Statistics 600 Problem Set 1

Due Wednesday September 29th at midnight

1. Suppose we use least squares to perform multiple linear regression, yielding fitted values $\hat{y} = X\hat{\beta} \in \mathcal{R}^n$. Do these fitted values maximize the sample correlation coefficient with the response vector, i.e. does the following hold?

$$\widehat{\operatorname{cor}}(X\hat{\beta}, y) = \max_b \widehat{\operatorname{cor}}(Xb, y)$$

Justify your answer.

Solution: Since the question only involves fitted values, we can linearly transform the columns of X as follows. Supposing that $1_n \in \operatorname{col}(X)$ we can take the first column of X to be 1_n , and the remaining columns of X to be centered. Let \tilde{X} denote the $n \times p$ matrix consisting of columns 2 through p+1 of X. The coefficient vector b can be partitioned $b = (b_0, \tilde{b})$ where $b_0 \in \mathcal{R}$ and $\tilde{b} \in \mathcal{R}^p$. Note that for any such $b, Xb - \overline{Xb} = \tilde{X}\tilde{b}$. Then

$$\begin{aligned} \widehat{\operatorname{cor}}(Xb, y) &= \widehat{\operatorname{cor}}(\tilde{X}\tilde{b}, y) \\ &= \frac{y'\tilde{X}\tilde{b}}{\|y - \bar{y}\| \cdot (\tilde{b}'\tilde{X}'\tilde{X}\tilde{b})^{1/2}} \\ &\propto \frac{y'\tilde{X}\tilde{b}}{(\tilde{b}'\tilde{X}'\tilde{X}\tilde{b})^{1/2}}. \end{aligned}$$

Write $\tilde{X}'\tilde{X} = R'R$, where R is square and invertible (e.g. using the QR factorization $\tilde{X} = QR$, so $\tilde{X}'\tilde{X} = R'R$). Now change variables by setting u = Rb, and the expression above becomes

$$y'\tilde{X}R^{-1}u/\|u\|.$$

By the Cauchy-Schwarz inequality, the above is maximized by setting $u \propto R^{-T} \tilde{X}^T y$, and changing back to the original coordinates we get $\hat{\tilde{b}} \propto R^{-1}R^{-T}\tilde{X}^T y = (\tilde{X}'\tilde{X})^{-1}\tilde{X}' y$. Since the first column of X is orthogonal

to all columns of \tilde{X} , the least squares fit of y on X is equal to $\bar{y} + \tilde{X}\hat{\tilde{b}}$, which has the same correlation with y as does $\tilde{X}\hat{\tilde{b}}$. Thus the least squares fitted values maximize the correlation, as long as $1_n \in \operatorname{col}(X)$.

If 1_n is not in col(X), then let $P = I - 1_n 1'_n / n$ denote the centering matrix. Then,

$$\widehat{\text{cor}}(Xb, y) = \frac{y'(I - P)Xb}{\|y - \bar{y}\| \cdot (b'X'(I - P)Xb)^{1/2}} \\ \propto \frac{y'(I - P)Xb}{(b'X'(I - P)Xb)^{1/2}}.$$

Since 1 is not in $\operatorname{col}(X)$, X'(I-P)X is non-singular, so can be written in the form R'R, and changing variables then using Cauchy-Schwarz as above, we obtain that the maximizer of the correlation is $\hat{b} = (X'(I-P)X)^{-1}X'(I-P)y$. It is easy to show by example that this choice of b, which is obtained by using OLS on the centered design matrix, has higher correlation with y then the usual least squares fit with un-centered columns. Thus, OLS does not maximize the correlation coefficient with y when no intercept is in the model.

- 2. Suppose we have a least squares problem with more variables than observations. That is, we observe a response vector $y \in \mathcal{R}^n$, and a design matrix $X \in \mathcal{R}^{n \times p}$ where $p \ge n$ and the rows of X are linearly independent.
 - (a) Derive an expression for the vector $\hat{\beta}$ that minimizes $\|\beta\|^2$ subject to $X\beta = y$.

