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SUMMARY

Linear discriminant analysis has been widely used to characterize or separate multiple classes
via linear combinations of features. However, the high dimensionality of features from modern
biological experiments defies traditional discriminant analysis techniques. Possible interfeature
correlations present additional challenges and are often underused in modelling. In this paper,
by incorporating possible interfeature correlations, we propose a covariance-enhanced discrimi-
nant analysis method that simultaneously and consistently selects informative features and iden-
tifies the corresponding discriminable classes. Under mild regularity conditions, we show that
the method can achieve consistent parameter estimation and model selection, and can attain an
asymptotically optimal misclassification rate. Extensive simulations have verified the utility of
the method, which we apply to a renal transplantation trial.

Some key words: Correlation; Graphical lasso; Linear discriminant analysis; Pairwise fusion; Variable selection.

1. INTRODUCTION

Rapid technological advances have yielded vast amounts of high-throughput data, such as
those arising from microarrays or proteomics, which has brought a high demand for statistical
methods that can effectively use such data to make decisions. For example, in the kidney trans-
plant and injury study (Flencher et al., 2004) that motivated this paper, 62 tissue samples were
obtained from subjects with four different renal functional types after kidney transplantation. Dis-
tinguishing these four types of kidney tissue based on 12 625 gene expression profiles is crucial
to balancing, at the molecular level, the need for immunosuppression to prevent transplant rejec-
tion while minimizing drug-induced toxicities. Linear discriminant analysis, a popular method
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in the classical setting where the number of variables is much smaller than the sample size, has
been found to perform poorly in the high-dimensional setting because (a) the sample covariance
matrix, which is needed in linear discriminant analysis, is singular; and (b) the classification
rule involves a linear combination of all the variables, causing difficulty in interpretation and
degrading classification performance with many noninformative variables.

To address (a), linear discriminant methods with a variety of penalized versions of covari-
ance matrices have been developed, including the nearest shrunken centroids method assuming a
diagonal covariance matrix (Tibshirani et al., 2002), naive Bayes using the diagonal of the sam-
ple covariance matrix (Bickel & Levina, 2004), an extension of nearest shrunken centroids with
a general covariance matrix (Guo et al., 2007), thresholding of mean effects and the covariance
matrix in binary classification (Shao et al., 2011), and a lasso-type classifier (Tibshirani, 1996)
based on the estimated product of mean effects and the precision matrix (Cai & Liu, 2011). Other
relevant works are Qiao et al. (2008), Witten & Tibshirani (2009), Clemmensen et al. (2011),
Witten & Tibshirani (2011), Fan et al. (2012) and some of the references therein.

To address (b), Tibshirani et al. (2002) proposed shrinking the class centroids towards the
global centroid,Wang & Zhu (2007) represented the problem as a lasso regression and introduced
two new penalties to improve the effectiveness of variable selection, and Guo (2010) used a linear
discriminant with pairwise fusion penalties to select informative variables. Theoretical properties
are in general elusive for these methods, though some asymptotic results are available for the
annealed independence rule proposed by Fan & Fan (2008) and a linear discriminant rule using
penalized sparse least squares proposed by Mai et al. (2012). However, both of the latter methods
focus on binary classification, and it is not clear how to extend them to the multiple-class case.

In this paper, we propose a covariance-enhanced discriminant analysis method for high-
dimensional classification. Our method utilizes the general covariance structure, going beyond
the diagonality restriction, in selecting informative variables for linear discriminant analysis. Our
method achieves more flexibility than existing methods by allowing a variable to be informative
for only a subset of, rather than all, the classes, and it enjoys consistency of parameter estima-
tion and model selection. For binary classification, we show that it achieves the lowest possible
asymptotic misclassification rate.

Other authors, including Clemmensen et al. (2011) and Witten & Tibshirani (2011), have also
discussed variable selection in the presence of correlation. However, to our knowledge, none
of these approaches can identify variables that are specifically informative for discriminating
certain classes.

