STAT 610	MATHEMATICAL STATISTICS: ESTIMATION F		FALL 2005	
Instructor:	Robert Keener 458 West Hall 936-3628 email: keener@umich.edu Home Page: http://www.stat.lsa.umich.edu/~keener/			
Office Hours:	Monday, Wednesday, $9:00-10:00$ am Friday, $10:30-11:30$ am			
Text:	Draft for a book I am	Draft for a book I am writing.		
Optional Text:	Theory of Point Estimation (Second Edition) Lehmann and Casella, Springer-Verlag, 1998			
TA:	Ou Zhao 437 West Hall 764-2646 email: ouzhao@umich.edu Home Page: http://www.stat.lsa.umich.edu/~ouzhao/			
Office Hour:	Wednesday $3:00-4:00 \text{ pm}$			
Grading:	Homework: Midterm Exam: Final Exam: (Monday, December SYLLA)	· · · · · ·		
1. Introduction (1)				
2. Probability and Measure (4)				
Measures; Integration; Events, Probabilities, and Random Variables; Null Sets; Densities;				
Expectation; Random Vectors; Covariance Matrices; Product Measures and Independence;				
Conditional Distributions.				

- Exponential Families (2)
 Densities and Parameters; Differential Identities; Dominated Convergence; Moments, Cumulants, and Generating Functions.
- 4. Sufficiency, Completeness, and Ancillarity (3) Sufficient Statistics; Factorization Theorem; Minimal Sufficiency; Completeness; Convex Loss and the Rao-Blackwell Theorem.
- Unbiased Estimation (3) Minimum Variance Unbiased Estimators; Second Thoughts About Bias; Normal One Sample Problem—Distribution Theory; Normal One Sample Problem—Estimation.
 Curved Exponential Families (2)
- Sequential Experiments; Multinomial Distribution and Contingency Tables.
 7. Conditional Distributions (3)

 Joint and Marginal Distributions; Conditional Distributions; Building Models; Proof of the Factorization Theorem.
- 8. Variance Bounds and Information (1) Lower Bounds; Higher Dimensions
- 9. Bayesian Estimation (2)
 - Formulation and the Main Result; Examples; Utility Theory.
- Large Sample Theory (3) Convergence in Probability; Convergence in Distribution; Maximum Likelihood Estimation; Medians and Percentiles; Asymptotic Relative Efficiency.
- 11. Estimating Equations Maximum Likelihood (4) Weak Law for Random Functions; Consistency of the MLE; Limiting Distribution for the