
Statistics 600 Final Exam

December 20, 2021

There are 5 questions, each with multiple parts. Each of the 5 questions is
worth 20 points. Try to complete all five questions. Partial credit will be
given, show your work where appropriate.

1. Suppose we have data for a sample of subjects representing a popula-
tion, where yi is a person’s resting heart rate, ai is their age in years,
fi = 1 if a person is female, and fi = 0 if a person is male.

(a) Suppose we fit a model of the form ŷ = β̂0 + β̂1a+ β̂2f . State two
distinct aspects of this model that may limit its ability to describe
a real human population.

Solution: In this model, the sex-specific conditional mean func-
tions E[y|a, f = 0] and E[y|a, f = 1] are both linear functions
of age, and furthermore are parallel. The true conditional mean
functions may be non-linear, and/or may not be parallel. There
are a number of other possible answers such as the model having
a homoscedastic variance structure and the model not accounting
for any possibility of correlations between people.

We did not deduct for this but it is not very informative to simply
state that the model does not include an interaction. It is more
informative to directly express what is deficient about the model
as given.

We also accepted without deduction that the model may exclude
some covariates. However this is true of any model, and in many
settings the goal of a regression analysis is to estimate the con-
ditional mean for a given set of explanatory variables, not for all
possible explanatory variables. Arguably, if all possible variables
are included then the system becomes deterministic and statistical
approaches are no longer needed. In other words, the conditional
mean E[y|a, f ] is a well-defined estimand in spite of the fact that
other covariates may exist.

(b) Suppose we obtain the fitted model ŷ = 60+0.1·a+5·f−5·a·f/70.
Describe in 2-3 sentences the relationship according to this model
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between female and male heart rates over a typical adult human
age range of say 18 to 80.

Solution: Under this model, the expected heart rates for both
females and for males are increasing linear functions of age. The
sex-specific conditional mean lines intersect at age 70, so that
below age 70 women have higher heart rate and above age 70 men
have higher heart rate.

(c) Suppose we construct a plot of residuals on fitted values for a
model fit to this data (not specifically either of the models dis-
cussed in parts a or b). Describe in 1-2 sentences what we might
hope to learn by doing this.

Solution: The main use of a plot of residuals on fitted values is to
assess whether the conditional variance is approximately constant
(i.e. the residual variation is homoscedastic).

(d) Suppose we construct a partial residual plot for age using a model
fit to this data (again, not specifically one of the models presented
above). Describe in 1-2 sentences how this plot is constructed and
what might be a purpose of doing this.

Solution: A partial residual plot is a scatterplot of β̂jxij + ri
for a specific covariate j, where i indexes the observations. The
main use for a partial residual plot is to visualize a dataset that
would arise if all covariates other than covariate j were held at
fixed values rather than varying.

2. Suppose we have a regression model with a mean structure E[y|x] =
x+x3 and var[y|x] = σ2, where furthermore x follows a standard normal
distribution. Note that a standard normal random variable z has the
property that Ezp is equal to 0 if p is odd, and if p is even then Ezp is
the product of all odd integers between 1 and p− 1.

(a) Suppose we fit the simple linear regression model ŷ = α̂+β̂x using
ordinary least squares (OLS). What are the limiting values of α̂
and β̂?

Solution:
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β̂ =
∑

yi(xi − x̄)/
∑

(xi − x̄)2

=
∑

(xi + x3i + εi)(xi − x̄)/
∑

(xi − x̄)2

→ E[x2] + E[x4]

= 4.

Since E[y] = E[x] = 0, it follows that α̂→ 0.

(b) What is the limiting R2 if we use the simple linear regression
model from part (a)?

Solution:

var(ŷ) = 16var(x) = 16.

var(y) = var(x) + var(x3) + 2cov(x, x3) + var(ε)

= 1 + 15 + 2 · 3 + σ2

= 22 + σ2.

Thus the limiting R2 is 16/(22 + σ2).

3. Suppose we have data on n matched pairs of people. Let yij ∈ R
for i = 1, . . . , n and j = 1, 2 denote the responses, and suppose that
E[yij|xij] = β′xij, for covariates (1, xij) ∈ R2. Further, suppose that
the yij are independent within and between pairs, and that the variance
structure is var(yi1|xi1) = σ2, var(yi2|xi2) = fσ2 for some f > 0. For
simplicity, take

∑
i xi1 =

∑
i xi2 = 0, and

∑
i x

2
i1 =

∑
i x

2
i2 = n.

(a) Suppose that σ2 amd f are known and we use GLS to estimate β.
Derive a concise expression for cov(β̂).

Solution:

cov(β̂gls) =
σ2f

n(1 + f)
I2×2.
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(b) What is the ratio of cov(β̂1) (where β̂ = (β̂0, β̂1)) for a given value
f to the value obtained when f = 1?

Solution: 2f/(1 + f)

(c) Suppose in one study we have a sample size n and f = 1, and in
a second study with the same σ2 we have a sample size n′ and a
given value f . If the two studies have the same standard error for
var(β̂1), what is the ratio n′/n?

Solution: 2f/(1 + f)

(d) Suppose we estimate the model parameters using OLS, ignoring
the possible heteroscedasticity. What is the ratio var(β̂ols

1 )/var(β̂gls
1 )?