To further illustrate the impact of a nondiagonal covariance matrix on variable selection, Fig. 1
shows a simple binary classification example, wherein the two classes have the same mean in
X> but different means in X|. The best classifier would involve both X and X3, even though
the latter does not by itself have any power to separate the two classes. The contribution of X to
classification is through its correlation with X, which demonstrates the role of using a nondiag-
onal covariance matrix. As Fig. 1 implies, for the purpose of classification and variable selection,
we should consider the differences in the means between each pair of classes as well as possible
intervariable correlations.

2. METHODOLOGY
2-1. Model and notation

Consider a general K -class problem, where Y is the class label taking values in {1, ..., K}
and X is the corresponding p-dimensional vector of predictors. We assume that the g(opulation—
average probability of class kiswy =pr(Y =k) > 0fork =1, ..., K and satisfies ) ;_, wp = 1.
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Fig. 1. An illustrative example involving two classes. Even though the two

classes have the same mean in X5, the variable X is informative for classifi-

cation and variable selection and should not be removed by a variable selection
method.

The conditional density of X given class k£ is modelled by a multivariate Gaussian distribu-

tion, X | Y =k~ N,(ux, X), where ur = (i1, ..., mip)' is the class-specific mean vector
and ¥ is a p x p positive-definite covariance matrix with (;, j")th element denoted by o/
(j,j'=1,..., p). As assumed in linear discriminant analysis, the covariance matrix ¥ is con-

stant across different classes; this assumption may be plausible as, for example, gene expressions
across disease classes often differ in their means rather than in the covariance structure (Guo et al.,
2010).

Let o= (w1, ..., wk)" and let Q be the inverse of X with (/, j)th element written as Q ;-
(J,j'=1,..., p). Further, let 4t = (uj, ..., ug)" be the vector containing all class means and
let x = (x1,..., xp)T be an observation.

Given wg, ur (k=1, ..., K) and Q, linear discriminant analysis classifies an observation x
to a class, say £*, that maximizes

1
pr(Y =k | X =x) = c(x)ay exp {—2<x — )R — /m} ,
where c(x) is a normalizing constant that does not depend on k. For variable selection, we com-

pare classes k and /, where k,/ =1, ..., K with k/. Specifically, we consider the pairwise
difference for k &1,

logpr(Y =k | X=x) —logpr(Y =1 | X =x) =logw; — logw;

| PP
-5 Z Z Qi (ry + i) (ajr — ()

j=1j=1
p p
+ ij Z Qi (i — 1)
=1 =

Hence, a necessary and sufficient condition for variable j to be noninformative in distinguishing
classes k and / is that

P
Z Qi (rjr — pjr) = 0. (1)
j=)
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Further, we note that a sufficient condition leading to (1) is, for j =1, ..., p,
mkj — i =0, J'=J

Since €27 = 0 indicates conditional independence between X; and X ;» given all the other vari-
ables, (2) implies that if a variable is conditionally independent of all the variables helpful for
discriminating classes k and /, and is itself indistinguishable for classes & and /, then it is non-
informative for discriminating classes k£ and /. Compared with the necessary and sufficient con-
dition (1), the informativeness of features as defined by (2) is more interpretable in practice, as
it elucidates why a given variable, say j in (2), is noninformative for discriminating classes &
and / in terms of mean and in the presence of correlation. This motivates us to construct a vari-
able selection procedure for selecting informative variables and identifying the distinguishable
classes simultaneously.

2-2. Covariance-enhanced discriminant analysis

Let (y;, x;) be the ith observation (i =1, ..., n) from a K-class problem with known class
label y; and predictor vector x;. Let S(u) =n"" Sy Z,Ile T =k)(x;i — wp)(xi — )’
A natural approach to inference is to maximize the loglikelihood function

S 1 1
(o, 1, Q) =~ ;;m = k) loga +  log |92] — Str{S()Q);

however, with high-dimensional parameters y and €2, a direct maximization is not stable. Regu-
larization terms on p and €2 are needed to enhance stability.

