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Summary

Network latent space models assume that each node is associated with an unobserved latent
position in a Euclidean space, and such latent variables determine the probability of two nodes
connecting with each other. In many applications, nodes in the network are often observed along
with high-dimensional node variables, and these node variables provide important information
for understanding the network structure. However, classical network latent space models have
several limitations in incorporating node variables. In this paper, we propose a joint latent space
model where we assume that the latent variables not only explain the network structure, but
are also informative for the multivariate node variables. We develop a projected gradient descent
algorithm that estimates the latent positions using a criterion incorporating both network structure
and node variables. We establish theoretical properties of the estimators and provide insights into
how incorporating high-dimensional node variables could improve the estimation accuracy of the
latent positions. We demonstrate the improvement in latent variable estimation and the improve-
ments in associated downstream tasks, such as missing value imputation for node variables, by
simulation studies and an application to a Facebook data example.

Some key words: High-dimensional data; Latent space model; Network analysis.

1. Introduction

Network data that describe the relations or interactions among individuals have been prevalent
in many scientific and engineering fields, including but not limited to social media, the world
wide web and neuroscience (Newman, 2010; Kolaczyk & Csárdi, 2014). A network is usually
represented by nodes and edges, where each node represents an individual and an edge represents
the connectivity between two nodes. In recent years, many statistical models have been proposed
to analyse network data appearing in various domains; see, for example, Goldenberg et al. (2010)
for a review. Many of the existing models are based on the assumption that the formation of
network links is driven by nodal latent variables, including stochastic block models (Holland
et al., 1983), latent space models (Hoff et al., 2002) and random dot product graph models (Young
& Scheinerman, 2007; Athreya et al., 2017). It is critical to estimate the node latent variables
accurately, because the estimated latent representations of nodes not only provide insights into
the structure of the network, but can also be further used as node features for subsequent tasks,
such as node clustering, prediction for node response variables and network link prediction.

In practice, the network link information is often collected along with additional high-
dimensional node variables. For example, in an online social network, where nodes represent
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users and links represent friendship relationships, we also observe users’ multiple personal infor-
mation such as age, gender and educational institution (Leskovec & McAuley, 2012); and in a
citation network where nodes represent papers and links represent citation relationships, word
frequencies over a large number of words for each paper are recorded as well (McCallum et al.,
2000). The dimension of node variables in these applications can be large in the sense that it
is comparable to the number of nodes. Existing studies have shown that node variables provide
complementary information to network links and often play important roles for estimating the
latent structure of the network (Newman & Clauset, 2016; Zhang et al., 2016; Binkiewicz et al.,
2017). Thus, it is important to model the network and node variables jointly such that the node
variable information can be utilized for improved understanding of the node latent variables.

This paper proposes a joint latent space model to model network links and high-dimensional
node variables simultaneously using shared latent variables. On the one hand, as mentioned
above, many commonly used network models assume that the network links are determined
through node latent variables. Among these models, latent space models are probably the most
popular (Hoff et al., 2002) and have been shown to be powerful for capturing many commonly
observed features of real-world networks (Ward & Hoff, 2007; Ward et al., 2007, 2011; Friel
et al., 2016), such as node degree heterogeneity, homophily and community structures (Ma et al.,
2020). Taking advantage of these properties of the network latent space model, we also assume
that each node can be represented by a latent vector in a (low-)dimensional Euclidean space, and
that the connecting probability between two nodes depends on the corresponding pair of nodes’
positions in the unobserved space. On the other hand, it is also commonly observed that high-
or moderate-dimensional variables that are correlated can often be explained in terms of a few
unobserved latent variables (Bai & Li, 2012; Wang et al., 2017; Hair et al., 2018). Furthermore, for
network data with node variables, the latent variables that explain the observed high-dimensional
node variables could be correlated with the latent position variables that explain the network
links. This motivates us to consider the joint latent space modelling framework, which uses the
shared latent variables to model both parts of the observed information, with the goal of utilizing
node variables effectively to help estimate the node latent positions.