Solution: Since

β̂ols = (
∑
i

X ′iXi)
−1∑X ′iyi,

therefore

cov(β̂ols) = (
∑
i

X ′iXi)
−1 ·

∑
X ′icov(yi)Xi · (

∑
i

X ′iXi)
−1.

Based on what is given above,

∑
i

X ′iXi = 2nI2.

Therefore

cov(β̂ols) = (4n2)−1
∑

X ′icov(yi)Xi.

Since

∑
X ′icov(yi)Xi = nσ2(1 + f)I2.

Therefore cov(β̂ols) = (4n2)−1nσ2(1 + f) = σ2(1 + f)/(4n).

4



Thus

var(β̂ols,1)/var(β̂gls,1) = (1 + f)2/(4f).

4. Suppose we are interested in the relationship between the means EX
and EY , for a population defined by two random variables X and Y .
We have IID samples of data x1, . . . , xn ∼ FX and y1, . . . , yn ∼ FY .

(a) Taking X and Y to be independent, and σx ≡ SD(X) and σy ≡
SD(Y ) to be known, provide a 95% confidence interval for EX −
EY .

Solution: By the central limit theorem, x̄ and ȳ are approxi-
mately Gaussian. The standard error of x̄ − ȳ is

√
σ2
x/n+ σ2

y/n,

so an approximate 95% confidence interval is

x̄− ȳ ± 2
√
σ2
x/n+ σ2

y/n.

(b) Now suppose that the data may be correlated, with cor(X, Y ) = r
(the xi remain mutually independent of each other, as do the
yi). Taking σx, σy, and r to be known, provide a 95% confidence
interval for EX − EY in this setting.

Solution: In this case we can estimate EX − EY as d̄, where
di = xi − yi. The standard error of d̄ is

√
σ2
x + σ2

y − 2rσxσy/
√
n,

so the interval has the form

x̄− ȳ ± 2
√
σ2
x + σ2

y − 2rσxσy/
√
n.

(c) Under what conditions can we be certain that the interval from
part (b) will be narrower than the interval from part (a)?

Solution: The second interval will be narrower than the first
interval if and only if r > 0.

(d) Now suppose that our data are non-negative and follow a quasi-
Poisson like distribution, meaning that var(X) = φ · EX and
var(Y ) = φ · EY , for the same value of φ, and we wish to obtain
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a 95% confidence interval for the ratio EY/EX in the presence of
possible correlation between X and Y . Describe how this can be
achieved using methods covered in this course.

Solution: We can use quasi-Poisson GEE. Place the data into a
vector of length 2n: (x1, y1, x2, y2, . . .), and let the design matrix
be an n×2 array with first column identically 1 and second column
(0, 1, 0, 1, . . .). Under this model, E[X] = exp(β0) and E[Y ] =
exp(β0 + β1). Thus E[Y ]/E[X] = exp(β1). We can group the
data using group labels (1, 1, 2, 2, . . .) and use GEE to estimate the
model parameters. Let s denote the GEE standard error for β1,
which accommodates correlation between X and Y . Then a 95%
confidence interval for E[Y ]/E[X] is exp(β̂1 − 2s), exp(β̂1 + 2s).

5.

(a) Suppose we observe data yi ∈ Rn, xi ∈ Rn×p for i = 1, . . . ,m,
where E[yi|xi] = xiβ and cov[yi|xi] = Σi ∈ Rn×n. The Σi are
known, and yi, yi′ are uncorrelated when i 6= i′. Let Σi = UiDU

′
i be

the spectral decomposition of Σi, so that Ui ∈ Rn×n is orthogonal
and D ∈ Rn×n is diagonal. Note that D is common to all groups.
What is the relationship between β̂ols and β̂gls when xi = ciUi for
all i, with ci ∈ R?

Solution:

∑
x′iΣ

−1
i xi =

∑
c2i ·D,

and

∑
x′iΣ

−1 = D ·
∑

ciU
′
iyi

Thus

β̂gls = (
∑

c2i )
−1∑ ciU

′
iyi.

Also,
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∑
x′ixi =

∑
c2i Ip

∑
x′iyi =

∑
ciU

′
iyi.

So we see that β̂ols = β̂gls.

(b) Suppose that M = I+b ·1d1
′
d, where I is the d×d identity matrix,

1d ∈ Rd, and b > 0 is a scalar. Show that every eigenvector v of
M satisfies either v′1 = 0 or v ∝ 1d.

Solution: Suppose that v, λ are an eigenvector and eigenvalue of
M . Since Mv = λv

(I + b · 1d1
′
d)v = v + c · 1d,

where c = b · (1′dv) ∈ R.

Thus we have a linear equation relating v and 1d. This implies
that either v ∝ 1 or the linear equation is degenerate, and since
λ 6= 0 by definition, the latter implies that v′1d = 0.

(c) Suppose that n = 2 and

Σi =

(
1 r
r 1

)
.

What are Ui and D in this case, where Σi = UiDU
′
i as above?

Solution: The columns of U are the eigenvectors of Σ, which has
the compound symmetry structure from part (c). Therefore the
eigenvectors are (1, 1)/

√
2 and (1,−1)/

√
2. We have

U = 2−1/2 ·
(

1 1
1 −1

)
.

The corresponding eigenvalues are 1 + r, 1− r so
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D =

(
1 + r 0

0 1− r

)
.
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