Motivated by condition (2), we propose to regularize the pairwise differences in class cen-
troids for each variable and the off-diagonal elements of the concentration matrix. Specifically, let
p = pn be a function of the sample size n. We maximize

Pn
On(@, 1, D =ly(@, )1, Q) = 21n Y, > g — il =220 Y 12501 (3)

Jj=11<k<I<K jEJj

subject to
K
dap=1. Q>0 (4)
k=1

where > 0 indicates positive definiteness. The first penalty term in (3) shrinks the pairwise dif-
ferences in class centroids for each variable, whereas the second penalty term resembles that of
the graphical lasso for estimating the concentration matrix (Yuan & Lin, 2007; Friedman et al.,
2008). When the tuning parameters, A1, and A2, are large enough, some of the x; — p;; and
2 will be estimated as zero. Further, if for some & 4/ we have

Pn
> Sy kg — ) =0, 5
j'=1

then variable j can be considered noninformative for distinguishing classes £ and /, though it
could still be informative for discriminating other pairs of classes. Moreover, if (5) holds for all
pairs (k,[) with k,/ =1, ..., K and k </, then variable ; is considered to make no contribution
to the classification and can be removed from the fitted model.

GTOZ ‘gaunr uo UeBIydi Jo A1sieAiun e /Blo'sfeuinolpiojxo ewoliq//:dny wouj papeojumod


http://biomet.oxfordjournals.org/

Covariance-enhanced discriminant analysis 37

Remark 1. While the proposed method using (3) and (4) does not directly enforce the struc-
ture described by (2), and the double penalization may somewhat bias the results, we choose to
use (3) and (4) for two reasons. First, directly using (2) would lead to a complicated nonconvex
problem. Second, the second penalty on (3) effectively enforces sparsity on €2, which seems a
reasonable assumption for large precision matrices (see, e.g., Bickel & Levina, 2008; Friedman
et al., 2008; Lam & Fan, 2009; Cai et al., 2011; Witten et al., 2011) and can often simplify com-
putation and interpretation.

One natural variant of the proposed method is the doubly /-penalized linear discriminant,

Pn K
max [, (w, u, Q) — A il = A 251, 6
max w(w, p, Q) 1nZZ|MkJ| 2n Z 1§21 (6)

j=1k=1 JET

under the constraints Z,[le wr =1 and Q > 0. The first penalty term shrinks all class centroids
towards zero, the global centroid of the centred data. If all the uy; (k=1, ..., K) are estimated
to be zero, variable j is considered noninformative, in the spirit of the nearest shrunken centroid
method (Tibshirani et al., 2003). Criterion (6) can be considered as an improved version of
the shrunken centroid method, which assumes that the covariance matrix is diagonal. Further,
unlike (3), both (6) and the shrunken centroid method claim a variable as noninformative only
when all the i (k=1, ..., K) are estimated as zero, and they do not identify class-specific
discriminable variables.

3. ASYMPTOTIC PROPERTIES

Let o= (of},. 0k)", where w@)=(or..... og-)" and wgx=1-3;""a. Let
w* = (a)z‘lT), W), w*, QF and T* be the true values of w, u, 2 and X, respectively. We
further define

A={(, D)y #0forj,I=1,..., ps, j*1},
B:{(k’k/,j):ll]tj—M/t/jZOfork,k/II,...,K, k<k/, ]:1,,pn},

so A contains the indices of off-diagonal elements in Q* which are truly nonzero, and B contains
the indices of class pairs and variables that have zero mean difference.

For a symmetric matrix A, we write tr(A) for the trace of 4, and Apjn(A4) and Amax(A4) for the
minimum and maximum eigenvalues of 4. Define the operator norm and the Frobenius norm
by, respectively, || 4] = Aé{fx(ATA) and || A|p = tr'/>(4" A). We write | F| for the cardinality and
F°¢ for the complement of the set F. Let a, = |A| and b, = K(K — 1)p,/2 — |B|; then a, is
the number of nonzero elements among the off-diagonal entries of Q*, and b, is the number
of class pairs and variables that have nonzero mean differences. Finally, let t;; = [ (Y; = k) and
ng=y i turfori=1,...,nandk=1,..., K.

