
Statistics 600 Midterm Exam

November 3rd, 2021

There are 5 questions, each with multiple parts. Each of the 5 questions is
worth 20 points. Try to complete all five questions. Partial credit will be
given, show your work where appropriate.

1.

(a) Is the product of square orthogonal matrices always orthogonal?
Prove the statement or provide a counterexample.

Solution:

Suppose A and B are square and orthogonal, so that A′A = I and
B′B = I. Therefore (AB)′AB = B′A′AB = I, so the statement
is true.

(b) Is the product of projection matrices always a projection matrix?
Prove the statement or provide a counterexample.

Solution:

The statement is false. Suppose we have rank 1 projections P =
vv′ and Q = uu′, where ‖v‖ = ‖u‖ = 1. Thus

PQ = (v′u) · vu′

which is not symmetric or idempotent unless v = u. Since pro-
jection matrices are always symmetric and idempotent, this is a
counterexample.

(c) Suppose we have a n × p matrix X, each column of which sums
to 0. Let X̃ be an n× p matrix obtained by adding a fixed vector
v ∈ Rp to each row of X. Derive a concise expression for the
difference of Gram matrices X̃ ′X̃ −X ′X.

Solution:

Let xi ∈ Rp, i = 1, . . . , n, denote the rows of X. Then

1



X̃ ′X̃ =
∑
i

(xi + v)′(xi + v)

=
∑
i

x′ixi +
∑
i

x′iv +
∑
i

v′xi + nv′v

= X ′X + nv′v.

Thus X̃ ′X̃ −X ′X = nv′v.

(d) Suppose that P is a projection matrix on Rp. Prove that for any
x ∈ Rp, ‖Px‖ ≤ ‖x‖.

Solution:

We can write x = Px + (I − P )x, and since P (I − P ) ≡ 0,
it follows that Px and (I − P )x are orthogonal, hence ‖x‖2 =
‖Px‖2 + ‖(I − P )x‖2, and it follows that ‖Px‖2 ≤ ‖x‖2.

(e) Suppose V ∈ Rn×p is orthogonal. For what values λ ∈ R is the
matrix In×n + λV V ′ positive definite?

Solution:

For a unit vector x ∈ Rp

x′(I + λV V ′)x = 1 + λ‖V ′x‖2

= 1 + λ‖V V ′x‖2

Since V V ′ is a projection matrix, using part (e) we know that
‖V V ′x‖ ≤ ‖x‖ = 1. Thus λ > −1 is sufficient. If x ∈ col(V ),
‖x‖ = ‖V x‖, so the condition is also necessary.

2. Suppose we are conducting an experiment to understand the relation-
ship between a response y, and two predictor variables x1 and x2 which
satisfy x̄1 = x̄2 = 0 and x′1x1/n = x′2x2/n = 1. Our goal is to precisely
estimate β1 in the mean structure E[y|x1, x2] = β0 +β1x1 +β2x2. Since
this is an experiment, we determine the values of x1 and x2, but are only
given two options for doing so. One option is to have ĉor(x1, x2) = 0.4
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at sample size n = 30. Another option is to have ĉor(x1, x2) = 0.2 at a
sample size ñ < 30. How small can ñ be so that the second option is
preferable to the first option? Simplify where practical, but your final
answer can be an expression, not a number.

Solution:

The variance of β̂1 is

σ2

n(1− r2)

Thus we need

σ2

30(1− 0.42)
≥ σ2

ñ(1− 0.22)

so

ñ ≥ 30(1− 0.42)

1− 0.22
≈ 26.

3. Suppose we have a multiple regression analysis involving p covariates
x1, . . . , xp and a response y. We regress y on x1, . . . , xp. Then, we
rescale the variables to obtain a new set of p variables x̃j = fjxj, where
the fj > 0 are known constants. Briefly describe how each of the
following quantities changes in doing this:

(a) The fitted values ŷ using the original covariates compared to the
fitted values ỹ using the rescaled covariates.

Solution:

Since span(x1, . . . , xp) = span(x̃1, . . . , x̃p), the fitted values do not
change.

(b) The regression coefficient estimates β̂j for the original covariates
compared to the regression coefficient estimates β̃j for the rescaled
covariates.

Solution:
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The fitted values are the same, which can be achieved by ensuring
that β̂xj = β̃x̃j. Thus, β̃j = β̂j/fj.

(c) The residuals based on the original covariates compared to the
residuals based on the rescaled covariates.

