Xi,kpk )′ to denote the pk variables in the
kth group for the i th subject, and Xi = (X ′

i,(1), . . . , X ′
i,(K ))

′ to denote the total p variables for
the i th subject. We assume that Ti and Ci are conditionally independent given Xi and that the
censoring mechanism is noninformative. The observed data then can be represented by the triplets
{(Yi , δi , Xi ), i = 1, . . . , n}.
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The proportional hazards model (1) can be written as

h(t | X ) = h0(t) exp

⎛
⎝ K∑

k=1

pk∑
j=1

βk j Xk j

⎞
⎠ = h0(t) exp

(
β ′

(1) X(1) + · · · + β ′
(K ) X(K )

)
.

We consider continuous failure times and for simplicity assume that there are no ties in the
observed times. Then the partial likelihood is

Ln(β) =
∏
i∈D

exp
(∑K

k=1 β ′
(k) Xi,(k)

)
∑

l∈Ri
exp

(∑K
k=1 β ′

(k) Xl,(k)

) ,

where D is the set of indices of observed failures and Ri is the set of indices of the subjects who
are at risk at time Yi .

Let �n(β) denote log{Ln(β)}. Variable selection can be realized by maximizing the penalized
log partial likelihood function

1

n
�n(β) −

K∑
k=1

pk∑
j=1

pλn (βk j ),

where pλn (βk j ) is a penalty function. Tibshirani (1997) proposed use of the lasso penalty

pλn (βk j ) = λn|βk j |, (2)

and Fan & Li (2002) proposed use of the smoothly clipped absolute deviation penalty

p′
λn

(|βk j |) = I (|βk j | � λn) + (aλn − |βk j |)+
(a − 1)λn

I (|βk j | > λn) (a > 2) (3)

in the Cox regression. Fan & Li (2001) suggested using a = 3·7, a value also used later in our
numerical examples. Both (2) and (3) treat variables individually without taking into account the
group structure.

3. HIERARCHICALLY PENALIZED COX REGRESSION

To make use of the group structure among the predictors, we reparameterize βk j as

βk j = γkθk j (k = 1, . . . , K ; j = 1, . . . , pk), (4)

where γk � 0 for identifiability. This factorization reflects the information that all βk j ( j =
1, . . . , pk) belong to the kth group by treating each βk j hierarchically. Parameter γk controls
all βk j ( j = 1, . . . , pk) as a group at the first level of the hierarchy; the θk j s reflect differ-
ences within the kth group at the second level of the hierarchy. Let θ(k) denote (θk1, . . . , θkpk )′
for k = 1, . . . , K , which gives β(k) = γkθ(k). The partial likelihood function can be written
as

Ln(γ, θ) =
∏
i∈D

exp
(∑K

k=1 γkθ
′
(k) Xi,(k)

)
∑

l∈Ri
exp

(∑K
k=1 γkθ

′
(k) Xl,(k)

) .
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Let �n(γ, θ) denote log{Ln(γ, θ)}. For the purpose of variable selection, we consider the
penalized log partial likelihood

max
γk ,θk j

1

n
�n(γ, θ) − λγ

K∑
k=1

γk − λθ

K∑
k=1

pk∑
j=1

|θk j | , (5)

subject to γk � 0 (k = 1, . . . , K ), where λγ � 0 and λθ � 0 are two tuning parameters. Parameter
λγ controls the estimators at the group level and can effectively remove unimportant groups: if γk

is shrunk to zero, all βk j in the kth group will be equal to zero. Parameter λθ controls the estimators
at the variable-specific level: if γk is not equal to zero, some θk j and hence the corresponding βk j

( j = 1, . . . , pk) can still be shrunk to zero. It is clearly seen that for fixed β and given values of
λγ and λθ , the maximizer of (5), where �n(γ, θ) is constant, is unique.

Since there are two tuning parameters in (5), it may be complicated to choose their values
in practice. However, it turns out that λγ and λθ can be simplified into one tuning parameter.
Specifically, with λ = λγ λθ , we can show that (5) is equivalent to

max
γk ,θk j

1

n
�n(γ, θ) −

K∑
k=1

γk − λ

K∑
k=1

pk∑
j=1

|θk j | , (6)

subject to γk � 0 (k = 1, . . . , K ). The meaning of equivalence is illustrated in:

LEMMA 1. Let (γ̂ ∗, θ̂∗) be a local maximizer of (5). Then there exists a local maximizer
(γ̂ †, θ̂†) of (6) such that γ̂ ∗

k θ̂∗
k j = γ̂

†
k θ̂

†
k j · Similarly, if (γ̂ †, θ̂†) is a local maximizer of (6), then

there exists a local maximizer (γ̂ ∗, θ̂∗) of (5) such that γ̂ ∗
k θ̂∗

k j = γ̂
†
k θ̂

†
k j ·

Lemma 1 indicates that we only need to tune one parameter λ = λγ λθ in (6). Furthermore,
criterion (6) for the hierarchically penalized Cox regression using γk and θk j can be written in an
equivalent form using the original regression coefficients βk j .

LEMMA 2. If (γ̂ , θ̂ ) is a local maximizer of (6), then β̂, where β̂k j = γ̂k θ̂k j , is a local maximizer
of

max
βk j

1

n
�n(β) − 2λ1/2

K∑
k=1

⎛
⎝ pk∑

j=1

|βk j |
⎞
⎠

1/2

. (7)

On the other hand, if β̂ is a local maximizer of (7), then (γ̂ , θ̂ ) is a local maximizer of (6), where
γ̂k = (λ

∑pk
j=1 |β̂k j |)1/2 and θ̂k j = β̂k j/γ̂k if γ̂k � 0 and zero otherwise.

The proofs of Lemmas 1 and 2 are given in the Appendix. As we will see in §§ 4 and 5, the
numerical computation is based on (6) while the proof of asymptotic properties is based on (7).
The penalty in (7) reduces to a bridge penalty (Frank & Friedman, 1993) when pk = 1 for all k.