We assume the following conditions to establish consistency and sparsistency.

Condition 1. There exist positive constants k1 and « such that k1 < Apin(Z*) < Amax (Z7F) <
Kk for all n.

Condition 2. There exist positive constants c¢; and ¢ such that ¢ <minjgrcg ni/n <
maxi k<K ni/n < cp forall n.

Condition 3. For some n > 0:
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() Ain pa’ /(D) /2 — 00, Ain pal (bl 10g{K (K — 1)pp/2 = b,}17/2 > 147 and

max

1/2
ozi,“a"zop(klnpn/ )s

(i) amin/(bx )12 > 0o, a™in/(bE  logh,)/2 > 1+ 1 and 4kahy, pr/>(K — 1) < oMin,

max

-1 -1 K

where by, =max<;<p, U;j, o™ =maxp | 3 i (Twng — Tikng ) 2= Tﬂ'u?}l and
. . n 1 -1y gk

"t =minge | 37 (Teny — Tk ) Doy Tkl

Condition 1 bounds the eigenvalues of the covariance matrix X * uniformly, and Condition 2
implies that the K samples are of comparable sizes. Both are commonly used conditions in the
high-dimensional setting (Cai & Liu, 2011), which facilitate the proof of consistency. Condition 3
is analogous to the conditions in Theorem 2.3 of Rinaldo (2009), used for proving sparsistency.

THEOREM 1. Under Conditions 1 and 2, if logpn/nzO(k%n), logpn/nzO(k%n)
and (py —Ai-an)(logp,,)m/nz O(l) for some m > 1, then there exists a local maximizer
(@qy, L, Q) for the maximization problem (3)~(4) such that |1 —a)z‘l)H%:Op(n_l),

12 — 1*113 = Op(pnlog pu/n) and IIQ — Q*IIE = Op{(pn + an) log pu/n}.

THEOREM 2. Under the conditions given in Theorem 1, for the local maximizer of (3)—(4)
satisfying ||y — @iy lI3=0p(n™h), |4 — u*|I5 = Op(pnlog pu/n), maxig;<p, i) —
M*(j)”% = Op(pn1) for a sequence p,1 — 0, ||f2 — Q*ll% = Op{(pn +ay) log p,/n} and
||Q —Q*2 = Op(pn2) for a sequence pyy — 0, we have that:

(1) if log pn/n + pu1 + pu2 = O(A%n), then with probability tending to 1, le =0 for all
(., ) e A with j £1;

(i) if Condition 3 holds, then lim,_, o pr(B = B) = 1, where B={(k, k', j) : fuj — fur; =0
Jor1<k<k <K, j=1,..., pu}

Theorem 1 says that with proper tuning parameters A, and XA,,, the covariance-enhanced
discriminant analysis estimators are consistent with certain rates of convergence. Theorem 2
shows the sparsistency of <2 and of the fusion estimator /1, ensuring selection consistency for
the true signals among the predictors and identification in accordance with their corresponding
discriminable classes.

Theorem 1 indicates that /i is consistent when p,, /n = O{(log p,) ™™} with some m > 1, which
seems restrictive. There are at least p, nonzero elements, each of which can be estimated at best
with rate n~!/2, so the total squared error is at least of rate p,/n, and for high dimensionality
we pay the price log p,. The rate decays to zero slowly, which implies that p,, can be comparable
to n without violating the results in practice; and what we care about is the mean difference
8:; = {uzj — /,L;:/j kK =1,...,K, k<K, j=1,..., pn}. If §;; is sparse enough, we expect
consistency and sparsistency to hold for p, > n.

Next, we consider the binary classification problem. The following theorem establishes the
asymptotic optimality of the proposed method in terms of the misclassification error under cer-
tain conditions on the divergence rates of b,, p,, a, and Afvn, where A%n = S;TQ*S/’;.