Various latent-variable-based network models have been proposed for modelling network data
with node variables, such as the latent space model (Hoff et al., 2002) and its variants (Hoff, 2003,
2005, 2008, 2009; Handcock et al., 2007; Krivitsky et al., 2009; Sewell & Chen, 2015, 2016; Ma
et al., 2020). When node covariates are present, existing latent space models usually incorporate
such information by including pairwise node variable similarities to model link probabilities
(Hoff et al., 2002; Ma et al., 2020). Such similarity-based approaches have several limitations
when node variables are of high dimension. First, the majority of existing latent space models
adopt Bayesian estimation approaches. The high-dimensional similarity vector would introduce
a large number of parameters and additional Markov chain Monte Carlo sampling, therefore
making the estimation much more computationally challenging. Second, the performance of the
similarity-based method would be sensitive to the specific choice of similarity measure; and it
does not model the relationship between the observed node variables and the latent variables.
In practice, node variables are often correlated with latent variables, and this relationship can
be utilized for better understanding of the network structure (Kim & Leskovec, 2012; Xu et al.,
2012; Yang et al., 2013). Furthermore, from the theoretical perspective, the existing literature
has rarely studied the effects of high-dimensional node variables on estimating network latent
representations, which is necessary in modern network data analysis with node variables.

The main contributions of this paper are summarized from the following perspectives. From
the modelling perspective, the proposed framework has several advantages in comparison to the
existing work. First, we model the relationship between node latent variables and node covariates
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Joint latent space models 709

by a set of shared latent variables, which provides a natural way of borrowing information
from node variables to improve the estimation of the latent variables. Second, the proposed
model adopts the framework of generalized linear factor models to model the distribution of
node variables and, therefore, can handle multiple types of node variables arising in practice,
such as continuous, binary and count variables. Furthermore, we develop an efficient projected
gradient descent algorithm to estimate the model parameters and latent representations, by treating
the latent representations as fixed effects. Such an estimation method is computationally more
efficient than the Bayesian approaches in the literature.

Moreover, from the theoretical perspective, we show that the proposed estimators of the fixed
effect joint latent space model are error rate optimal under mild conditions. We also establish the
corresponding non-asymptotic upper and lower error bounds. In addition, we provide new findings
on how the information from both the network and node variables would balance with each other
to affect the estimation of latent variables. In particular, we provide a theoretical guarantee that,
when the dimension of signal node variables is large enough, borrowing information from node
variables would always achieve improvement in estimating node latent positions, in comparison
to the results that use network link information only. We also investigate how the sparsity level
of the network would affect the necessity of including node variables for joint estimation. Our
theoretical findings are further supported by extensive simulation studies.

2. Proposed method

2.1. Joint latent space model

We start by introducing the notation.Assume that we have n data points connected by a network
G = (V , E), where V = {1, 2, . . . , n} denotes the node set and E denotes the edge set. We consider
undirected networks and write (i, i′) ∈ E if there is a link between node i and node i′. The network
can be represented by an adjacency matrix A ∈ {0, 1}n×n, where Aii′ = Ai′i = 1 if (i, i′) ∈ E
and Aii′ = Ai′i = 0 otherwise. Furthermore, we assume for each node i that we also observe a
vector of covariate variables, denoted by Yi ∈ R

q. The matrix of node variables is denoted by
Y = [Y1, Y2, . . . , Yn]T ∈ R

n×q. For a general matrix M ∈ R
m×n, we denote its ith row by Mi· and

its jth column by M·j.
We consider a joint latent space model for modelling network data with high-dimensional

node variables. Specifically, we assume that each node i ∈ V can be represented by a low-
dimensional vector Zi ∈ R

k in an unobserved latent space. The latent variables of all the nodes
are denoted by Z = [Z1, Z2, . . . , Zn] ∈ R

n×k . As commonly assumed in previous network latent
space models, two nodes that are close in the latent space are more likely to be connected.
Meanwhile, it is also proper to assume that, when the two nodes are close in the latent space,
they may display similarity regarding the observed traits. For instance, for two individuals who
have close latent representations in a social network, they may choose similar jobs or hold similar
political perspectives. This naturally leads to the consideration that the latent variables not only
model the network connectivity, but are also informative for the node variables. In particular, we
make the assumption that the distribution of network links and that of node variables are driven
by the shared latent variables; see Fig. 1.