4. COMPUTATIONAL ALGORITHM

To estimate γk and θk j in (6), we can use an iterative approach, i.e. we first fix γk and estimate
θk j , then fix θk j and estimate γk , and we iterate between these steps until convergence is achieved.
Specifically, the algorithm is

Step 0. Centre and normalize Xkj , and obtain an initial value γ
(0)
k for each γk ; for example,

γ
(0)
k = 1. Let m = 1.
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Step 1. At the mth iteration, let X̃i,k j = γ
(m−1)
k Xi,k j (k = 1, . . . , K , j = 1, . . . , pk) and esti-

mate θ
(m)
k j by

θ
(m)
k j = arg max

θk j

1

n
log

{∏
i∈D

exp
(∑K

k=1
∑pk

j=1 θk j X̃i,k j
)

∑
l∈Ri

exp
(∑K

k=1
∑pk

j=1 θk j X̃l,k j
)
}

− λ

K∑
k=1

pk∑
j=1

|θk j |.

Step 2. Let X̃i,k = ∑pk
j=1 θ

(m)
k j Xi,k j (k = 1, . . . , K ) and estimate γ

(m)
k by

γ
(m)
k = arg max

γk�0

1

n
log

{∏
i∈D

exp
(∑K

k=1 γk X̃i,k
)

∑
l∈Ri

exp
(∑K

k=1 γk X̃l,k
)
}

−
K∑

k=1

γk .

Step 3. Repeat Steps 1 and 2 until γ
(m)
k and θ

(m)
k j converge. Let βk j = γ

(m)
k θ

(m)
k j be the final

solution.

Since at each step, the value of objective function (6) is nondecreasing, the algorithm always
converges. Step 1 is a lasso-type problem, and we can use one of the algorithms proposed in
Fan & Li (2002), Gui & Li (2005), Zhang & Lu (2007) or Park & Hastie (2007) to efficiently
solve for θk j . Step 2 is a nonnegative garrote algorithm, and we can use one of the algorithms in
Fan & Li (2002) or Yuan & Lin (2007) to efficiently solve for γk .

5. ASYMPTOTIC THEORY

5·1. Preparation and general results

To state the results in a fairly general setting, we consider the penalized log partial likelihood
function with a general penalty function. Let

Qn(β) = 1

n
�n(β) −

K∑
k=1

p(k)
λn

(|β(k)|), (8)

where p(k)
λn

(|β(k)|) = p(k)
λn

(|βk1|, . . . , |βkpk |) is a general pk-variate penalty function for parameters
in the kth group, and satisfies the following two conditions:

p(k)
λn

(|β(k)|) � 0 (β(k) ∈ R pk ), p(k)
λn

(0) = 0; (9)

p(k)
λn

(|β(k)|) � p(k)
λn

(|β∗
(k)|) (|βk j | � |β∗

k j |; j = 1, . . . , pk). (10)

The penalty functions p(k)
λn

(·) (k = 1, . . . , K ) in (8) are not necessarily the same for all groups.
We also allow p(k)

λn
(·) to depend on the tuning parameter λn which varies with n.

Similar to Andersen & Gill (1982), we consider a finite time interval [0, τ ] with τ < ∞. The
regularity conditions (A)–(D) of Andersen & Gill (1982) are also assumed here.

We write the true parameter vector as β0 = (β0
A

′
, β0

B
′
, β0

C
′
)′, where A = {(k, j) : β0

k j � 0},
B = {(k, j) : β0

k j = 0, β0
(k) � 0}, and C = {(k, j) : β0

(k) = 0}. Here A contains the indices of
nonzero coefficients, B contains the indices of zero coefficients that belong to nonzero groups,
and C contains the indices of zero coefficients that belong to zero groups. Thus A, B and C are
disjoint and partition the set of all indices of coefficients. We write D = B ∪ C, which contains
the indices of all zero coefficients.

Let I (β0) be the Fisher information matrix based on the log partial likelihood function for all
β = β0, and IA(β0

A) the Fisher information matrix for βA = β0
A knowing that β0

D = 0. We also
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define

an = max
(k, j)

⎧⎨
⎩∂p(k)

λn

(∣∣β0
k1

∣∣, . . . , ∣∣β0
kpk

∣∣)
∂|βk j | : β0

k j � 0

⎫⎬
⎭ ,

bn = max
(k, j)

⎧⎨
⎩
∣∣∣∣∣∂

2 p(k)
λn

(∣∣β0
k1

∣∣, . . . , ∣∣β0
kpk

∣∣)
∂|βk j |2

∣∣∣∣∣ : β0
k j � 0

⎫⎬
⎭ .

Let ‖a‖ denote the l2-norm of a. The following two theorems state main asymptotic results for
the penalized partial likelihood with a general penalty function.

THEOREM 1. Under regularity conditions (A)–(D) of Andersen & Gill (1982), if an =
Op(n−1/2) and bn → 0, then there exists a local maximizer β̂n of Qn(β) in (8) such that
‖β̂n − β0‖ = Op(n−1/2).

THEOREM 2. Let β̂n = (β̂ ′
n,A, β̂ ′

n,B, β̂ ′
n,C)′ be a root-n consistent local maximizer of Qn(β).

Assume that regularity conditions (A)–(D) of Andersen & Gill (1982) hold.
(a) For (k, j) ∈ D, i.e. β0

k j = 0, if n1/2∂p(k)
λn

(|β̂n,k1|, . . . , |β̂n,kpk |)/∂|βk j | → ∞ as n → ∞,

then we have β̂n,k j = 0 with probability approaching 1.

(b) For (k, j) ∈ A, i.e. β0
k j � 0, if bn → 0 and n1/2∂p(k)

λn
(|β0

k1|, . . . , |β0
kpk

|)/∂|βk j | → 0, then

under (a) we have that n1/2(β̂n,A − β0
A) converges in distribution to a zero-mean normal random

variable with covariance matrix IA(β0
A)−1.

Theorem 1 indicates that by choosing proper penalty functions p(k)
λn

and a proper λn , there exists
a root-n consistent penalized partial likelihood estimator. Theorem 2 implies that by choosing
proper penalty functions p(k)

λn
and a proper λn , the corresponding penalized partial likelihood

estimator possesses the sparse property that β̂n,D = 0 with probability tending to 1. Furthermore,
the estimators for the nonzero coefficients, β̂n,A, have the same asymptotic distribution as they
would have if the zero coefficients were known in advance. Asymptotically, therefore, the pe-
nalized partial likelihood estimator can perform as well as if the true underlying model were
provided in advance, i.e. it possesses the oracle property of Fan & Li (2001, 2002). Proofs of
these theorems follow the spirit of Fan & Li (2001, 2002), but are nontrivial extensions due to
the group structure of the penalty.

