Decomposing Variance

Kerby Shedden
Department of Statistics, University of Michigan

October 10, 2021

Law of total variation

For any regression model involving a response $y \in \mathcal{R}$ and a covariate vector $x \in \mathcal{R}^{p}$, we can decompose the marginal variance of y as follows:

$$
\operatorname{var}(y)=\operatorname{var}_{x} E[y \mid \mathbf{x}=x]+E_{x} \operatorname{var}[y \mid \mathbf{x}=x] .
$$

- If the population is homoscedastic, $\operatorname{var}[y \mid x]$ does not depend on x, so we can simply write $\operatorname{var}[y \mid x]=\sigma^{2}$, and we get $\operatorname{var}(y)=\operatorname{var}_{x} E[y \mid x]+\sigma^{2}$.
- If the population is heteroscedastic, $\operatorname{var}[y \mid \mathbf{x}=x]$ is a function $\sigma^{2}(x)$ with expected value $\sigma^{2}=E_{x} \sigma^{2}(x)$, and again we get $\operatorname{var}(y)=\operatorname{var}_{x} E[y \mid x]+\sigma^{2}$.

If we write $y=f(x)+\epsilon$ with $E[\epsilon \mid x]=0$, then $E[y \mid x]=f(x)$, and $\operatorname{var}_{x} E[y \mid x]$ summarizes the variation of $f(x)$ over the marginal distribution of x.

Law of total variation

Orange curves: conditional distributions of y given x Purple curve: marginal distribution of y
Black dots: conditional means of y given x

Pearson correlation

The population Pearson correlation coefficient of two jointly distributed random variables $x \in \mathcal{R}$ and $y \in \mathcal{R}$ is

$$
\rho_{x y} \equiv \frac{\operatorname{cov}(x, y)}{\sigma_{x} \sigma_{y}}
$$

Given data $y=\left(y_{1}, \ldots, y_{n}\right)^{\prime}$ and $x=\left(x_{1}, \ldots, x_{n}\right)^{\prime}$, the Pearson correlation coefficient is estimated by

$$
\hat{\rho}_{x y}=\frac{\widehat{\operatorname{cov}}(x, y)}{\hat{\sigma}_{x} \hat{\sigma}_{y}}=\frac{\sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i}\left(x_{i}-\bar{x}\right)^{2} \cdot \sum_{i}\left(y_{i}-\bar{y}\right)^{2}}}=\frac{(x-\bar{x})^{\prime}(y-\bar{y})}{\|x-\bar{x}\| \cdot\|y-\bar{y}\|} .
$$

When we write $y-\bar{y}$ here, this means $y-\bar{y} \cdot \mathbf{1}$, where $\mathbf{1}$ is a vector of 1 's, and \bar{y} is a scalar.

Pearson correlation

By the Cauchy-Schwartz inequality,

$$
\begin{aligned}
& -1 \leq \rho_{x y} \leq 1 \\
& -1 \leq \hat{\rho}_{x y} \leq 1 .
\end{aligned}
$$

The sample correlation coefficient is slightly biased, but the bias is so small that it is usually ignored.

Pearson correlation and simple linear regression slopes

For the simple linear regression model

$$
y=\alpha+\beta x+\epsilon,
$$

if we view x as a random variable that is uncorrelated with ϵ, then

$$
\operatorname{cov}(x, y)=\beta \sigma_{x}^{2}
$$

and the correlation is

$$
\rho_{x y} \equiv \operatorname{cor}(x, y)=\frac{\beta}{\sqrt{\beta^{2}+\sigma^{2} / \sigma_{x}^{2}}}
$$

The sample correlation coefficient for data $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ is related to the least squares slope estimate:

$$
\hat{\beta}=\frac{\widehat{\operatorname{cov}}(x, y)}{\hat{\sigma}_{x}^{2}}=\hat{\rho}_{x y} \frac{\hat{\sigma}_{y}}{\hat{\sigma}_{x}} .
$$

Orthogonality between fitted values and residuals

Recall that the fitted values are

$$
\hat{y}=x \hat{\beta}=P y
$$

where $y \in \mathcal{R}^{n}$ is the vector of observed responses, and $P \in \mathcal{R}^{n \times n}$ is the projection matrix onto $\operatorname{col}(\mathbf{X})$.