For network A, we assume that, for each pair of nodes (i, i′), given their latent positions Zi
and Zi′ , the presence or absence of an edge between them is determined by the corresponding
pair of latent variables and is independent of any other edges. Specifically, for i < i′, we assume

that Aii′ = Ai′i
ind∼ Ber(Pii′) with Pii′ = f (Zi, Zi′) for some function f . Multiple choices for

the function f are available; see Hoff et al. (2002), Hoff (2003, 2008) and Ma et al. (2020) for
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Z

A Y

Fig. 1. Graphical representation of the joint latent space model.

examples. In this paper, we consider using the inner-product latent space model (Hoff, 2003; Ma
et al., 2020), i.e.,

logit Pii′ = �A
ii′ = αi + αi′ + ZT

i Zi′ . (1)

Model specification (1) can also be expressed in matrix form as

logit P = �A = α1T
n + 1nα

T + ZZT,

where α = (α1, α2, . . . , αn)
T. We choose the inner-product latent space model to model the

network part because of its flexibility to capture commonly observed network characteristics.
For example, it allows node degree heterogeneity through the parameter αi, and in general the
larger αi, the more likely that node i connects with other nodes. It also allows for transitivity, i.e.,
nodes with common neighbours are more likely to connect since their latent positions are more
likely to have a larger inner product.

Furthermore, we assume that the same latent variables Z are used to describe the multivariate
node variables Y ∈ R

n×q. Specifically, we assume that, given Z , the entries in Y are independent
and Z models Y through generalized linear models (Dunn & Smyth, 2018), with

g(EY ) = �Y = 1nγ
T + ZB, (2)

where γ ∈ R
q and B ∈ R

k×q are the regression coefficients. For example, when the entries in Y
are continuous and g(x) = x is the identity mapping, we assume that

Yij
ind∼ N {(1nγ

T + ZB)ij, σ 2} (3)

for some σ 2. When the entries in Y are all binary and g(x) = log{x/(1 − x)}, we have

Yij
ind∼ Ber

{
exp (1nγ

T + ZB)ij

1 + exp (1nγ T + ZB)ij

}
. (4)

More generally, when there is more than one type of variable in Y , we could divide Y into R
blocks, i.e., Y = [Y1| · · · |YR], with each sub-block containing the same type of variables and
having its own link function. For the following algorithms and theoretical results, we mainly
focus on the case when there is only one type of variable in Y . The corresponding results for Y
with multiple variable types can be naturally obtained.

Certain modelling approaches for the community detection problem can be considered as
having a similar flavour to jointly modelling the distributions of A and Y via shared latent variables,
where the discrete latent variable Zi ∈ {0, 1}k represents the unobserved community membership
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Joint latent space models 711

of node i. For instance, Xu et al. (2012), Yang et al. (2013) and Kim & Leskovec (2012) assumed
that, for nodes from the same community or cluster, their edge connections and node variables
should follow the common distribution specific to that cluster. In other words, the node latent
communities determine the distributions of both A and Y , and therefore information from both
A and Y could be used for community detection. Our joint latent space model considers a more
general setting, where the latent variables could take continuous values in the unobserved latent
space.

We treat Z as fixed effects rather than random for two reasons. First, our method does not
require specific assumptions on the distribution of Z , and is therefore more flexible and general;
meanwhile, treating Z as random effects usually requires making certain parametric assumptions
on the distribution of Z . Second, by treating Z as fixed parameters, gradient descent methods
can be adopted for parameter estimation, and the computation is usually efficient and scalable.
On the other hand, when Z is viewed as random effects, the popularly used Bayesian estimation
approaches may be computationally expensive.

Remark 1. Although we assume that models (1) and (2) share the same set of latent variables
Z , this assumption can be easily relaxed. For instance, consider that we have latent variables
ZA ∈ R

n×k modelling A through (1). Meanwhile, there exists another set of latent variables
ZY ∈ R

n×k ′
that are specifically informative for Y :

g(EY ) = 1nγ
T + ZY B. (5)

If there exists a matrix W ∈ R
k×k ′

such that ZY ≈ ZAW , then model (5) could be rewritten as
g(EY ) ≈ 1nγ

T +ZAWB = 1nγ
T +ZAB′ with B′ = WB, which gives a good approximation to the

model in (2). Therefore, even when the two sets of latent variables explaining network and node
variables are not exactly the same, if there is an approximate linear transformation relationship
between them, our proposed joint latent space model is still valid, with ZA being the shared latent
variables that explains both parts of the observed information. Additionally, we could further
consider a more general case where ZA and ZY are different, but have some overlapped latent
variables. These two sets of parameters, ZA and ZY , can still be jointly estimated, but it is beyond
the scope of the current paper and so we leave the investigation for future work.

To ensure that the joint model is identifiable, we need to put additional structural constraints
on the latent variables Z . First, we could add a constant term to both Zi and Zj, and subtract the
corresponding terms from αi and αj to keep the distribution of A invariant, so we require that
the latent variables are centred, i.e., JZ = Z , where J = In − 1n1T

n/n. This constraint makes
Z identifiable up to an orthogonal transformation of its rows. Correspondingly, B is identifiable
up to an orthogonal transformation of its columns. Therefore, we further require that the sample
covariance of Z , i.e., ZTZ/n, is a diagonal but nonidentity matrix. Then the parameters α, Z , B
and γ can be uniquely determined.