5·2. Asymptotic results and further improvement

We will show the asymptotic results for the hierarchically penalized Cox regression based on
criterion (7). If we write 2λ1/2 in (7) as λn , then based on Theorems 1 and 2 we have

COROLLARY 1. If λn = Op(n−1/2), then there exists a root-n consistent local maximizer β̂n =
(β̂ ′

n,A, β̂ ′
n,B, β̂ ′

n,C)′ for the hierarchically penalized Cox regression (7); if further n3/4λn → ∞ as

n → ∞, then β̂n,C = 0 with probability tending to 1.

This implies that the hierarchically penalized Cox regression can effectively remove unim-
portant groups. If B is nonempty, then the sparse property may not hold for the above root-n
consistent estimator, i.e. there is no guarantee that β̂n,B = 0 with probability approaching 1. Thus
although the hierarchically penalized Cox regression can effectively remove unimportant groups,
it cannot effectively remove unimportant variables within the important groups.
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Hierarchically penalized Cox regression 313

To tackle this limitation, we apply the adaptive idea used in Breiman (1995), Shen & Ye (2002),
Wang et al. (2007), Zhang & Lu (2007), Zhao & Yu (2006), Zou (2006, 2008), and others, which
is to penalize different coefficients differently. We consider

max
βk j

QW
n (β) = 1

n
�n(β) − λn

K∑
k=1

⎛
⎝ pk∑

j=1

wn,k j |βk j |
⎞
⎠

1/2

, (11)

where the wn,k j are prespecified nonnegative weights. The intuition is that if the effect of a variable
is strong, we would like the corresponding weight to be small, hence the corresponding coefficient
is lightly penalized. If the effect of a variable is not strong, we would like the corresponding weight
to be large, hence the corresponding coefficient is heavily penalized. The next theorem shows
that, by controlling weights properly, the adaptive hierarchically penalized Cox regression (11)
possesses the oracle property as stated in Theorem 2.

THEOREM 3. Define

wA
n,max = max{wn,k j : (k, j) ∈ A}, wA

n,min = min{wn,k j : (k, j) ∈ A};
wD

n,max = max{wn,k j : (k, j) ∈ D}, wD
n,min = min{wn,k j : (k, j) ∈ D}.

Under regularity conditions (A)–(D) of Andersen & Gill (1982), if n1/2λnw
A
n,maxw

A−1/2
n,min → 0,

λnw
A2
n,maxw

A−3/2
n,min → 0, and n1/2λnw

D
n,min(wD

n,max + wA
n,max)−1/2 → ∞ as n → ∞, then there

exists a root-n consistent local maximizer β̂n of QW
n (β) such that β̂n,D = 0 with probability

tending to 1 and n1/2(β̂n,A − β0
A) → N (0, IA(β0

A)−1) in distribution.

The remaining question, how we specify λn and the weights wn,k j so that the conditions in
Theorem 3 are satisfied, is answered by the following corollary.

COROLLARY 2. Let β̃n be a nα-consistent estimator, i.e. ‖β̃n − β0‖ = Op(n−α) with 0 < α �
1/2. If we choose λn = n−1/2/ log(n) and wn,k j = 1/|β̃n,k j |r , where r > 0, then there exists a
root-n consistent local maximizer β̂n of QW

n (β) such that β̂n,D = 0 with probability tending to 1
and n1/2(β̂n,A − β0

A) → N {0, IA(β0
A)−1} in distribution as n → ∞.

In practice, we can choose β̃n = arg maxβ �n(β), the estimator from the unpenalized partial
likelihood when p < n, or β̃n = arg maxβ{�n(β) − λ∗

n
∑K

k=1
∑pk

j=1 β2
k j }, the ridge regression es-

timator with λ∗
n properly tuned when p > n.

6. HIERARCHICALLY PENALIZED COX REGRESSION IN THE OVERLAP CASE

The group structure we have considered in previous sections does not have overlaps, i.e. each
variable belongs to only one group. In practice, however, a variable can belong to several groups.
For example, one gene can be shared by many different pathways. In this section, we extend the
proposed method for problems with overlaps.

With slightly different notation, we reparameterize each β j as

β j = θ j

∑
k∈G j

γk, γk � 0 (k = 1, . . . , K ; j = 1, . . . , p), (12)

where G j is the index set of groups to which variable X j belongs. This is a natural generalization
of the decomposition (4) for the non-overlap case. We still treat each β j hierarchically. Parameter
γk at the first level controls the contribution of β j to group k, while θ j at the second level of the

 at U
niversity of M

ichigan on M
ay 12, 2010 

http://biom
et.oxfordjournals.org

D
ow

nloaded from
 

http://biomet.oxfordjournals.org
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hierarchy reflects the specific effect of variable X j . One can see that when each variable belongs
to only one group, the factorization (12) reduces to (4).

Under this factorization, the corresponding partial likelihood function can be written as

L O L
n (γ, θ) =

∏
i∈D

exp
{∑p

j=1

(∑
k∈G j

γk
)
θ j Xi j

}
∑

l∈Ri
exp

{∑p
j=1

(∑
k∈G j

γk
)
θ j Xl j

} .

Let �O L
n (γ, θ) = log{L O L

n (γ, θ)}. For variable selection, we mimic (6) and consider

max
γk�0,θ j

1

n
�O L

n (γ, θ) −
K∑

k=1

γk − λ

p∑
j=1

|θ j |. (13)

The iterative algorithm given in § 4 can then be used to estimate γk and θ j in (13).

7. NUMERICAL STUDIES

7·1. Simulations

In this subsection, we use simulation to demonstrate hierarchically penalized Cox regression,
and compare it to unpenalized Cox regression as well as the lasso approach. We also assess
the adaptive hierarchically penalized Cox regression in (11), where weights wk j are specified in
Corollary 2 with r = 1.

Four examples are considered. In the first three, p < n; in the fourth, p > n. In all cases, the
survival time is generated from the exponential distribution with h(t | x) = exp(β ′x), and the
censoring time is generated from the uniform distribution U (0, c), where c is chosen to yield a
30% censoring rate. Detailed settings are given below.

Example 1. There are n = 50 subjects, p = 24 variables and K = 3 non-overlapping groups
with eight variables in each group. In groups 1 and 2, variables are generated from N (0, 1) with
cov(X1i , X1 j ) = 0·5|i− j |. In group 3, variables are generated from N (0, 1) independently of one
another. Variables between groups are independent. The corresponding coefficients are

β =
(

1·5,−0·8, 0, 0, 0, 1·2, 0, 0︸ ︷︷ ︸
8

, 0︸︷︷︸
8

, 0︸︷︷︸
8

)′
.