The residuals are

$$
r=y-\hat{y}=(I-P) y \in \mathcal{R}^{n} .
$$

Since $P(I-P)=\mathbf{0}_{n \times n}$ it follows that $\hat{y}^{\prime} r=0$.
since $\bar{r}=0$, it is equivalent to state that the sample correlation coefficient between r and \hat{y} is zero, i.e.

$$
\widehat{\operatorname{cor}}(r, \hat{y})=0
$$

Coefficient of determination

A descriptive summary of the explanatory power of x for y is given by the coefficient of determination, also known as the proportion of explained variance, or multiple R^{2}. This is the quantity

$$
R^{2} \equiv 1-\frac{\|y-\hat{y}\|^{2}}{\|y-\bar{y}\|^{2}}=\frac{\|\hat{y}-\bar{y}\|^{2}}{\|y-\bar{y}\|^{2}}=\frac{\widehat{\operatorname{var}}(\hat{y})}{\widehat{\operatorname{var}}(y)}
$$

The equivalence between the two expressions follows from the identity

$$
\begin{aligned}
\|y-\bar{y}\|^{2} & =\|y-\hat{y}+\hat{y}-\bar{y}\|^{2} \\
& =\|y-\hat{y}\|^{2}+\|\hat{y}-\bar{y}\|^{2}+2(y-\hat{y})^{\prime}(\hat{y}-\bar{y}) \\
& =\|y-\hat{y}\|^{2}+\|\hat{y}-\bar{y}\|^{2},
\end{aligned}
$$

It should be clear that $R^{2}=0$ iff $\hat{y}=\bar{y}$ and $R^{2}=1$ iff $\hat{y}=y$.

Coefficient of determination

The coefficient of determination is equal to

$$
\widehat{\operatorname{cor}}(\hat{y}, y)^{2}
$$

To see this, note that

$$
\begin{aligned}
\widehat{\operatorname{cor}}(\hat{y}, y) & =\frac{(\hat{y}-\bar{y})^{\prime}(y-\bar{y})}{\|\hat{y}-\bar{y}\| \cdot\|y-\bar{y}\|} \\
& =\frac{(\hat{y}-\bar{y})^{\prime}(y-\hat{y}+\hat{y}-\bar{y})}{\|\hat{y}-\bar{y}\| \cdot\|y-\bar{y}\|} \\
& =\frac{(\hat{y}-\bar{y})^{\prime}(y-\hat{y})+(\hat{y}-\bar{y})^{\prime}(\hat{y}-\bar{y})}{\|\hat{y}-\bar{y}\| \cdot\|y-\bar{y}\|} \\
& =\frac{\|\hat{y}-\bar{y}\|}{\|y-\bar{y}\|} .
\end{aligned}
$$

Coefficient of determination in simple linear regression

In general,

$$
R^{2}=\widehat{\operatorname{cor}}(y, \hat{y})^{2}=\frac{\widehat{\operatorname{cov}}(y, \hat{y})^{2}}{\widehat{\operatorname{var}}(y) \cdot \widehat{\operatorname{var}}(\hat{y})}
$$

In the case of simple linear regression,

$$
\begin{aligned}
\widehat{\operatorname{cov}}(y, \hat{y}) & =\widehat{\operatorname{cov}}(y, \hat{\alpha}+\hat{\beta} x) \\
& =\widehat{\beta} \widehat{\operatorname{cov}}(y, x),
\end{aligned}
$$

and

$$
\begin{aligned}
\widehat{\operatorname{var}}(\hat{y}) & =\widehat{\operatorname{var}}(\hat{\alpha}+\hat{\beta} x) \\
& =\hat{\beta}^{2} \operatorname{var}(x)
\end{aligned}
$$

Thus for simple linear regression, $R^{2}=\widehat{\operatorname{cor}}(y, x)^{2}=\widehat{\operatorname{cor}}(y, \hat{y})^{2}$.