2.2. Estimation

The parameters that need to be estimated are Z , α, B and γ . For the network data A, we consider
the loss function as its conditional negative loglikelihood:

LA = − log P(A | Z , α) = −
∑

1�i,i′�n

{Aii′�
A
ii′ − fA(�A

ii′)} (6)
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with fA(x) = log{1 + exp (x)}. For the node variables Y , we have the negative conditional
loglikelihood

LY = − log P(Y | Z , B, γ ) = −
∑

1�i�n, 1�j�q

{Yij�
Y
ij − fY (�Y

ij )},

where the terms that are irrelevant to Z and γ are omitted. The form of fY (·) depends on how the
distribution of Y is specified. For example, when Y is continuous as in model (3), fY (x) = x2/2;
when Y is binary as in model (4), then fY (·) takes the same form as fA(·).

We define the objective function as

L(Z , α, B, γ ) = LA + λLY , (7)

where λ is a weight parameter that controls the information contributed from each part. Our goal
is to find the estimators Ẑ , α̂, B̂ and γ̂ that are the solutions to the following optimization problem:

min
Z∈Rn×k , JZ=Z , α∈Rn, B∈Rk×q, γ∈Rq

L(Z , α, B, γ ). (8)

To optimize (8), we consider using a projected gradient descent algorithm, which is commonly
used for solving constrained optimization problems. The term projected means that we project
the parameter estimate into the space that satisfies the constraint. Specifically, at each iteration,
given all the other parameter estimates, the B̂ and γ̂ that minimize the objective function (7) can
be solved directly, and they are therefore updated with those values. As for Ẑ and α̂, they are
updated along the direction of their negative gradients.After the updates, we include an additional
projection step such that the parameter estimates satisfy the constraint in (8). The algorithm is
summarized in Algorithm 1 below. As pointed out by Ma et al. (2020), where the convergence
property of such an algorithm has been studied, this algorithm is not guaranteed to converge to
any global optimizer when the objective function is not convex, as in this work. In § 4, we use
simulation studies to demonstrate that the algorithm generally converges well and provides good
estimation results.

Algorithm 1. Projected gradient descent algorithm for parameter estimation.

Inputs: network adjacency matrix A ∈ R
n×n; node variables Y ∈ R

n×q; latent space
dimension k � 1; initial estimates Z0, α0, B0, γ 0; step sizes ηz, ηα; number of iterations T
Parameters: Z , α, B, γ
For t = 0, 1, . . . , T − 1

Zt+1 = Zt − ηz∇Z L = Zt + 2ηz{A − f ′
A(�t)}(Zt)T + ληz{Y − f ′

Y (ZtBt)}(Bt)T

αt+1 = αt − ηα∇αL = αt + 2ηα{A − f ′
A(�t)}1n

(γ t+1
j , Bt+1

·j ) = arg maxb∈Rk+1
∑

i{Yij[1, Zt
i·]b − fY ([1, Zt

i·]b)} (j = 1, . . . , q)

Zt+1 = JZt+1

Outputs: Ẑ = ZT, α̂ = αT, B̂ = BT, γ̂ = γ T

Algorithm 1 requires initial inputs of several hyperparameters. For the initialization values
Z0, α0, B0, γ 0 of Z , α, B, γ and choices of step sizes ηZ and ηα , we adapt the initialization method
and step size choice proposed by Ma et al. (2020), who optimized a regularized version of the
negative loglikelihood of the network data as in (6) to obtain initial estimates Z0 and α0. Then we
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Joint latent space models 713

regress Y on Z0 to get an initialization of B0 and γ 0. For the step size choice, we let ηZ = η/‖Z0‖2
F

and ηα = η/(2n) for a small and fixed constant η. As for the latent space dimension k , it can be
selected through cross-validation. As we focus on estimating the latent variables that explain the
network links, we consider performing cross-validation on the adjacency matrix. In particular,
we randomly remove entries from the adjacency matrix, then fit the joint latent space model and
predict those missing links based on the fitted values. The process can be repeated several times
and the k value that gives the best link prediction performance is chosen from a set of candidate
values.