Example 2. There are n = 100 subjects, p = 40 variables and K = 8 non-overlapping groups
with different group sizes. Group labels for the covariate vector are

1, . . . , 1︸ ︷︷ ︸
6

, 2, . . . , 2︸ ︷︷ ︸
4

, 3, . . . , 3︸ ︷︷ ︸
6

, 4, . . . , 4︸ ︷︷ ︸
5

, 5, . . . , 5︸ ︷︷ ︸
4

, 6, . . . , 6︸ ︷︷ ︸
5

, 7, . . . , 7︸ ︷︷ ︸
4

, 8, . . . , 8︸ ︷︷ ︸
6

.

We first generate W1, . . . , W40 independently from the standard normal distribution and
Z1, . . . , Z8 from the standard normal distribution with cov(Zk, Zk′) = 0·5|k−k′|, then obtain
covariates by Xkj = 2−1/2(Wkj + Zk). The corresponding coefficients are

β =
(

1·2,−0·8, 1·6, 0, 0, 0︸ ︷︷ ︸
6

, 1,−0·9,−1·1,−1·3︸ ︷︷ ︸
4

, 0︸︷︷︸
6

, 0︸︷︷︸
5

, 0︸︷︷︸
4

, 1·5, 0, 0, 0, 0︸ ︷︷ ︸
5

, 0︸︷︷︸
4

, 0︸︷︷︸
6

)′
.

In this example, we have three important groups, groups 1, 2 and 6, each with at least one
important variable. These groups represent three situations: many variables within the group are
important, all variables within the group are important, and very few variables within the group
are important.
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Example 3. There are n = 100 subjects, p = 48 variables and K = 8 groups where some
groups overlap. Group labels for variables are

1, . . . , 1︸ ︷︷ ︸
8

5︷ ︸︸ ︷
2, 2, 2, 2, 2

3, 3, 3, 3, 3︸ ︷︷ ︸
5

4, . . . , 4︸ ︷︷ ︸
8

5, . . . , 5︸ ︷︷ ︸
8

5︷ ︸︸ ︷
6, 6, 6, 6, 6

7, 7, 7, 7, 7︸ ︷︷ ︸
5

8, . . . , 8︸ ︷︷ ︸
8

.

Groups 2 and 3 have two overlapped variables, as do groups 6 and 7. We generate X1, . . . , X24

from the standard normal distribution with cov(X j , X j ′) = 0·5| j− j ′|, and X25, . . . , X48 from the
standard normal distribution with cov(X j , X j ′) = 0·5. Variables X1, . . . , X24 are independent of
X25, . . . , X48. The corresponding coefficients are

β = 0︸︷︷︸
8

5︷ ︸︸ ︷
1·3, 0, 1·5, 0,−1

0,−1, 0, 0, 0︸ ︷︷ ︸
5

0︸︷︷︸
8

0︸︷︷︸
8

5︷ ︸︸ ︷
1·4, 0, 0·8, 0, 1·0

0, 1·0, 0, 1·6, 0︸ ︷︷ ︸
5

0︸︷︷︸
8

.

Example 4. There are n = 100 subjects, p = 148 variables and K = 24 groups with different
group sizes and some groups overlap. These 24 groups are divided into four independent blocks,
and each block has the same structure for group assignments, but with different group labels. For
example, group labels for variables in the first block are

1, . . . , 1︸ ︷︷ ︸
8

5︷ ︸︸ ︷
2, 2, 2, 2, 2

3, 3, 3, 3, 3︸ ︷︷ ︸
5

4, . . . , 4︸ ︷︷ ︸
8

5, . . . , 5︸ ︷︷ ︸
5

6, . . . , 6︸ ︷︷ ︸
8

.

In blocks 1 and 3, variables are generated from N (0, 1) with cov(X j , X j ′) = 0·5| j− j ′|, respectively.
In blocks 2 and 4, variables are generated from N (0, 1) with cov(X j , X j ′) = 0·5, respectively.
The corresponding coefficients are

β =

⎛
⎜⎜⎜⎜⎝ 0︸︷︷︸

8
,

5︷ ︸︸ ︷
1·3, 0, 1·5, 0,−1

0,−1, 0, 0, 0︸ ︷︷ ︸
5

0︸︷︷︸
8

, 1·2,−1·8, 0, 0, 0︸ ︷︷ ︸
5

, 0︸︷︷︸
8

,

0︸︷︷︸
8

,

5︷ ︸︸ ︷
1·4, 0, 0·8, 0, 1·4

0, 1·4, 0, 1·6, 0︸ ︷︷ ︸
5

0︸︷︷︸
8

, −0·9, 1·1, 0, 0, 0︸ ︷︷ ︸
5

, 0︸︷︷︸
8

, 0︸︷︷︸
74

⎞
⎟⎟⎟⎟⎠ .

For each of the settings above, we generate two independent data sets with the same sam-
ple size: a training set to fit the model, and a validation set to select the tuning parameter λ

that maximizes the partial likelihood. Using the selected λ, we follow Tibshirani (1997) and
use the model error ME = (β̂n − β)′�(β̂n − β) to measure the prediction accuracy, where � is
the covariance matrix of predictors. We repeat the simulation 100 times and compute the average
model errors and their corresponding standard errors. We also record two other measures: the
frequencies of variables being selected and the relative biases of the coefficient estimates for
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Table 1. Variable selection frequency and relative bias for different methods

Frequency for XA (%) Frequency for XB (%) Frequency for XC (%) Relative bias for XA (%)
(min, med, max) (min, med, max) (min, med, max) (min, med, max)

Example 1
MPLE – – – (111.5, 111.7, 114.9)
Lasso (94, 100, 100) (30, 37, 47) (27, 37, 47) (25·7, 28·3, 47·1)
HPCox (100, 100, 100) (67, 74, 77) (0, 3, 5) (1·9, 2·8, 9·3)
ALasso (87, 100, 100) (13, 16, 20) (10, 15, 23) (16·5, 20·2, 37·8)
SCAD (82, 99, 99) (3, 8, 9) (4, 7, 12) (1·1, 3·3, 6·9)
AHPCox (94, 100, 100) (21, 28, 38) (0, 1, 2) (3·2, 4·5, 12·2)