THEOREM 3. In the binary case, K =2, under the conditions given in Theorem 2 and
assuming that

12 a}}l/Z b}l/Z }/2'01{2
cp =max < p,5°, A, a2 Ayl Apn —0, n— o0, (7)

we have that:
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(1) the conditional misclassification rate of the proposed covariance-enhanced discriminant
analysis is

Ry =®o[—{1 + Op(cn)}Apn/Z],

where ® is the standard normal cumulative distribution function;
(i1) if A, is bounded, then the proposed method is asymptotically optimal and

Ry

— 1= 0plcn).

OPT

where Ropr = ®(—A , /2) denotes the misclassification rate of the optimal classification
rule (Anderson, 2003);

(iii) if Ap, — 00, then for the proposed method we have R, — Ropy — 0 in probability;

(iv) if Ap, — o0 and ¢, A%n — 0, then the proposed method is asymptotically optimal.

Remark 2. Condition (7) is related to the convergence rate of the estimators (i and €2 and the
number of nonzero elements in §;, and €2*. Essentially, it holds under the sparsity assumptions
on Q* and 5; and with the existence of consistent estimators of u* and * when the values of
nonzero mean differences are bounded. Theorem 3 is important as it discusses the asymptotic
optimality in terms of the misclassification error, when ||871||2, the magnitude of mean differ-
ences, diverges to infinity at different rates.

4. IMPLEMENTATION AND TUNING PARAMETER SELECTION

Note that o =7, I(yi =k)/n (k=1, ..., K), whereas the estimators of 4 and €2 can be
obtained through an iterative algorithm: we fix p and estimate €2; then we fix the estimated 2
and estimate 1 ; we iterate between these two steps until the algorithm converges. Since the value
of the objective function (3) decreases over iterations, convergence is guaranteed.

When u is fixed, to maximize Q, with respect to 2 it suffices to maximize

1
01(%) =log|Ql — (G} = SAan > 12l ®)
J*7

over all nonnegative-definite matrices €2 for a known covariance matrix S(u), similar to the prob-
lem of estimating sparse graphs. Hence, we can apply the graphical lasso algorithm (Friedman
et al., 2008) to efficiently solve for .

When €2 is fixed, to maximize O, with respect to u it suffices to minimize

n K Pn
1
nT Y D A0 =Re = ) R0 )+ S hn Y Y g =gl )

i=1 k=1 j=11<k<k'<K

It is challenging to directly minimize (9) with respect to u, due to the fusion penalty. We apply
local quadratic approximation (Fan & Li, 2001) to convert the minimization in (9) into a gener-
alized ridge problem. Specifically, we write

(t+1) (t+1D)\2
uftD — p |~ Uy~ e, ) L—
j 'J () () J 'j
2| — w2

’
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where ¢ is the iteration index used to denote iterations of the local quadratic approximation.
Consequently, we only need to consider the objective function

e K T 1. & (ki — i )?
Q2 =n""3 Y ki — )" Qi — )+ Shw Y D o (10)

- - 2’/”4([') —u
i—1 k=1 J=1 1<h<k'<K M K

where t;x = I (y; = k); thus, pth = argmin,, Oz(u).
Overall, the algorithm proceeds as follows.

Step 1. Initialize 1©) with some plausible values, and set s = 1.

Step 2. For iteration s, apply the graphical lasso algorithm to maximize (8) with u replaced
by ©®~D, and obtain Q.

Step 3. With Q replaced by Q), iteratively minimize the generalized ridge criterion (10)
: n K +1 n K . . .
until > 5:1 > e |,u,(; ) u,(;.)|/ ) 1]?:1 > e |,u,(;.)| is small enough to obtain ).

Step 4. If |Qn (0, 1, Q9 — 0,(&, n¢~, Q6~D)| is small enough, stop the algorithm;
otherwise, set s <— s + 1 and go to Step 2.

In terms of selecting the tuning parameters A1, and XA,,, we follow the suggestion in Wang
et al. (2007) and use a BIC-type criterion:

BIC(An, A2p) = —2nl,(@, fi, Q) + (K — 1 +d; + dg) log(n),

where d;; is the number of distinct nonzero elements in /i and dg is the number of nonzero
elements in €2.