Relationship to the F statistic

The F-statistic for the null hypothesis

$$
\beta_{1}=\ldots=\beta_{p}=0
$$

is

$$
\frac{\|\hat{y}-\bar{y}\|^{2}}{\|y-\hat{y}\|^{2}} \cdot \frac{n-p-1}{p}=\frac{R^{2}}{1-R^{2}} \cdot \frac{n-p-1}{p},
$$

which is an increasing function of R^{2}.

Adjusted R^{2}

The sample R^{2} is an estimate of the population R^{2} :

$$
1-\frac{E_{x} \operatorname{var}[y \mid x]}{\operatorname{var}(y)}
$$

Since it is a ratio, the plug-in estimate R^{2} is biased, although the bias is not large unless the sample size is small or the number of covariates is large. The adjusted R^{2} is an approximately unbiased estimate of the population R^{2} :

$$
1-\left(1-R^{2}\right) \frac{n-1}{n-p-1} .
$$

The adjusted R^{2} is always less than the unadjusted R^{2}. The adjusted R^{2} is always less than or equal to one, but can be negative.

The unique variation in one covariate

How much "information" about y is present in a covariate x_{k} ? This question is not straightforward when the covariates are non-orthogonal, since several covariates may contain overlapping information about y.

Let $x_{k}^{\perp} \in \mathcal{R}^{n}$ be the residual of the $k^{\text {th }}$ covariates, $x_{k} \in \mathcal{R}^{n}$, after regressing it against all other covariates (including the intercept). If P_{-k} is the projection onto $\operatorname{span}\left(\left\{x_{j}, j \neq k\right\}\right)$, then

$$
x_{k}^{\perp}=\left(I-P_{-k}\right) x_{k} .
$$

We could use $\widehat{\operatorname{var}}\left(x_{k}^{\perp}\right) / \widehat{\operatorname{var}}\left(x_{k}\right)$ to assess how much of the variation in x_{k} is "unique" in that it is not also captured by other predictors.

But this measure doesn't involve y, so it can't tell us whether the unique variation in x_{k} is useful in the regression analysis.

The unique regression information in one covariate

To learn how x_{k} contributes "uniquely" to the regression, we can consider how introducing x_{k} to a working regression model affects the R^{2}.

Let $\hat{y}_{-k}=P_{-k} y$ be the fitted values in the model omitting covariate k.
Let R^{2} denote the multiple R^{2} for the full model, and let R_{-k}^{2} be the multiple R^{2} for the regression omitting covariate x_{k}. The value of

$$
R^{2}-R_{-k}^{2}
$$

is a way to quantify how much unique information about y in x_{k} is not captured by the other covariates. This is called the semi-partial R^{2}.

Identity involving norms of fitted values and residuals

Before we continue, we will need a simple identity that is often useful. In general, if a and b are orthogonal, then $\|a+b\|^{2}=\|a\|^{2}+\|b\|^{2}$.
If a and $b-a$ are orthogonal, then

$$
\|b\|^{2}=\|b-a+a\|^{2}=\|b-a\|^{2}+\|a\|^{2}
$$

Thus in this setting we have $\|b\|^{2}-\|a\|^{2}=\|b-a\|^{2}$.
Applying this fact to regression, we know that the fitted values and residuals are orthogonal. Thus for the regression omitting variable k, \hat{y}_{-k} and $y-\hat{y}_{-k}$ are orthogonal, so $\left\|y-\hat{y}_{-k}\right\|^{2}=\|y\|^{2}-\left\|\hat{y}_{-k}\right\|^{2}$.
By the same argument, $\|y-\hat{y}\|^{2}=\|y\|^{2}-\|\hat{y}\|^{2}$.