Example 2
MPLE – – – (62·2, 65·6, 70·0)
Lasso (100, 100, 100) (32, 43, 51) (35, 43, 55) (21·6, 26·2, 38·6)
HPCox (100, 100, 100) (52, 62, 68) (0, 1, 6) (10·8, 13·0, 18·0)
ALasso (97, 100, 100) (9, 13, 17) (9, 15, 22) (12·2, 17·1, 27·9)
SCAD (98, 99, 100) (1, 3, 4) (1, 5, 8) (2·9, 7·5, 8·3)
AHPCox (100, 100, 100) (9, 13, 26) (0, 1, 3) (5·8, 8·0, 14·2)

Example 3
MPLE – – – (97·8, 104·3, 107·2)
Lasso (100, 100, 100) (26, 34, 46) (23, 37, 50) (26·4, 28·4, 34·5)
HPCox (100, 100, 100) (0, 56, 80) (0, 1, 3) (7·6, 15·0, 16·6)
ALasso (96, 99, 100) (7, 16, 19) (8, 14, 28) (14·6, 19·4, 27·9)
SCAD (95, 100, 100) (1, 4, 7) (0, 5, 12) (1·8, 5·2, 7·2)
AHPCox (99, 100, 100) (0, 16, 38) (0, 1, 2) (3·8, 7·3, 13·5)

Example 4
Ridge – – – (14·1, 42·2, 70·1)
Lasso (75, 100, 100) (12, 21, 37) (8, 19, 35) (42·4, 50·6, 75·7)
HPCox (90, 99, 99) (0, 57, 77) (0, 1, 4) (11·9, 22·0, 37·6)
ALasso (77, 99, 100) (1, 11, 36) (2, 10, 18) (37·1, 45·9, 78·3)
SCAD (75, 95, 99) (0, 1, 3) (0, 1, 4) (0·01, 1·9, 17·3)
AHPCox (98, 100, 100) (0, 20, 64) (0, 0, 5) (15·7, 23·1, 47·4)

XA, the collection of all important variables; XB, the collection of all unimportant variables within important groups;
XC , the collection of all unimportant variables in unimportant groups; (min, med, max), minimum, median and
maximum selection frequencies for variables in XA, XB and XC , respectively, or relative biases for variables in XA;
MPLE, the maximum partial likelihood estimation; Lasso, the lasso estimation; HPCox, the hierarchically penalized
Cox regression method; ALasso, the adaptive lasso regression method; SCAD, the smoothly clipped absolute deviation
estimation; AHPCox, the adaptive hierarchically penalized Cox regression method; Ridge, the ridge regression method.

important variables. The absolute biases of the coefficient estimates for unimportant variables are
very small for all methods except the partial likelihood estimation, thus not reported. The relative
biases of the coefficient estimates for important variables are calculated as |β̂n,k j − β0

k j |/|β0
k j |.

The results are summarized in Table 1. The weights for both the adaptive lasso and the adaptive
hierarchically penalized Cox regression methods are obtained from the usual unpenalized Cox
regression model in Examples 1–3 and from the ridge regression method in Example 4.

The hierarchically penalized Cox regression and lasso methods perform similarly in identi-
fying important variables, but the former is more effective in removing unimportant groups.
The hierarchically penalized Cox regression methods tend to select more unimportant variables
than the lasso method in important groups, but can be improved using the adaptive method.
Results of the adaptive hierarchically penalized Cox regression method are also compared with
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Table 2. Model error for different methods

Example MPLE/Ridge Lasso HPCox ALasso SCAD AHPCox

1 23·89 (7.19) 0·51 (0·02) 0·31 (0·02) 0·35 (0·03) 0·40 (0·05) 0·25 (0·02)
2 9·12 (0.61) 0·88 (0·04) 0·38 (0·02) 0·52 (0·03) 0·42 (0·05) 0·29 (0·02)
3 45·50 (7.98) 1·47 (0·07) 0·56 (0·04) 1·12 (0·19) 0·58 (0·08) 0·42 (0·04)
4 208·24 (9.00) 4·74 (0·17) 1·50 (0·11) 4·34 (0·24) 2·05 (0·32) 1·40 (0·08)

The numbers in the parentheses are corresponding standard errors. The abbreviations are the same as in Table 1.

two other methods that have the oracle property: the adaptive lasso and the smoothly clipped
absolute deviation method. We can see that the adaptive lasso performs similarly to the adaptive
hierarchically penalized Cox regression method in terms of frequencies of selecting important
variables and excluding unimportant variables in important groups, but less effective in remov-
ing unimportant groups. The smoothly clipped absolute deviation is the most effective method
in removing unimportant variables in important groups. It performs slightly worse in selecting
important variables and removing unimportant groups than the adaptive hierarchically penalized
Cox regression method. In terms of coefficient estimation for important variables, the adaptive
hierarchically penalized Cox regression has similar biases to the hierarchically penalized Cox
regression and both are better than the adaptive lasso, while the smoothly clipped absolute de-
viation method is the least biased and the lasso is the most biased among all the regularization
methods considered.

In terms of prediction, from Table 2 we see that the adaptive hierarchically penalized Cox
regression method is most accurate. The hierarchically penalized Cox regression method is the
second best and much better than the lasso in all examples. That the smoothly clipped absolute
deviation method performs less well comparing to the proposed methods is probably due to its
more variable parameter estimation: its median variance of coefficient estimates for XA is from
about 50% to almost 200% larger than that of the proposed methods in Examples 1–3. All the
considered shrinkage methods perform better than the unpenalized or the ridge Cox regression
method. This illustrates that regularization should be considered for estimation and prediction
when covariate effects are sparse.

7·2. Real data example

We analyze a breast cancer microarray gene expression dataset to demonstrate the application
of the hierarchically penalized Cox regression method in identifying pathways that are related
to breast cancer survival. The dataset was presented in Miller et al. (2005), where the gene
expression levels were profiled on 251 frozen primary breast cancer tissues resected in Uppsala
County, Sweden, from January 1, 1987 to December 31, 1989 using Affymetrix Chip HG-133A.
Among these patients, 236 had follow-up information in terms of time and event of disease-
specific survival. In our analysis, we use the same pathways as those in Wei & Li (2007) and
Luan & Li (2008), which were obtained by merging the Affymetrix data with the cancer-related
pathways provided by SuperArray on the web site http://superarray.com/. There are 245 genes
in 33 cancer-related sub-pathways. See Table 2 in Luan & Li (2008) for the list of all pathways.
Some genes belong to multiple pathways. Our goal is to identify the pathways that are related to
survival time in breast cancer patients.