3. Theoretical results

In this section we state our main theoretical results on the estimation of Z under the joint
modelling framework. We first show the error bound of the estimators obtained from (8). Then
we discuss how the joint modelling framework could improve the estimation of Z .

To study the theoretical properties, we make the following assumptions on the parameters.

Assumption 1. There exists M1 > 0 such that −M1 < �A
ii′ < M1 for 1 � i, i′ � n.

Assumption 2. There exists M2 > 0 such that −M2 < �Y
ij < M2 for 1 � i � n, 1 � j � q.

Moreover, we introduce a feasible parameter space as

F(n, k , M1, M2) =
{
� ∈ R

n×(n+q) | � = [�A, �Y ],
�A = α1T

n + 1nα
T + ZZT, �Y = 1nγ

T + ZB,

max
1�i,i′�n

|�A
ii′ | < M1, max

1�i�n, 1�j�q
|�Y

ij | < M2, JZ = Z
}

. (9)

In the rest of the paper, we use F as an abbreviation of F(n, k , M1, M2) to denote the parameter
space. We denote the ground truth parameter by

�∗ = [�∗A, �∗Y ] = [α∗1T
n + 1n(α

∗)T + Z∗(Z∗)T, 1n(γ
∗)T + Z∗B∗] ∈ F .

We let

�̂ = [�̂A, �̂Y ] = [α̂1T
n + 1T

nα̂ + Ẑ ẐT, 1nγ̂
T + ẐB̂],

where Ẑ , α̂, B̂ and γ̂ are the solutions obtained from the optimization problem
min�∈F L(Z , α, B, γ ). We constrain the true parameters and estimators in the feasible parameter
space, mainly for the purpose of theoretical analysis. In practice, when implementingAlgorithm 1,
we do not include additional constraints regarding max1�i,i′�n |�̂A

ii′ | and max1�i�n, 1�j�q |�̂Y
ij |,

and simulation studies indicate that this does not affect the results.
The following theorem provides upper and lower bounds on the estimation error of �̂.

Theorem 1. Under Assumptions 1 and 2, we have

1

{n(n + q)}1/2 E‖�̂ − �∗‖F � κ max(λ, 1)(2k + 3)1/2

min{min|v|<M1 f ′′
A (v), λ min|v|<M2 f ′′

Y (v)}
1

n1/2 , (10)

where κ is an absolute constant and M1, M2 and k are allowed to change with n.
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714 X. Zhang, G. Xu and J. Zhu

Moreover, let � ∈ R
n×(n+q) be an arbitrary estimator. When q = O(n), there exist �0 ∈ F ,

ε1 > 0 and n0, q0 > 0 such that, for n > n0 and q > q0,

P

[
1

{n(n + q)}1/2 ‖� − �0‖F � ε1

n1/2

]
� 1

2
. (11)

The proof is given in the Supplementary Material. When M1, M2 and k are fixed constants,
the result in (10) implies that ‖�̂ − �∗‖F/{n(n + q)}1/2 = Op(1/n1/2). Together with the
lower bound in (11), we can see that the rate of estimation error obtained in Theorem 1 is
optimal. Moreover, the results also indicate that, using the network itself, i.e., q = 0, we have
‖�̂A − �∗A‖F/n = Op{eM1(k/n)1/2}. Therefore, we achieve the same order of estimation error
under the joint modelling framework, compared to that obtained with the network information
only. In particular, the upper bound of ‖�̂A − �∗A‖F/n is consistent with the results of Ma et al.
(2020), who considered the problem of estimating latent variables using the network only, by
minimizing LA as defined in (6).

While Theorem 1 indicates that the error bounds of estimators obtained under the joint
modelling framework have the same order as those obtained from the network data, without
Y , we are also interested in how the additional node variables Y can help the estimation of latent
variables. We evaluate the effect of Y in terms of the one-step update analysis. In particular,
assume that we have an estimated Z̃ through the network, for example, from the algorithm pro-
posed by Ma et al. (2020). Suppose that with node variables Y we update Z̃ for one more step
based on Algorithm 1,

Ẑ = Z̃ + (1 − λ̃)ηz{A − f ′
A(�̃A)}Z̃ + λ̃ηz{Y − f ′

Y (�̃Y )}(B̃)T, (12)

where λ̃ = λ/(λ + 2) and B̃ is a reasonable estimate of B. To investigate the properties of Ẑ , we
focus on (3) where Y is continuous and make the following additional assumptions.

Assumption 3. The dimension of node variables q satisfies the condition that q = O(n).