Improvement in R^{2} due to one covariate

Now we can obtain a simple, direct expression for the semi-partial R^{2}.
Since x_{k}^{\perp} is orthogonal to the other covariates,

$$
\hat{y}=\hat{y}_{-k}+\frac{\left\langle y, x_{k}^{\perp}\right\rangle}{\left\langle x_{k}^{\perp}, x_{k}^{\perp}\right\rangle} x_{k}^{\perp},
$$

and

$$
\|\hat{y}\|^{2}=\left\|\hat{y}_{-k}\right\|^{2}+\left\langle y, x_{k}^{\perp}\right\rangle^{2} /\left\|x_{k}^{\perp}\right\|^{2} .
$$

Improvement in R^{2} due to one covariate

Thus we have

$$
\begin{aligned}
R^{2} & =1-\frac{\|y-\hat{y}\|^{2}}{\|y-\bar{y}\|^{2}} \\
& =1-\frac{\|y\|^{2}-\|\hat{y}\|^{2}}{\|y-\bar{y}\|^{2}} \\
& =1-\frac{\|y\|^{2}-\|\hat{y}-k\|^{2}-\left\langle y, x_{k}^{\perp}\right\rangle^{2} /\left\|x_{k}^{\perp}\right\|^{2}}{\|y-\bar{y}\|^{2}} \\
& =1-\frac{\left\|y-\hat{y}_{-k}\right\|^{2}}{\|y-\bar{y}\|^{2}}+\frac{\left\langle y, x_{k}^{\perp}\right\rangle^{2} /\left\|x_{k}^{\perp}\right\|^{2}}{\|y-\bar{y}\|^{2}} \\
& =R_{-k}^{2}+\frac{\left\langle y, x_{k}^{\perp}\right\rangle^{2} /\left\|x_{k}^{\perp}\right\|^{2}}{\|y-\bar{y}\|^{2}} .
\end{aligned}
$$

Semi-partial R^{2}

Thus the semi-partial R^{2} is

$$
R^{2}-R_{-k}^{2}=\frac{\left\langle y, x_{k}^{\perp}\right\rangle^{2} /\left\|x_{k}^{\perp}\right\|^{2}}{\|y-\bar{y}\|^{2}}=\frac{\left\langle y, x_{k}^{\perp} /\left\|x_{k}^{\perp}\right\|\right\rangle^{2}}{\|y-\bar{y}\|^{2}} .
$$

Since $x_{k}^{\perp} /\left\|x_{k}^{\perp}\right\|$ is centered and has length 1 , it follows that

$$
R^{2}-R_{-k}^{2}=\widehat{\operatorname{cor}}\left(y, x_{k}^{\perp}\right)^{2} .
$$

Thus the semi-partial R^{2} for covariate k has two interpretations:

- It is the improvement in R^{2} resulting from including covariate k in a working regression model that already contains the other covariates.
- It is the R^{2} for a simple linear regression of y on $x_{k}^{\perp}=\left(I-P_{-k}\right) x_{k}$.

Partial R^{2}

The partial R^{2} is

$$
\frac{R^{2}-R_{-k}^{2}}{1-R_{-k}^{2}}=\frac{\left\langle y, x_{k}^{\perp}\right\rangle^{2} /\left\|x_{k}^{\perp}\right\|^{2}}{\|y-\hat{y}-k\|^{2}} .
$$

The partial R^{2} for covariate k is the fraction of the maximum possible improvement in R^{2} that is contributed by covariate k.