The final model is selected based on the generalized crossvalidation criterion (Fan & Li, 2002;
Zhang et al., 2006; Zhang & Lu, 2007), and three pathways are identified. The three pathways are:
regulation of cell cycle, in which 48 out of 75 genes are selected; cell growth and maintenance, in
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which 40 out of 62 genes are selected and small GTPase-medicated signal transduction, in which
6 out of 11 genes are selected. The first two pathways were also identified by Miller et al. (2005),
Wei & Li (2007) and Luan & Li (2008). In total, 82 genes are selected, among which 12 genes
are shared by two pathways. The detailed gene list is available upon request.

We then use the model with the selected three pathways to predict the survival for subjects
in an independent breast cancer dataset that was reported by Sotiriou et al. (2006). The dataset
contains gene expressions obtained by the same microarray platform for 94 patients from the John
Radcliffe Hospital in Oxford, U.K. First, we estimate the cumulative baseline hazard function
using the Breslow estimator (Breslow, 1974). Then we compute the risk score X ′β̂n that yields a
50% survival probability at five years for subjects in Miller’s dataset, which is chosen to be the
threshold for the high and low risk groups. Finally, we compute the risk scores for subjects in
Sotiriou’s dataset using β̂n obtained from Miller’s dataset, and assign each subject in Sotiriou’s
dataset into the high- or low-risk group based on the comparison to the threshold. Among the
total of 94 subjects, 26 are in the high-risk group, and 68 are in the low-risk group. Kaplan–Meier
curves of these two groups are well separated with a p-value of the log-rank test less than 0·001.
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APPENDIX

Proofs

Proof of Lemma 1. In the proofs we use |a| to denote the l1-norm of a. Let Q∗(λγ , λθ , γ, θ ) denote
the criterion that we would like to maximize in equation (5), let Q†(λ, γ, θ ) denote the corresponding
criterion in equation (6), and let (γ̂ ∗, θ̂∗) denote a local maximizer of Q∗(λγ , λθ , γ, θ ). We will prove that
(γ̂ † = λγ γ̂ ∗, θ̂† = θ̂∗/λγ ) is a local maximizer of Q†(λ, γ, θ ).

We immediately have Q∗(λγ , λθ , γ, θ ) = Q†(λ, λγ γ, θ/λγ ). Since (γ̂ ∗, θ̂∗) is a local maximizer
of Q∗(λγ , λθ , γ, θ ), there exists δ > 0 such that if (γ ′, θ ′) satisfies |γ ′ − γ̂ ∗| + |θ ′ − θ̂∗| < δ, then
Q∗(λγ , λθ , γ

′, θ ′) � Q∗(λγ , λθ , γ̂
∗, θ̂∗).

Choose δ′ such that δ′/min(λγ , 1/λγ ) � δ. Then for any (γ ′′, θ ′′) satisfying |γ ′′ − γ̂ †| + |θ ′′ − θ̂†| < δ′,
we have ∣∣∣∣γ ′′

λγ

− γ̂ ∗
∣∣∣∣+ |λγ θ ′′ − θ̂∗| �

λγ

∣∣ γ ′′
λγ

− γ̂ ∗∣∣+ 1
λγ

∣∣λγ θ ′′ − θ̂∗∣∣
min

(
λγ , 1

λγ

) <
δ′

min
(
λγ , 1

λγ

) � δ.

Hence

Q†(λ, γ̂ ′′, θ̂ ′′) = Q∗(λγ , λθ , γ̂
′′/λγ , λγ θ̂ ′′) � Q∗(λγ , λθ , γ̂

∗, θ̂∗) = Q†(λ, γ̂ †, θ̂†).

Therefore, (γ̂ † = λγ γ̂ ∗, θ̂† = θ̂∗/λγ ) is a local maximizer of Q†(λ, γ, θ ).
Similarly, we can prove that for any local maximizer (γ̂ †, θ̂†) of Q†(λ, γ, θ ), there is a corresponding

local maximizer (γ̂ ∗, θ̂∗) of Q∗(λγ , λθ , γ, θ ) such that γ̂ ∗
k θ̂∗

k j = γ̂
†
k θ̂

†
k j . �

Proof of Lemma 2. Suppose (γ̂ , θ̂ ) is a local maximizer of (6). Let β̂ satisfy β̂k j = γ̂k θ̂k j . It is trivial that
γ̂k = 0 if and only if θ̂(k) = 0. Hence if γ̂k � 0, then |β̂(k)| � 0, and we further have γ̂k = (λ|β̂(k)|)1/2 and
θ̂(k) = β̂(k)/γ̂k , which can be shown in the following.

Let β be fixed at β̂. Then Q†(λ, γ, θ ) only depends on the penalty. For some k with |β̂(k)| � 0, the
corresponding penalty term is −γk − λ

∑pk
j=1 |β̂k j |/γk , which is maximized at γ̂k = (λ|β̂(k)|)1/2.
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Let Q(λ, β) be the corresponding criterion in equation (7). We first show that β̂ is a local maximizer
of Q(λ, β), i.e. there exists a δ′ > 0 such that if |
β| < δ′, then Q(λ, β̂ + 
β) � Q(λ, β̂). Denote 
β =

β(1) + 
β(2), where 
β

(1)
(k) = 0 if |β̂(k)| = 0 and 
β

(2)
(k) = 0 if |β̂(k)| � 0. We thus have |
β| = |
β(1)| +

|
β(2)|.
We first show Q(λ, β̂ + 
β(1)) � Q(λ, β̂) for some δ′. By the argument given at the beginning of

the proof, we have γ̂k = (λ|β̂(k)|)1/2 and θ̂(k) = β̂(k)/γ̂k if |γ̂k | � 0, and θ̂(k) = 0 if |γ̂k | = 0. Further-

more, let γ̂ ′
k = (λ|β̂(k) + 
β

(1)
(k) |)1/2 and θ̂ ′

(k) = (β̂(k) + 
β
(1)
(k) )/γ̂

′
k if |γ̂k | � 0, and let γ̂ ′

k = 0 and θ̂ ′
(k) = 0

if |γ̂k | = 0. Then we have Q†(λ, γ̂ ′, θ̂ ′) = Q(λ, β̂ + 
β(1)) and Q†(λ, γ̂ , θ̂ ) = Q(λ, β̂). Hence we only
need to show Q†(λ, γ̂ ′, θ̂ ′) � Q†(λ, γ̂ , θ̂ ). As (γ̂ , θ̂ ) is a local maximizer of Q†(λ, γ, θ ), there exists
a δ such that for any (γ ′, θ ′) satisfying |γ ′ − γ̂ | + |θ ′ − θ̂ | < δ, we have Q†(λ, γ ′, θ ′) � Q†(λ, γ̂ , θ̂ ).
Straightforward calculation shows that, for a = min{|β̂(k)| : |β̂(k)| � 0, k = 1, . . . , K }, b = max{|β̂(k)| :
|β̂(k)| � 0, k = 1, . . . , K }, and δ′ < a/2, we have

|γ̂ ′
k − γ̂k | �

λ
∣∣
β

(1)
(k)