Solution:

Since the fitted values do not change, the residuals do not change.

(d) The mean squared error σ̂2 based on the original covariates com-
pared to the mean squared error based on the rescaled covariates.

Solution:

Since the residuals do not change, the mean squared error does
not change.

(e) The standard errors of the coefficient estimates based on the orig-
inal covariates compared to the standard errors of the coefficient
estimates based on the rescaled covariates.

Solution:

Since β̃j = β̂j/fj, it follows that SD(β̃j) = SD(β̂j)/fj.

(f) The Z-scores for the regression coefficient estimates (the estimates
divided by their standard error) using the original covariates com-
pared to the Z-scores using the rescaled covariates.

Solution:

β̃j/SD(β̃j) = β̂j/SD(β̂j), so the Z-scores do not change.

4. Suppose we have covariates x1 and x2 that are random variables with
zero mean, unit variance, and cor(x1, x2) = r. We observe data from
the linear model y = x1 + βx2 + ε, where var(ε|x) = σ2. Let Q1 denote
the limiting partial R2 for the model including both covariates relative
to the model including only x2. Let Q2 denote the limiting partial R2

for the model including both covariates relative to the model including
only x1. In all cases, the intercept is also included in the model.

(a) What is the (unconditional) variance of y?

Solution: 1 + β2 + 2rβ + σ2.
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(b) What are the values of Q1 and Q2 in the special case where r = 0?

Solution: The full model R2 is

1 + β2

1 + β2 + σ2
.

The R2 for the model including x1 only is

1

1 + β2 + σ2
.

The R2 for the model including x2 only is

β2

1 + β2 + σ2
.

Thus,

Q1 =
1

1 + σ2

Q2 =
β2

β2 + σ2
.

(c) What are the limiting values of Q1 and Q2 as |r| → 1?

Solution: Both are equal to zero, since all the information in one
of x1, x2 is already contained in the other. Thus there is no gain in
explained variance when including them both when one is already
in the model.

5. Suppose we are planning a study in which an n× 11 design matrix Xn

satisfying X ′nXn = nI will be generated, and responses y will be then
be obtained that follow a linear model meeting the usual conditions.
We aim to produce a set of 95% simultaneous confidence intervals for
β1, . . . , β10 using the Bonferroni procedure.
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(a) Given that σ2 = 1 (assumed known), how large should n be so
that the intervals are all 0.5 units wide? You can use the following
table of normal quantiles:

p q : P (Z ≤ q) = p
0.95000 1.64
0.97500 1.96
0.99000 2.32
0.99500 2.58
0.99750 2.81
0.99950 3.29
0.99975 3.48

Solution:

The standard errors are all equal to σ/
√
n = 1/

√
n. Suppose

we want to have at least 95% simultaneous coverage for the 10
intervals. Then the intervals will have the form β̂j ± 2.81/

√
n,

since 2.81 is the 1 − .025/10 = 0.9975 quantile of the standard
normal distribution. Thus the intervals are 5.62/

√
n units wide.

We set 5.62/
√
n = 0.5 and solve to get n ≈ 126.

(b) Now consider the more general setting where we have p mutually
orthonormal covariates, a sample size n, and a known value of σ2.
Let w denote the width of each interval within a collection of p
simultaneous 95% coverage intervals obtained using the Bonferroni
method. (i) Calculate the widths of these intervals using the crude
approximation to the standard normal quantile function Q(1 −
u) ≈

√
−2 log u. (ii) Now suppose we have q mutually orthogonal

covariates, instead of p = 10 mutually orthogonal covariates. How
large must q be in order for the width of the simultaneous CI based
on q covariates to be twice the width based on p = 10 covariates,
when σ2 and n are held fixed?

Solution:

The intervals have the form f · SE = fσ/
√
n, where f is the

1 − 0.025/p quantile of the standard normal distribution. Using

the given approximation, Q(1 − 0.025/p) ≈
√
−2 log(0.025/p) =√

−2 log(0.025) + 2 log(p). Thus the widths for part (i) are
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w = 2
√
−2 log(0.025) + 2 log(p) · σ/

√
n.

For part (ii), we need to solve:

2 =
2
√
−2 log(0.025) + 2 log(q)

2
√
−2 log(0.025) + 2 log(p)

=

√√√√k + 2 log(q)

k + 2 log(p)

where k = −2 log(0.025).

Thus

4 =
k + 2 log(q)

k + 2 log(p)

and

q = exp(3k/2)p4.
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