5. SIMULATION STUDIES

In this section, we assess the finite-sample performance of the proposed method. For com-
parison, we consider several related methods, including fusion-regularized linear discriminant
analysis (Guo, 2010), doubly /;-penalized linear discriminant analysis as given by (6), sparse
discriminant analysis (Clemmensen et al., 2011), /;-penalized linear discriminant analysis, and
fused-penalized linear discriminant analysis (Witten & Tibshirani, 2011). Fusion-regularized lin-
ear discriminant analysis is a special case of our method where the covariance matrix is assumed
to be diagonal.

Example 1. Consider a three-class scenario with a total of p =210 variables, generated
according to the following mechanism: the first ten variables are independent N (y;, 1) for
class k, whereas the remaining 200 variables are independent and identically distributed from
N (0, 1) for all three classes. Table 1 gives the means of the first ten variables. For example, in
class 1, variables 1-5 all have mean 0, and variables 610 all have mean 1-5.

Example 2. In this example, the true model is the same as in Example 1, except that the
covariance matrix has the AR(1) correlation structure with autocorrelation coefficient 0-6 for
variables 1-5 and variables 6—10; variables 1-5 are independent of variables 6—10, and both
groups are independent of the remaining 200 variables.

Example 3. In this case, the true model is the same as in Example 1, except that variable 5
has means different from those of variables 1-4 and the correlation structure for variables 1-10
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Table 1. Means of the informative variables in Examples 1-3

Example Variables Class 1 Class 2 Class 3
1&2 1-5 0 0 -2.5
6-10 1-5 -15 -1.5
3 14 0 0 -2.5
5 —0-5 2 -25
6-10 1-5 -15 —-15

differs from the structures in Examples 1 and 2. Specifically, the means of variable 5 are —0-5,
2 and —2-5 for the three classes. Variables 1-5 have an interchangeable correlation structure
with parameter 0-5. Variables 6—10 are correlated with the same structure but independently of
variables 1-5. Table 1 reports the means for the first ten variables.

In each simulation example, only the first ten variables are informative. Moreover, in Exam-
ples 1 and 2, a variable is informative for separating a pair of classes if it has unequal means for
those two classes. For example, variables 1-5 are informative for separating classes 1 and 3 or
classes 2 and 3, but not for separating classes 1 and 2; similarly for variables 6—10. For Exam-
ple 3, it is less straightforward to identify the informative variables for discriminating classes 1
and 2. For example, variable 1 has equal means for classes 1 and 2, but it contributes to the classi-
fication through its correlation with the informative variable 5, as illustrated in Fig. 1. Therefore,
unlike in Examples 1 and 2, variables 1-5 are all informative for separating classes 1 and 2.

For each example, we generate 200 datasets, each consisting of n; = ny = n3 = 50 training and
test samples. We then apply each method to the training data and record the misclassification error
rate evaluated on the testing data, the proportion of incorrectly removed informative variables,
i.e., the false negative rate, the proportion of incorrectly selected noninformative variables, i.e.,
the false positive rate, and the model size.

Table 2 summarizes the misclassification error rates and variable selection results for the six
methods over 200 replications. Overall, the proposed method outperforms the other methods in
terms of classification accuracy and has prediction accuracy competitive with smaller models.
In terms of variable selection, all methods except for sparse discriminant analysis (Clemmensen
et al., 2011) are effective at identifying the informative variables, while the proposed method
is more effective at removing noninformative variables. Sparse discriminant analysis has decent
classification accuracy overall, but tends to miss important variables.