∣∣
(2λa)1/2

,
∣∣θ̂ ′

(k) − θ̂(k)

∣∣� ∣∣
β
(1)
(k)

∣∣{ 1

(λa/2)1/2
+ b

a(λa)1/2

}
.

Therefore, we are able to choose a δ′ satisfying δ′ < a/2 such that |γ̂ ′ − γ̂ | + |θ̂ ′ − θ̂ | < δ when
|
β(1)| < δ′. Hence we have Q†(λ, γ̂ ′, θ̂ ′) � Q†(λ, γ̂ , θ̂ ) due to the local maximality. Hence Q(λ, β̂ +

β(1)) � Q(λ, β̂).

Next we show Q(λ, β̂ + 
β(1) + 
β(2)) � Q(λ, β̂ + 
β(1))· This is trivial when 
β(2) = 0. If

β(2) � 0, then 
β(1) = 0 and we have

Q(λ, β̂ + 
β(1) + 
β(2)) − Q(λ, β̂ + 
β(1)) = (
β(2))′n−1 ∂�n(β∗)

∂β
− 2

K∑
k=1

(
λ
∣∣
β

(2)
(k)

∣∣)1/2
,

where β∗ is a vector between β̂ + 
β(1) + 
β(2) and β̂ + 
β(1). Since |
β(2)| < δ′, for a small enough
δ′, the second term in the above equality dominates the first term, hence we have Q(λ, β̂ + 
β(1) +

β(2)) � Q(λ, β̂ + 
β(1)). Thus we have shown that there exists a δ′ > 0 such that if |
β| < δ′, then
Q(λ, β̂ + 
β) � Q(λ, β̂), which implies that β̂ is a local maximizer of Q(λ, β).

Similarly, we can prove that if β̂ is a local maximizer of Q(λ, β), then (γ̂ , θ̂ ) is a local maximizer
of Q†(λ, γ, θ ), and where γ̂k = (λ|β̂(k)|)1/2 and θ̂(k) = β̂(k)/γ̂k if |β̂(k)| � 0, and γ̂k = 0 and θ̂(k) = 0 if
|β̂(k)| = 0. �

Proof of Theorem 1. Let s be the number of nonzero groups. Without loss of generality, we assume that
β0

(k) � 0 (k = 1, . . . , s) and β0
(k) = 0 (k = s + 1, . . . , K ).

Let sk be the number of nonzero coefficients in group k (k = 1, . . . , s). Again, without loss of generality,
we assume that β0

k j � 0 (k = 1, . . . , s; j = 1, . . . , sk) and β0
k j = 0 (k = 1, . . . , s; j = sk + 1, . . . , pk).

To prove the consistency, it is sufficient to show that for any given ε > 0, there exists a constant C such
that

pr

{
sup

‖u‖=C
Qn

(
β0 + n−1/2u

)
< Qn(β0)

}
� 1 − ε. (A1)

This implies that with a probability of at least 1 − ε, there exists a local maximum in the ball {β0 + n−1/2u :
‖u‖ � C}. Hence, there exists a local maximizer β̂n such that ‖β̂n − β0‖ = Op(n−1/2). Since pλn satisfies
conditions (9) and (10), we have

Dn(u) = Qn

(
β0 + n−1/2u

)− Qn(β0)

� n−1
{
�n

(
β0 + n−1/2u

)− �n(β0)
}

−
s∑

k=1

{
p(k)

λn

(∣∣β0
k1 + n−1/2uk1

∣∣, . . . , ∣∣β0
kpk

+ n−1/2uksk

∣∣, 0
)− p(k)

λn

(∣∣β0
k1

∣∣, . . . , ∣∣β0
ksk

∣∣, 0
)}

= A − B.
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By Taylor expansion of the partial likelihood function, we have

A = n−1/2

{
n−1/2 ∂�n(β0)

∂β

}′
n−1/2u − 1

2
n−1u′

{
−n−1 ∂2�n(β0)

∂β2

}
u + n−1op(n−1‖u‖2)

� n−1 Op(1)|u| − 1

2
n−1u′{I (β0) + op(1)}u + n−1op(n−1‖u‖2)

� p1/2n−1‖u‖Op(1) − 1

2
n−1u′ I (β0)u + op(n−1‖u‖2) = A1 + A2 + A3.

By Taylor expansion of the penalty function, we have

B =
s∑

k=1

{
sk∑

j=1

∂p(k)
λn

(∣∣β0
k1

∣∣, . . . , ∣∣β0
kpk

∣∣)
∂|βk j | sgn

(
β0

k j

)
n−1/2uk j

+ 1

2

sk∑
i=1

sk∑
j=1

∂2 p(k)
λn

(∣∣β0
k1

∣∣, . . . , ∣∣β0
kpk

∣∣)
∂|βki |∂|βk j | n−1uki uk j

}
+ op

{
n−1
(
u2

k1 + · · · + u2
ksk

)}

� q1/2
1 n−1/2an‖u‖ + 1

2
n−1bn‖u‖2 + op(n−1‖u‖2)

= q1/2
1 ‖u‖Op(n−1) + op(n−1‖u‖2) = B1 + B2,

where q1 = ∑s
k=1 pk . We can see that, by choosing a sufficiently large C , A2 dominates A1, A3, B1, B2

uniformly in ‖u‖ = C . Hence, (A1) holds. �
Proof of Theorem 2. First we prove the sparsity: pr (β̂n,k j = 0) → 1 as n → ∞ if β0

k j = 0. Using Taylor
expansion, we have

∂ Qn(β̂n)

∂βk j
= n−1 ∂�n(β0)

∂βk j
+
∑
k ′, j ′

n−1 ∂2�n(β∗)

∂βk ′ j ′∂βk j

(
β̂n,k ′ j ′ − β0

k ′ j ′
)

− ∂p(k)
λn

(|β̂n,k1|, . . . , |β̂n,kpk |)
∂|βk j | sgn(β̂n,k j ), (A2)

where β∗ lies between β̂n and β0. By Theorem 3.2 in Andersen & Gill (1982) and the fact that β̂n is a
root-n consistent estimator, the first two terms on the right-hand side of (A2) are both Op(n−1/2). Hence
we have

∂ Qn(β̂n)

∂βk j
= n−1/2

{
Op(1) − n1/2 ∂p(k)

λn
(|β̂n,k1|, . . . , |β̂n,kpk |)

∂|βk j | sgn(β̂n,k j )

}
.