Solution

Using the QR decomposition, write X' = QR, and since X' is nonsingular, R is invertible and the equation $X\beta = y$ becomes $Q'\beta = g$, where $g = R^{-T}y$. Next we will show that $\hat{\beta} \in \operatorname{col}(Q) =$ $\operatorname{row}(X)$. We can write $\beta = \theta + \gamma$, where $\theta \in \operatorname{col}(Q)$ and $\gamma \in$ $\operatorname{col}(Q)^{\perp}$. Note that $Q'\beta = Q'\theta$, and $\|\beta\|^2 = \|\theta\|^2 + \|\gamma\|^2$. Thus for any choice of θ satisfying $Q'\theta = g$, $\|\beta\|^2$ will always be minimized by setting $\gamma = 0$. Since $\theta \in \operatorname{col}(Q)$, we can write $\theta = Q\eta$ for some $\eta \in \mathcal{R}^n$, and we have $Q'Q\eta = \eta = g$, and $\theta = Qg$. Thus the solution is $\hat{\beta} = QR^{-T}y$.

(b) Under what conditions is $\hat{\beta}$ unbiased? You may take the usual generating model $y = X\beta + \epsilon$ with $E[\epsilon|X] = 0$.

Solution We can write

$$\hat{\beta} = QR^{-T}y$$

= $QR^{-T}(X\beta + \epsilon)$
= $QR^{-T}(R'Q'\beta + \epsilon)$
= $QQ'\beta + QR^{-T}\epsilon.$

Thus $E[\hat{\beta}|X] = QQ'\beta$, which is equal to β under the condition that $\beta \in \operatorname{col}(Q) = \operatorname{col}(X')$.

(c) Derive an expression for $\operatorname{cov}[\hat{\beta}|X]$, under the generating model $y = X\beta + \epsilon$ with $E[\epsilon|X] = 0$ and $\operatorname{cov}[\epsilon|X] = \sigma^2 I$.

Solution

$$\begin{aligned} \operatorname{cov}(\hat{\beta}|X) &= \operatorname{cov}[QR^{-T}y|X] \\ &= \operatorname{cov}[QR^{-T}[X\beta + \epsilon)|X] \\ &= \operatorname{cov}[QR^{-T}(R'Q'\beta + \epsilon)|X] \\ &= \operatorname{cov}[QQ'\beta + QR^{-T}\epsilon)|X] \\ &= \operatorname{cov}[QR^{-T}\epsilon)|X] \\ &= \sigma^2 QR^{-T}R^{-1}Q'. \end{aligned}$$

(d) What is the value of $E \|\hat{y} - y\|^2$?

$$\hat{y} = XQR^{-T}y = R'Q'QR^{-T}y = y.$$

Thus $E \|\hat{y} - y\|^2 = 0$ – or \hat{y} is always equal to Y.

(e) What is the value of $E \|\hat{y} - Ey\|^2 / n$?

Solution

$$E\|\hat{y} - Ey\|^2/n = E\|y - Ey\|^2/n = \sigma^2.$$

(f) Suppose we observe a random vector $y^* \in \mathcal{R}^n$ that has the same distribution as y, but is independent of y. What is the value of $E ||y^* - \hat{y}||^2 / n$?

Solution

Write $y^* = X\beta + \epsilon^*$,

$$E||X\beta + \epsilon^* - (X\beta + \epsilon)||^2/n = E||\epsilon - \epsilon^*||^2/n = 2\sigma^2.$$

3. Suppose we observe data from a simple linear model $y = \alpha + \beta x + \epsilon$ where $x, y, \epsilon \in \mathbb{R}^n$, $\alpha, \beta \in \mathbb{R}$, *n* is an even integer, $E[\epsilon|X] = 0$ and $\operatorname{cov}[\epsilon|X] = \sigma^2 I$. Suppose *x* and *y* are partitioned as

$$y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \qquad \qquad x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix},$$

where y_1 and y_2 each have half the length of y, and x_1 and x_2 each have half the length of x. Let $\hat{\beta}_1$ and $\hat{\beta}_2$ denote the least squares estimates obtained by regressing y_1 on x_1 and y_2 on x_2 , respectively, and let $\tilde{\beta} = (\hat{\beta}_1 + \hat{\beta}_2)/2$.