Let \hat{y}_{-k} be the fitted values for regressing y on all covariates except x_{k}.
Since $\hat{y}_{-k}^{\prime} x_{k}^{\perp}=0$,

$$
\frac{\left\langle y, x_{k}^{\perp}\right\rangle^{2}}{\left\|y-\hat{y}_{-k}\right\|^{2} \cdot\left\|x_{k}^{\perp}\right\|^{2}}=\frac{\left\langle y-\hat{y}_{-k}, x_{k}^{\perp}\right\rangle^{2}}{\left\|y-\hat{y}_{-k}\right\|^{2} \cdot\left\|x_{k}^{\perp}\right\|^{2}}
$$

The expression on the left is the usual R^{2} that would be obtained when regressing $y-\hat{y}_{-k}$ on x_{k}^{\perp}. Thus the partial R^{2} is the same as the usual R^{2} for $\left(I-P_{-k}\right) y$ regressed on $\left(I-P_{-k}\right) x_{k}$.

The partial R^{2} and variable importance

The partial R^{2} is one way to measure the importance of a variable in a regression model. However "importance" has many facets and no one measure is a perfect indicator of performance. Other possible indicators of variable importance are:

- The estimated regression slope $\hat{\beta}_{k}$ - this is not a good measure because it's scale depends on the units of the corresponding covariate.
- The standardized regression slope $\hat{\beta}_{k} \mathrm{SD}\left(x_{k}\right)$. Since $\hat{\beta}_{k} x_{k}=\hat{\beta}_{k} \mathrm{SD}\left(x_{k}\right) \cdot x_{l} / \mathrm{SD}\left(x_{k}\right)$ this measures the expected change in y corresponding to a one standard deviation change in x_{k}. This is a dimensionless quantity.
- The p -value for the null hypothesis that $\beta_{k}=0$ (e.g. from a Wald test). This is not a good measure of importance because in many cases it tells you more about the sample size than the importance of x_{k} - as long as $\beta_{k} \neq 0$, this p -value will tend to zero as n grows.
- The semi-partial R^{2} - this measure does not "correct" for the strength of the base model, which is a drawback in some settings but an advantage in others.

The partial R^{2} and variable importance

No measure of variable importance is perfect, for example:

1. The most important variable may not have any causal relationship with y - it may only be imporant because it is a proxy or surrogate for the causes of y, or the most important variable may even be caused by y.
2. The most important variable may not be modifiable, e.g. if we want to manipulate the factors that predict y in order to alter the value of y in a favorable direction, the most important factor may not be modifiable (e.g. age may be the most important risk factor for a health outcome but we cannot stop the passage of time).

Decomposition of projection matrices

Suppose $P \in \mathcal{R}^{n \times n}$ is a rank- d projection matrix, and U is a $n \times d$ orthogonal matrix whose columns span $\operatorname{col}(P)$. If we partition U by columns

$$
U=\left(\begin{array}{cccc}
\mid & \mid & \cdots & \mid \\
u_{1} & u_{2} & \cdots & u_{d} \\
\mid & \mid & \cdots & \mid
\end{array}\right),
$$

then $P=U U^{\prime}$, so we can write

$$
P=\sum_{j=1}^{d} u_{j} u_{j}^{\prime}
$$

Note that this representation is not unique, since there are different orthogonal bases for $\operatorname{col}(P)$.

Each summand $u_{j} u_{j}^{\prime} \in \mathcal{R}^{n \times n}$ is a rank- 1 projection matrix onto $\left\langle u_{j}\right\rangle$.

Decomposition of R^{2}

Question: In a multiple regression model, how much of the variance in y is explained by a particular covariate?

Orthogonal case: If the design matrix X is orthogonal $\left(X^{\prime} X=I\right)$, the projection P onto $\operatorname{col}(X)$ can be decomposed as

$$
P=\sum_{j=0}^{p} P_{j}=\frac{11^{\prime}}{n}+\sum_{j=1}^{p} x_{j} x_{j}^{\prime}
$$

where x_{j} is the $j^{\text {th }}$ column of the design matrix (assuming here that the first column of X is an intercept).