Assumption 4. Let cov(Z) = ZTZ/n = diag(λ1, . . . , λk) |= Ik be diagonal, and let the diagonal
elements be of constant order �(1).

Assumption 5. Denote the eigendecomposition of BBT/q as U
U T, where 
 =
diag(σ1, . . . , σk). The eigenvalues are of constant order �(1).

Assumption 3 allows q to grow at a rate slower than, or of the same order, as n. Assumptions
4 and 5 are standard since Z ∈ R

n×k and B ∈ R
k×q. Assumption 5 implies that node covariates

could not be pure noises, but are signals. The following theorem shows that we can achieve more
accurate estimation of Z , as long as the dimension of signal node variables is high enough.

Theorem 2. Suppose that Z̃ and α̃ are estimated from Algorithm 1 of Ma et al. (2020), and
that we have a fixed B̃ satisfying ‖B̃ − B‖2

F = O(1). Then, under Assumptions 1–5, there exist
positive constants C and λ̄ such that, when q > Cn, we have E‖Ẑ − Z‖2

F < E‖Z̃ − Z‖2
F for any

λ̃ ∈ (0, λ̄), where Ẑ is obtained from (12). Moreover, we can show that, under a proper choice of
λ̃, whose form is specified in the Supplementary Material, the improvement in estimating Z, i.e.,
E‖Z̃ − Z‖2

F − E‖Ẑ − Z‖2
F , is at least

{σ̃kE‖Z̃ − Z‖2
F − ‖Z̃ − Z‖F(nq−1σ̃1λ1)

1/2‖B − B̃‖F}2

ρ2[{σ̃kE‖Z̃ − Z‖F − (nq−1σ̃1λ1)1/2‖B − B̃‖F}2 + nq−1σ 2σ̃1]
, (13)
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whereρ2 = ηzq, and σ̃1 and σ̃k are the maximum and minimum eigenvalues of B̃B̃T/q, respectively.

From Theorem 2, we see that with additional high-dimensional node variables we can achieve
more accurate estimation of latent variables, in terms of E‖Ẑ − Z‖2

F . The improvement in (13)
depends on the signal and noise contained in the node covariates. Specifically, σ̃k , the minimum
eigenvalue of B̃B̃T/q, can be approximately viewed as the signal in node covariates, and the
quantity in (13) would increase as σ̃k increases. Moreover, the quantity monotonically decreases
depending on σ 2, the noise in the node covariates. In practice, a B̃ that satisfies the requirement
‖B̃ − B‖2

F = O(1) can be obtained by regressing Y on Z̃ .
Theorem 2 relies on specific Z̃ and α̃. More generally, we consider the scenario where we are

given initial estimates of Z , α, B, γ , denoted by Z̃ , α̃, B̃, γ̃ , respectively, satisfying the conditions
that ‖Z̃ − Z‖2

F = O(1), ‖α̃1T
n − α1T

n‖2
F = O(n), ‖B̃ − B‖2

F = O(1) and ‖γ̃ − γ ‖2
2 = O(1). The

following proposition provides implications for which scenarios the joint modelling framework
can help better estimate the latent variables Z .

Proposition 1. Given Z̃, α̃, B̃, γ̃ that satisfy the above required conditions, we consider
updating Z̃ one step further by (12) and obtaining a Ẑ. Under Assumptions 1–5, there exists
an optimal λ̃opt such that E‖Ẑ − Z‖2

F is minimized; λ̃opt is given in (S8) in the Supplementary
Material. When λ̃opt is strictly positive, the joint modelling framework achieves a mean square
error of Ẑ that is better than the results obtained when using information from A or Y only.

The proofs of Theorem 2 and Proposition 1 are given in the Supplementary Material. For
Proposition 1, the explicit expression of λ̃opt is given in (S8) in the Supplementary Material.
It depends on the signal and noise contained in both networks and node covariates, indicating
the relative importance of the information from both parts. First, a strictly positive λ̃opt suggests
that incorporating information from node variables is preferred. Based on the calculation in
the Supplementary Material, we can see that an overall sparser network would more likely
lead to a positive λ̃opt. Therefore, when the information from the network part is relatively
limited, borrowing information from node variables would be preferred and helpful. Second,
when controlling all other parameters and increasing q, we would also obtain a larger λ̃opt. This
suggests that, when node variables are of higher dimension or contain richer information, more
weight should be put on the node variable part to improve the estimation of Z . Finally, suppose
that we do not use the optimal λ̃, but fix it in the one-step estimation. In the Supplementary
Material we calculate the difference between taking a nonzero λ̃ and λ̃ = 0, and the result also
suggests that, when the dimension of the node variables increases or the network gets sparser,
the benefit of incorporating node variables becomes more significant in terms of estimating Z . In
the Supplementary Material, we use simulation studies to demonstrate how network information
and node variable information affect the estimation of Z . Specifically, we examine the influence
of the dimension of the node variables and the network density in terms of estimating Z as well
as the relationship between the dimension of the node variables and the optimal weight.