If a variable is noninformative for discriminating a pair of classes and the corresponding esti-
mated parameters satisfy equation (5), we consider it as correct fusion. Table 3 summarizes the
fusion results for all the examples. Each row in the table displays the average proportion of fused
variables out of the five for separating the corresponding pair of classes. For example, the first
row indicates that for the proposed method, on average 99-5% of the first five variables are fused
for classes 1 and 2. Note that 100% is the optimal value except for variables 1-5 in Example 3,
because variables 1-5 are informative for separating classes 1 and 2 in Example 3, and thus 0%
should be the optimal value for the corresponding row in the table. The methods of Clemmensen
etal. (2011) and Witten & Tibshirani (2011) do not provide fusion results for any specific pair of
classes, so are not listed in Table 3. The proposed method outperforms the method of Guo (2010)
in correctly separating the specific pairs of classes, while doubly /1-penalized linear discriminant
analysis is barely able to fuse any of the first ten variables using the criterion (5), especially when
some of variables are correlated. The doubly /;-penalized method only penalizes the individual
k), not the pairwise differences; thus a variable can be fused only if all ug; (k=1,..., K)are
estimated as zero, but clearly this is not a favourable estimate for the first ten variables as the
true class means are different.
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Table 2. Misclassification error rates and variable selection results for Examples 1-3:
means and standard errors (in parentheses) of various performance measures based on

200 replications

Example Method ER (%) FN (%) FP (%) MS

1 Proposed method 0-23 (0-36) 0(0) 0-29 (0-59) 10-58 (1-18)
Guo (2010) 0-29 (0-45) 0(0) 7-66 (6-71) 25-32 (13-41)
Doubly /; 2-62 (4-41) 0(0) 46-86 (9-34) 103-72 (18-69)
Clemmensen et al. (2011) 0-38 (0-52) 0(0) 0-47 (0-56) 10-95 (1-12)
Witten & Tibshirani (2011) /; 0-29 (0-48) 0(0) 15-29 (15-79) 40-59 (31-58)
Witten & Tibshirani (2011) fused 0-29 (0-69) 0(0) 3.04 (15-81) 16-07 (31-61)

2 Proposed method 391 (1-55) 0(0) 0-53 (0-48) 10-71 (0-87)
Guo (2010) 11-38 (4-93) 0(0) 9-22 (8-49) 28-45 (16:97)
Doubly /; 7-11 (4-58) 0(0) 77-64 (13-32)  165-29 (26-64)
Clemmensen et al. (2011) 434 (1-68) 3-40 (5-71) 1-71 (4-08) 13-42 (8-16)
Witten & Tibshirani (2011) /4 4-39 (1-63) 0(0) 3325 (36-75) 76-50 (73-49)
Witten & Tibshirani (2011) fused  4-24 (1-66) 0(0) 14-14 (31-93) 38-28 (63-86)

3 Proposed method 1-87 (1-05) 0(0) 0-47 (0-53) 10-93 (1-06)
Guo (2010) 811 (2-:22) 0(0) 8:72 (7-03) 27-44 (14-05)
Doubly /; 243 (1-27) 0(0) 63-87 (10-99) 137-73 (21-97)
Clemmensen et al. (2011) 2-00 (1-12)  6-85(8-12) 1-70 (1-03) 12.72 (1-55)
Witten & Tibshirani (2011) / 2-61 (1-31) 0(0) 21-80 (32-70) 53-60 (65-40)
Witten & Tibshirani (2011) fused 3.75 (1-46) 0(0) 10-92 (29-24) 31-84 (58-48)

ER, misclassification error rate on the test data; FN, false negative rate; FP, false positive rate; MS, model size.

Table 3. Pairwise class fusion results (%) for Examples 1-3

Example Variables Pair Proposed method ~ Guo (2010) Doubly /;

1 1-5 1,2 99-50 88-10 52-10
(3-13) (16:30) (35-92)

6-10 2,3 99-40 86-20 0-00
(3-42) (16-09) (0-00)

2 1-5 1,2 97-90 86-30 1.05
(11-41) (18-87) (0-89)

6-10 2,3 98-10 87-80 0-00
(10-91) (18-68) (0-00)

3 1-5 1,2 0-90 34-40 0-10
(3-20) (9-06) (1-00)

6-10 2,3 99-80 87-40 0-00
(2-00) (19:37) (0-00)

Each entry in the third column is a pair of indiscriminable classes for the variables in the corresponding
row, except for variables 1-5 in Example 3; for instance, the first row indicates that variables 1-5
are noninformative for separating classes 1 and 2. The numbers in the fourth to sixth columns give
the proportions of variables in the set (with standard deviations in parentheses) that are identified as
noninformative for separating a given pair of classes by each method; the optimal value is 100% in
each case except for variables 1-5 in Example 3, where the optimal value should be 0%. All results
are averaged over 200 repetitions.