Decomposition of R^{2} (orthogonal case)

The $n \times n$ rank-1 matrix

$$
P_{j}=x_{j} x_{j}^{\prime}
$$

is the projection onto $\operatorname{span}\left(x_{j}\right)$ (and P_{0} is the projection onto the span of the vector of 1's). Furthermore, by orthogonality, $P_{j} P_{k}=0$ unless $j=k$. Since

$$
\hat{y}-\bar{y}=\sum_{j=1}^{p} P_{j} y
$$

by orthogonality

$$
\|\hat{y}-\bar{y}\|^{2}=\sum_{j=1}^{p}\left\|P_{j} y\right\|^{2}
$$

Here we are using the fact that if u_{1}, \ldots, u_{m} are orthogonal, then

$$
\left\|u_{1}+\cdots+u_{m}\right\|^{2}=\left\|u_{1}\right\|^{2}+\cdots+\left\|u_{m}\right\|^{2}
$$

Decomposition of R^{2} (orthogonal case)

The R^{2} for simple linear regression of y on x_{j} is

$$
R_{j}^{2} \equiv\|\hat{y}-\bar{y}\|^{2} /\|y-\bar{y}\|^{2}=\left\|P_{j} y\right\|^{2} /\|y-\bar{y}\|^{2},
$$

so we see that for orthogonal design matrices,

$$
R^{2}=\sum_{j=1}^{p} R_{j}^{2}
$$

That is, the overall coefficient of determination is the sum of univariate coefficients of determination for all the explanatory variables.

Decomposition of R^{2}

Non-orthogonal case: If X is not orthogonal, the overall R^{2} will not be the sum of single covariate R^{2} 's.

If we let R_{j}^{2} be as above (the R^{2} values for regressing Y on each X_{j}), then there are two different situations: $\sum_{j} R_{j}^{2}>R^{2}$, and $\sum_{j} R_{j}^{2}<R^{2}$.

Decomposition of R^{2}

Case 1: $\sum R_{j}^{2}>R^{2}$
It's not surprising that $\sum_{j} R_{j}^{2}$ can be bigger than R^{2}. For example, suppose that the population data generating model is

$$
y=x_{1}+\epsilon
$$

and x_{2} is highly correlated with x_{1}, but is not part of the data generating model, as in the following diagram:

Decomposition of R^{2}

For the regression of y on both x_{1} and x_{2}, the multiple R^{2} will be $1-\sigma^{2} / \operatorname{var}(y)$ (since $E\left[y \mid x_{1}, x_{2}\right]=E\left[y \mid x_{1}\right]=x_{1}$).
The R^{2} values for y regressed on either x_{1} or x_{2} separately will also be approximately $1-\sigma^{2} / \operatorname{var}(y)$.

Thus $R_{1}^{2}+R_{2}^{2} \approx 2 R^{2}$.

Decomposition of R^{2}

Case 2: $\sum_{j} R_{j}^{2}<R^{2}$
This is more surprising, and is sometimes called enhancement.
As an example, suppose the data generating model is

$$
y=z+\epsilon,
$$

but we don't observe z (for simplicity assume $E[z]=0$). Instead, we observe a value x_{1} that satisfies

$$
x_{1}=z+x_{2}
$$

where x_{2} has mean 0 and is independent of z and ϵ.
Since x_{2} is independent of z and ϵ, it is also independent of y, thus $R_{2}^{2} \approx 0$ for large n.

Decomposition of R^{2}

The following causal diagram illustrates this example:

Decomposition of R^{2} (enhancement example)

The multiple R^{2} of y on x_{1} and x_{2} is approximately $\sigma_{z}^{2} /\left(\sigma_{z}^{2}+\sigma^{2}\right)$ for large n, since the fitted values will converge to $\hat{y}=x_{1}-x_{2}=z$.