(a) If $\bar{x}_1 = \bar{x}_2 = \bar{x}$, state a condition such that $\tilde{\beta}$ has the same variance as the least squares estimate $\hat{\beta}$ obtained by regressing y on x (using all n observations). Then state whether when this condition holds, $\tilde{\beta}$ is the least squares estimate, or is a different estimate with the same variance.

Let $T_1 = \sum_{i=1}^{n/2} \epsilon_i (x_i - \bar{x}_1)$ and $T_2 = \sum_{i=n/2+1}^n \epsilon_i (x_i - \bar{x}_2)$, and let $S_1 = \sum_{i=1}^{n/2} (x_i - \bar{x}_1)^2$ and $S_2 = \sum_{i=n/2+1}^n (x_i - \bar{x}_2)^2$. Then

$$\hat{\beta}_1 = \beta + T_1 / S_1,$$

$$\hat{\beta}_2 = \beta + T_2/S_2,$$

and

$$\tilde{\beta} = \beta + \frac{T_1}{2S_1} + \frac{T_2}{2S_2}.$$

Since $\operatorname{var}(T_j) = \sigma^2 S_j$ for j = 1, 2, it follows that

$$\operatorname{var}\tilde{\beta} = \frac{\sigma^2}{4S_1} + \frac{\sigma^2}{4S_2}.$$

The variance of the least squares estimate using all the data is

$$\sigma^2 / \sum_i (X_i - \bar{X})^2 = \sigma^2 / (S_1 + S_2).$$

The two variances are equal if only if

$$(S_1 + S_2)^2 = 4S_1S_2,$$

which is easily seen to hold if and only if $S_1 = S_2$. This is the condition required for the variance of $\tilde{\beta}$ to equal the variance of $\hat{\beta}$, and it is easy to see that when $S_1 = S_2$, $\tilde{\beta} = \hat{\beta}$.

(b) Now consider the more general case where \bar{x}_1 and \bar{x}_2 may differ. Show that in this case var $\tilde{\beta}$ is always at least as great as var $\hat{\beta}$, and derive a concise expression for the difference between the two variances.

By the Gauss-Markov theorem, since $\tilde{\beta}$ is linear and unbiased, if $\tilde{\beta} \neq \hat{\beta}$, then $\operatorname{var}(\tilde{\beta})$ must be greater than $\operatorname{var}(\hat{\beta})$.

We can show this directly as follows.

$$\sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n/2} (x_i - \bar{x}_1 + \bar{x}_1 - \bar{X}_2 + \bar{x}_2 - \bar{x})^2 + \sum_{i=n/2+1}^{n} (x_i - \bar{x}_1 + \bar{x}_1 - \bar{x}_2 + \bar{x}_2 - \bar{x})^2$$

Taking the first term,

$$\sum_{i=1}^{n/2} (X_i - \bar{X}_1 + \bar{X}_1 - \bar{X}_2 + \bar{X}_2 - \bar{X})^2$$

$$= \sum_{i=1}^{n/2} (X_i - \bar{X}_1)^2 + (\bar{X}_1 - \bar{X}_2)^2 + (\bar{X}_2 - \bar{X})^2$$

$$+ (X_i - \bar{X}_1)(\bar{X}_1 - \bar{X}_2) + (X_i - \bar{X}_1)(\bar{X}_2 - \bar{X})$$

$$+ (\bar{X}_1 - \bar{X}_2)(\bar{X}_2 - \bar{X})$$

$$= \sum_{i=1}^{n/2} (X_i - \bar{X}_1)^2 + (\bar{X}_1 - \bar{X}_2)^2 + (\bar{X}_2 - \bar{X})^2 + (\bar{X}_1 - \bar{X}_2)(\bar{X}_2 - \bar{X})$$

$$= S_1 + n(\bar{X}_1 - \bar{X}_2)^2/2 + n(\bar{X}_2 - \bar{X})^2/2 + n(\bar{X}_1 - \bar{X}_2)(\bar{X}_2 - \bar{X})/2.$$

We can apply a similar calculation to obtain

$$\sum_{i=n/2+1}^{n} (X_i - \bar{X}_1 + \bar{X}_1 - \bar{X}_2 + \bar{X}_2 - \bar{X})^2$$