Remark 2. Our work is closely related to the problem of low-rank matrix estimation and
completion (Candès & Tao, 2010; Bhaskar & Javanmard, 2015; Chatterjee, 2015), due to the
assumption on the mean parameter � ∈ R

n×(n+q) defined in (9). Specifically, if we treat node
covariates and the network equally, we could view the problem as recovering the low-rank matrix
� with an observed matrix [A, Y ] ∈ R

n×(n+q). In fact, the upper bound in (10) depends on k
and n through the rate (k/n)1/2, which is consistent with that in the low-rank matrix estimation
literature. However, we could not directly leverage the existing matrix estimation and completion

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/109/3/707/6470560 by U
niversity of M

ichigan user on 15 M
ay 2023

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asab063#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asab063#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asab063#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asab063#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asab063#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asab063#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asab063#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asab063#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asab063#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asab063#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asab063#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asab063#supplementary-data


716 X. Zhang, G. Xu and J. Zhu

method for estimating Z , since the matrix to be estimated is not an arbitrary low-rank matrix,
but has a specific structure due to the share latent factors Z . This is the distinct part of our model
assumption in comparison to the general low-rank matrix estimation problem.

4. Simulation studies

4.1. Effect of the dimension of node variables

To study how information borrowed from Y can affect estimating latent variables, we compare
the estimation of Z using the network latent space model and the joint latent space model. For
the network latent space model, we consider the version without covariates to demonstrate how
node variables can be useful in improving the estimation of Z .

We first study the effect of the node variable dimension. We set n = 200 and k = 2 or 4. We
vary q from 2 to 100 to study how the dimension of the node variables affects the estimation of
Z . The model parameters are specified as follows.

Step 1. Generate the degree heterogeneity parameters α = (α1, α2, . . . , αn), where

α1, α2, . . . , αn
iid∼ U [−0.25, −0.75].

Step 2. Generate k latent vector centres μ1, . . . , μk ∈ R
k with coordinates independent and

identically distributed from U [−1, 1].
Step 3. Generate latent variables Z ∈ R

n×k . First generate a matrix Z0 ∈ R
n×k such that each

entry is independent and identically distributed N (0, 1). Then we divide n data points equally
into k subsets, and for points in each subset, respectively add μ1, . . . , μk to them. Finally, we
transform Z by (i) setting Z = JZ , (ii) normalizing Z such that ‖ZZT‖F = n and (iii) rotating
Z = ZR for some rotation matrix R such that the covariance of Z is a diagonal matrix.

Step 4. Generate the coefficients B ∈ R
k×q, with each entry independent and identically

distributed from N (0, 1).

After setting the parameters, we generate A based on model (1) and generate Y based on either
model (3) or model (4). Under the considered parameter settings, the average density of the
networks is about 0.30. Each setting is repeated 30 times. For each replication, we fit both the
network inner-product latent space model and the joint latent space model to obtain estimations of
Z , denoted by Znet and Zjoint, respectively. We evaluate the performance of each method using the
criterion �Z = ‖Ẑ ẐT−ZZT‖2

F/‖ZZT‖2
F . Figure 2 shows the average results of the 30 replications;

we can see that, as the dimension of Y increases, the estimation of Z improves, and the joint latent
space model starts to outperform the network latent space model even when q is relatively small,
indicating that the constant C in Theorem 2 is of small value. Figure 2 also demonstrates that
overall the improvement of the joint latent space model over the network latent space model is
robust to the choice of λ, though the specific value of λ may affect how much improvement we
could obtain by incorporating node variables.

4.2. Effect of the network density

Section 4.1 shows that the more information provided from Y , the more improvement we could
obtain in the estimation of Z . As a counterpart, in this subsection we demonstrate the effect of
the network density on estimating Z when the information from Y is fixed. We fix q = 100 and
change the parameter settings in the network. The density of the network is controlled by varying
the range of the node degree heterogeneity parameters α from α1, . . . , αn ∼ U [−0.375, −0.125]
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Fig. 2. Estimation of Z versus the dimension of Y .
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Fig. 3. Estimation of Z versus network density.

to α1, . . . , αn ∼ U [−2.25, −0.75]. We set Z and B in the same manner as in § 4.1. Now, under
different settings for α, the network density ranges from 0.08 to 0.39. We again repeat the
simulation 30 times under each setting.