To calculate R_{1}^{2}, first note that for the regression of y on x_{1}, where $y, x_{1} \in \mathcal{R}^{n}$ are data vectors

$$
\hat{\beta}=\frac{\widehat{\operatorname{cov}}\left(y, x_{1}\right)}{\widehat{\operatorname{var}}\left(x_{1}\right)} \rightarrow \frac{\sigma_{z}^{2}}{\sigma_{z}^{2}+\sigma_{x_{2}}^{2}}
$$

and

$$
\hat{\alpha} \rightarrow 0 .
$$

Decomposition of R^{2} (enhancement example)

Therefore for large n,

$$
\begin{aligned}
n^{-1}\|y-\hat{y}\|^{2} & \approx n^{-1}\left\|z+\epsilon-\sigma_{z}^{2} x_{1} /\left(\sigma_{z}^{2}+\sigma_{x_{2}}^{2}\right)\right\|^{2} \\
& =n^{-1}\left\|\sigma_{x_{2}}^{2} z /\left(\sigma_{z}^{2}+\sigma_{x_{2}}^{2}\right)+\epsilon-\sigma_{z}^{2} x_{2} /\left(\sigma_{z}^{2}+\sigma_{x_{2}}^{2}\right)\right\|^{2} \\
& =\sigma_{x_{2}}^{4} \sigma_{z}^{2} /\left(\sigma_{z}^{2}+\sigma_{x_{2}}^{2}\right)^{2}+\sigma^{2}+\sigma_{z}^{4} \sigma_{x_{2}}^{2} /\left(\sigma_{z}^{2}+\sigma_{x_{2}}^{2}\right)^{2} \\
& =\sigma_{x_{2}}^{2} \sigma_{z}^{2} /\left(\sigma_{z}^{2}+\sigma_{x_{2}}^{2}\right)+\sigma^{2} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
R_{1}^{2} & =1-\frac{n^{-1}\|y-\hat{y}\|^{2}}{n^{-1}\|y-\bar{y}\|^{2}} \\
& \approx 1-\frac{\sigma_{x_{2}}^{2} \sigma_{z}^{2} /\left(\sigma_{z}^{2}+\sigma_{x_{2}}^{2}\right)+\sigma^{2}}{\sigma_{z}^{2}+\sigma^{2}} \\
& =\frac{\sigma_{z}^{2}}{\left(\sigma_{z}^{2}+\sigma^{2}\right)\left(1+\sigma_{x_{2}}^{2} / \sigma_{z}^{2}\right)}
\end{aligned}
$$

Decomposition of R^{2} (enhancement example)

Thus

$$
R_{1}^{2} / R^{2} \approx 1 /\left(1+\sigma_{x_{2}}^{2} / \sigma_{z}^{2}\right)
$$

which is strictly less than one if $\sigma_{x_{2}}^{2}>0$.
Since $R_{2}^{2}=0$, it follows that $R^{2}>R_{1}^{2}+R_{2}^{2}$.
The reason for this is that while x_{2} contains no directly useful information about y (hence $R_{2}^{2}=0$), it can remove the "measurement error" in x_{1}, making x_{1} a better predictor of z.

Decomposition of R^{2} (enhancement example)

We can now calculate the limiting partial R^{2} for adding x_{2} to a model that already contains x_{1} :

$$
\frac{\sigma_{x_{2}}^{2}}{\sigma_{x_{2}}^{2}+\sigma^{2}\left(1+\sigma_{x_{2}}^{2} / \sigma_{z}^{2}\right)} .
$$

Partial R^{2} example 2

Suppose the design matrix satisfies

$$
X^{\prime} X / n=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & r \\
0 & r & 1
\end{array}\right)
$$

and the data generating model is

$$
y=x_{1}+x_{2}+\epsilon
$$

with $\operatorname{var} \epsilon=\sigma^{2}$.