If n1/2∂p(k)
λn

(|β̂n,k1|, . . . , |β̂n,kpk |)/∂|βk j | → ∞ with probability tending to 1 as n → ∞, then for an
arbitrary ε > 0 and k = s + 1, . . . , K , when n is large we have

∂ Qn(β̂n)

∂βk j
< 0, 0 < β̂n,k j < ε,

∂ Qn(β̂n)

∂βk j
> 0, −ε < β̂n,k j < 0.

Therefore, pr(β̂n,k j = 0) → 1 as n → ∞.
Second, we prove the asymptotic normality. Following Theorem 1 and the sparsity property that we just

have shown, there exists a root-n consistent estimator β̂n = (β̂n,A, 0)′ that satisfies the equation

∂ Qn(β̂n)

∂βk j
= 0, (k, j) ∈ A.
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Hence we have

0 = n−1 ∂�n(β̂n,A, 0)

∂βA
−

s∑
k=1

{
∂p(k)

λn
(|β̂n,k1|, . . . , |β̂n,ksk |, 0)

∂|βA| sgn(β̂n,A)

}

= n−1 ∂�n

(
β0
A, 0

)
∂βA

+ n−1 ∂2�n(β∗
A, 0)

∂β2
A

(
β̂n,A − β0

A
)

−
s∑

k=1

{
∂p(k)

λn

(∣∣β0
k1

∣∣, . . . , ∣∣β0
ksk

∣∣, 0
)

∂|βA| sgn
(
β0
A
)+ ∂2 p(k)

λn

(∣∣β0
k1

∣∣, . . . , ∣∣β0
ksk

∣∣, 0
)

∂|βA|2
(
β̂n,A − β0

A
)}

+ op(n−1/2),

where β∗
A lies between β̂n,A and β0

A. If bn → 0 and n1/2∂p(k)
λn

(|β0
k1|, . . . , |β0

kpk
|)/∂|βk j | → 0 as n → ∞, it

follows by Theorem 3.2 in Andersen & Gill (1982) and Slutsky’s lemma that n1/2(β̂A − β0
A) converges in

distribution to a normal random variable with mean zero and variance I1(β0
A)−1. �

Proof of Corollary 1. It is straightforward to check that the corresponding conditions in Theorems 1
and 2(a) hold for the penalty function p(k)

λn
(|β(k)|) = λn(|βk1| + · · · + |βkpk |)1/2. The details are omitted.

�
Proof of Theorem 3. We only need to check that the conditions in Theorems 1 and 2 hold for the penalty

function p(k)
λn

(|β(k)|) = λn(wn,k1|βk1| + · · · + wn,kpk |βkpk |)1/2.
First, we prove the root-n consistency. For βk j ∈ A, i.e. β0

k j � 0, we have

an = max
(k, j)∈A

∂pλn

(∣∣β0
k1

∣∣, . . . , ∣∣β0
kpk

∣∣)
∂|βk j | = max

(k, j)∈A
1

2
λnwn,k j

(
wn,k1

∣∣β0
k1

∣∣+ · · · + wn,kpk

∣∣β0
kpk

∣∣)−1/2

� 1

2
λnw

A
n, maxw

A−1/2
n, min M−1/2,

bn = max
(k, j)∈A

∣∣∣∣∣∂
2 pλn

(∣∣β0
k1

∣∣, . . . , ∣∣β0
kpk

∣∣)
∂|βk j |2

∣∣∣∣∣ = 1

4
λnw

2
n,k j

(
wn,k1

∣∣β0
k1

∣∣+ · · · + wn,kpk

∣∣β0
kpk

∣∣)−3/2

� 1

4
λnw

A 2
n, maxw

A−3/2
n, min M−3/2,

where M = mink(|β0
k1| + · · · + |β0

ksk
|) is a finite constant. Then the consistency follows from Theorem 1.

Second, we prove the sparsity. Assume β̂n,k j is any root-n consistent local maximizer of QW
n (β), then

we can find a constant M∗, such that |β̂n,k j | � M∗ for all (k, j) with probability tending to 1. Then for
(k, j) ∈ D, i.e. β0

k j = 0, we have

n1/2 ∂pλn (|β̂n,k1|, . . . , |β̂n,kpk |)
∂|βk j | = n1/2λnwn,k j

2(wn,k1|β̂k1| + · · · + wn,kpk |β̂kpk |)1/2

�
n1/2λnw

D
n, min

2M∗1/2
(
wA

n, max + wD
n, max

)1/2 .

Therefore, when n1/2λnw
D
n, min/(wA

n, max + wD
n, max)1/2 → ∞, by Theorem 2(a) we have pr(β̂n,D = 0) → 1.

Finally, the asymptotic normality follows from Theorem 2(b) in a manner similar to the proof of
consistency. �

Proof of Corollary 2. We only need to verify that wn,k j = |β̃n,k j |r satisfy the conditions in The-
orem 3. Let A = max{β0

k j } and B = min{β0
k j : β0

k j � 0}. Then by the consistency of β̃n , it is easy
to show that wA

n, max → B−r and wA
n, min → A−r . Thus, when taking λn = n−1/2/ log(n), we have

n1/2λnw
A
n, max/w

A
n, min

1/2 → 0 and λnw
A
n, max

2
/wA

n, min
3/2 → 0.
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For each (k, j) with β0
k j = 0, we have β̃n,k j = Op(n−α) with 0 < α � 1/2. Therefore, wD

n, min/

(wD
n, max + wA

n, max)1/2 = Op(nα/2). When taking λn = n−1/2/ log(n), we have n1/2λnw
D
n, min/(wD

n, max +
wA

n, max)1/2 → ∞. �
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