6. KIDNEY TRANSPLANT REJECTION AND TISSUE INJURY

We consider a kidney transplant rejection and tissue injury dataset (Flencher et al., 2004),
which consists of 62 tissue samples from kidney transplant patients, including 17 normal donor
kidneys, 19 well-functioning transplants without rejection, 13 kidneys undergoing acute rejec-
tion, and 13 transplants with renal dysfunction and without rejection. Each sample is described
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Fig. 2. Pairwise class fusion results for the proposed method with the 19 most informative
genes selected based on the kidney transplant rejection and tissue injury dataset. Each row
corresponds to a gene, and each column corresponds to a class pair. A dark block indicates
that the corresponding gene is noninformative for separating the corresponding pair of classes.

by 12 625 genes from kidney biopsies and peripheral blood lymphocytes. Distinguishing between
these four types of kidney tissue is crucial to balancing the need for immunosuppression to pre-
vent rejection while minimizing drug-induced toxicities.

Before applying our method, we preselect a subset of genes according to their variances, since
genes with large variability are generally considered to be of potential greatest relevance to bio-
logical function (Mar et al., 2011). Similar to Guo et al. (2010), from the 12 625 genes we select
the 100 with the largest variances and the 100 with the smallest variances. The selection process
does not use any class label information. We then centre these 200 genes before classification.

To assess performance, we randomly split the dataset into training and test datasets in a 2:1
ratio. We estimate and select the genes on the training dataset and evaluate the classification accu-
racy on the test dataset. This procedure is repeated 100 times. In terms of classification accuracy,
the proposed method performs best, while doubly /1-penalized linear discriminant analysis per-
forms worst; see Fig. S1 in the Supplementary Material.

To assess variable selection, for each gene we count the number of times that it was selected
based on 100 random splits. According to this frequency, we choose the 25 most informative
genes. There are 19 most informative genes that are selected by all five methods, and besides
these 19 common genes, our proposed method selected the following genes as the most infor-
mative: HCFC1, PLIN2, LOC646347, IDS, SPAGS and TIGR(HG4518-HT4921); some of these
genes are significantly relevant to renal function. For example, the HCFCI1 gene, as a member
of the host cell factor family, was reported in Wilson et al. (1995) to be highly expressed in fetal
tissues and the adult kidney; the expression of PLIN2 has been shown to be a predictor of cancer-
specific survival in clear cell renal carcinoma (Yao et al., 2007); and SPAGS is highly expressed
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in normal human kidneys (Chang et al., 2001), while its level of expression is much lower in
hypogonadal kidneys (Suzuki et al., 2006).

The proposed method reveals that the 19 genes selected as most informative are not all infor-
mative for discriminating every pair of classes. For example, Fig. 2 shows that gene AGGF1,
reported to have strong protein expression in blood vessels embedded in kidney tissues (Fan
et al., 2009), does not distinguish the acute rejection class from the renal dysfunction without
rejection class, while it is informative for the other pairs of classes; gene GRINA, which plays a
major role in gentamicin ototoxicity (Leung et al., 2004) and in 1,25(OH); D3 synthesis (Parisi
et al., 2010), does not separate the normal, acute rejection and renal dysfunction without rejec-
tion classes; and gene RFNG, which is strongly expressed in the kidney (Challen et al., 2006),
does not discriminate the normal class from the acute rejection class. Further, although some of
the genes have the same means across different classes, they are informative in classification via
correlations with other informative genes. For example, gene AGGF1 discriminates the normal
class from the acute rejection and renal dysfunction without rejection classes, even though it has
the same mean within these three classes, based on Fig. S2 in the Supplementary Material.

In summary, the proposed method identifies new genes that are relevant to renal function and,
by using the underlying covariance structure between genes, elucidates the impact of genes on
discriminating particular renal functional classes, which is a crucial step in the development of
gene therapy.
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