Partial R^{2} example 2

We will calculate the partial R^{2} for x_{1}, using the fact that the partial R^{2} is the regular R^{2} for regressing

$$
\left(I-P_{-1}\right) y
$$

on

$$
\left(I-P_{-1}\right) x_{1}
$$

where $y, x_{1}, x_{2} \in \mathcal{R}^{n}$ are data vectors distributed like Y, x_{1}, and x_{2}, and P_{-1} is the projection onto $\operatorname{span}\left(\left\{1, x_{2}\right\}\right)$.
Since this is a simple linear regression, the partial R^{2} can be expressed

$$
\widehat{\operatorname{cor}}\left(\left(I-P_{-1}\right) y,\left(I-P_{-1}\right) x_{1}\right)^{2} .
$$

Partial R^{2} example 2

We will calculate the partial R^{2} in a setting where all conditional means are linear. This would hold if the data are jointly Gaussian (but this is not a necessary condition for conditional means to be linear).

The numerator of the partial R^{2} is the square of

$$
\begin{aligned}
\widehat{\operatorname{cov}}\left(\left(I-P_{-1}\right) y,\left(I-P_{-1}\right) x_{1}\right) & =y^{\prime}\left(I-P_{-1}\right) x_{1} / n \\
& =\left(x_{1}+x_{2}+\epsilon\right)^{\prime}\left(x_{1}-r x_{2}\right) / n \\
& \rightarrow 1-r^{2}
\end{aligned}
$$

Partial R^{2} example 2

The denominator contains two factors. The first is

$$
\begin{aligned}
\left\|\left(I-P_{-1}\right) x_{1}\right\|^{2} / n & =x_{1}^{\prime}\left(I-P_{-1}\right) x_{1} / n \\
& =x_{1}^{\prime}\left(x_{1}-r x_{2}\right) / n \\
& \rightarrow 1-r^{2}
\end{aligned}
$$

Partial R^{2} example 2

The other factor in the denominator is $y^{\prime}\left(I-P_{-1}\right) y / n$:

$$
\begin{aligned}
y^{\prime}\left(I-P_{-1}\right) y / n= & \left(x_{1}+x_{2}\right)^{\prime}\left(I-P_{-1}\right)\left(x_{1}+x_{2}\right) / n+\epsilon^{\prime}\left(I-P_{-1}\right) \epsilon / n+ \\
& 2 \epsilon^{\prime}\left(I-P_{-1}\right)\left(x_{1}+x_{2}\right) / n \\
\approx & \left(x_{1}+x_{2}\right)^{\prime}\left(x_{1}-r x_{2}\right) / n+\sigma^{2} \\
& \rightarrow 1-r^{2}+\sigma^{2} .
\end{aligned}
$$

Thus we get that the partial R^{2} is approximately equal to

$$
\frac{1-r^{2}}{1-r^{2}+\sigma^{2}}
$$

If $r=1$ then the result is zero (x_{1} has no unique explanatory power), and if $r=0$, the result is $1 /\left(1+\sigma^{2}\right)$, indicating that after controlling for x_{2}, around $1 /\left(1+\sigma^{2}\right)$ fraction of the remaining variance is explained by x_{1} (the rest is due to ϵ).

Summary

Each of the three R^{2} values can be expressed either in terms of variance ratios, or as a squared correlation coefficient:

	Multiple R^{2}	Semi-partial R^{2}	Partial R^{2}				
VR	$\\|\hat{y}-\bar{y}\\|^{2} /\\|y-\bar{y}\\|^{2}$	$R^{2}-R_{-k}^{2}$	$\left(R^{2}-R_{-k}^{2}\right) /\left(1-R_{-k}^{2}\right)$				
Correlation	$\widehat{\operatorname{cor}}(\hat{y}, y)^{2}$	$\widehat{\operatorname{cor}\left(y, x_{k}^{\frac{1}{2}}\right)^{2}}$	$\widehat{\operatorname{cor}}\left(\left(I-P_{-k}\right) y, x_{k}^{-}\right)^{2}$				