Figure 3 shows the estimation of Z based on Znet and Zjoint under different network density
levels. As the network gets sparser, the result of the Z estimation using A only gets worse, while
the performance of Zjoint is relatively stable. This especially indicates the benefit of incorporating
node variables in estimating Z , when the network is relatively sparse and may not provide enough
information.

Additional simulation studies that support our theoretical findings are provided in the
Supplementary Material.

5. Real data example

We now demonstrate the proposed model on Facebook social circle data for the task of missing
value imputation for node variables. The dataset consists of 10 different networks, each represent-
ing an ego network of a selected user, where the ego network is defined as the network between
all the user’s friends. See Fig. 4 for an example of an ego network. For each ego network, the
data include the users’ anonymized variables. For example, the original dataset contains a vari-
able ‘political = Democratic Party’, and the curated dataset would transform this into ‘political
= anonymized feature 1’. The variables associated with each node in this data example are all
binary. We analysed eight out of these 10 networks, as two of the networks have relatively few
nodes and several variable columns associated with them contain only one or a few 1s. For each
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Fig. 4. Example of an ego network: (a) circle-1 network; (b) node variable matrix; (c) number of variables versus the
mean of the variable.

Table 1. Node variable missing value imputation results for Facebook data
Area under the curve

n q Density Network Joint MICE
Circle 1 347 56 0.042 0.840 0.884 0.707
Circle 2 755 66 0.105 0.865 0.873 0.739
Circle 3 792 100 0.045 0.856 0.901 0.780
Circle 4 1045 153 0.049 0.867 0.871 0.693
Circle 5 547 58 0.03 0.852 0.905 0.738
Circle 6 227 87 0.124 0.832 0.850 0.586
Circle 7 159 55 0.134 0.809 0.836 0.621
Circle 8 170 37 0.115 0.812 0.854 0.698

network, we also remove the variables that have too many or too few 1s in that variable. If a
variable of a user is missing, it is of interest to impute the missing value based on the user’s own
profile as well as his/her social connections.

We randomly sample 5% of the entries in the node variable matrix Y and set them as missing.
Then we fit the network latent space model and the joint latent space model to respectively obtain
estimated Ẑnet and Ẑjoint. After obtaining the estimated Ẑ for the jth column of Y , 1 � j � q, we
regress those observed Yj on Ẑobs to obtain an estimated B̂j, then we predict those missing entries
in Yj as ẐmissB̂j. Moreover, we also apply multiple imputation by chained equations (MICE; Azur
et al., 2011), a commonly used method for missing value imputation that utilizes the node variable
part only, as a benchmark.

In Table 1 we list the average area under the receiver operating curves over 30 replications.
The results indicate that both network-based methods outperform MICE, and that the joint latent
space model consistently achieves better performance than the network latent space model across
all eight networks. The area under the receiver operating curve obtained by fitting the network
latent space model is already promising, which suggests that the network itself contains sub-
stantial information. However, we can still achieve noticeable improvement after incorporating
the node variable information. This implies that the latent position variables are associated with
the node variables, and that the joint estimation can help achieve more accurate estimation and
imputation results.
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6. Discussion

In our simulation and real data examples, we use all n data points with observed information
for model fitting, and we obtain estimated model parameters Ẑ ∈ R

n×k , α̂ ∈ R
n, B̂ ∈ R

q×k and
γ̂ ∈ R

q. The predictions for the missing node variables are also performed on these n data points.
One possible extension is to consider an inductive setting, where we make a prediction on a new
node, which is not present during the training stage, with partially observed information. For
example, consider the cold-start scenario where only the new node’s variables Yn+1 are observed,
but its link information to all the other n nodes is unknown. This is a case commonly seen in
social networks, where newly registered users only provide their personal information, but have
no connection with any other users. To predict links between the (n + 1)th node and the previous
n nodes, we can first estimate Ẑn+1 by regressing Yn+1 on the fitted B̂, then compare α̂i + ẐT

i Ẑn+1
for i = 1, . . . , n to rank which nodes have higher probabilities of connecting with the new node.
Correspondingly, we can also make predictions on the (n + 1)th node variables, when we only
know its link information with other nodes.
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