= $S_2 + n(\bar{X}_1 - \bar{X}_2)^2 / 2 + n(\bar{X}_1 - \bar{X})^2 / 2 + n(\bar{X}_1 - \bar{X}_2)(\bar{X}_1 - \bar{X}) / 2.$

Since

$$(\bar{X}_1 - \bar{X}_2)(\bar{X}_2 - \bar{X}) + (\bar{X}_1 - \bar{X}_2)(\bar{X}_1 - \bar{X}) = 0,$$

we have

$$\sum_{i=1}^{n} (X_i - \bar{X})^2 = S_1 + S_2 + n(\bar{X}_1 - \bar{X}_2)^2 + n(\bar{X}_1 - \bar{X})^2 / 2 + n(\bar{X}_2 - \bar{X})^2 / 2.$$

Thus the difference in variances is

$$\operatorname{var}(\tilde{\beta}) - \operatorname{var}(\hat{\beta}) = \sigma^2/4S_1 + \sigma^2/4S_2 - 1/(S_1 + S_2 + D)$$

where $D = n(\bar{X}_1 - \bar{X})^2/n + n(\bar{X}_2 - \bar{X})^2/2.$

The difference in variances simplifies to

$$\frac{(S_1 - S_2)^2 + D(S_1 + S_2)}{4S_1S_2(S_1 + S_2 + D)}.$$

4. Prove that the "horizontal residuals" in simple linear regression sum to zero in a least squares fit of y (the dependent variable) on x (the independent variable). The horizontal residuals are the signed horizontal displacements along the line segments connecting each data point x_i, y_i to the fitted line $\hat{\alpha} + \hat{\beta}x$.

Solution

To get the i^{th} horizontal residual, solve

$$\hat{\alpha} + \hat{\beta}x = y_i$$

to get $\hat{x}_i = (y_i - \hat{\alpha})/\hat{\beta}$, so the residual becomes $h_i \equiv x_i - (y_i - \hat{\alpha})/\hat{\beta}$. Now if we sum these values we get

$$\sum_{i} h_{i} = \sum_{i} x_{i} - (y_{i} - \bar{y} + \hat{\beta}\bar{x})/\hat{\beta}$$
$$= \sum_{i} (-y_{i} + \bar{y} + \hat{\beta}(x_{i} - \bar{x}))/\hat{\beta}$$

$$= \sum_{i} (\bar{y} - y_i) / \hat{\beta} + \sum_{i} (x_i - \bar{x})$$

= 0.

5. (a) Suppose that $F \in \mathbb{R}^d$ is a vector, and I is the $d \times d$ identity matrix. Derive explicit expressions for $(I + FF')^{-1}$ and $(I - FF')^{-1}$. Hint: the answers have the form $I + \lambda FF'$, for $\lambda \in \mathbb{R}$.

Solution

To determine the inverse of I + FF', set

$$I = (I + FF')(I + \lambda FF')$$

= $I + \lambda FF' + FF' + \lambda ||F||^2 FF'$
= $I + (\lambda + 1 + \lambda ||F||^2) FF'.$

We must have $1 + \lambda(1 + ||F||^2) = 0$, so $\lambda = -1/(1 + ||F||^2)$. To determine the inverse of I - FF', set

$$I = (I - FF')(I + \lambda FF')$$

= $I + \lambda FF' - FF' - \lambda ||F||^2 FF'$
= $I + (\lambda - 1 - \lambda ||F||^2) FF'.$

We must have $-1 + \lambda(1 - ||F||^2) = 0$, so $\lambda = 1/(1 - ||F||^2)$.

(b) Suppose we have an orthogonal design matrix $X \in \mathcal{R}^{n \times p+1}$, and we are able to add one additional observation to the data set (i.e. add one row to X). This row, denoted x, must satisfy the constraint $||x||^2 = 1$. Describe how x should be chosen so as to minimize the maximum of the variances of $\hat{\beta}_0, \ldots, \hat{\beta}_p$.

Solution

Let $\hat{\beta}$ denote the slope estimates based on all n + 1 cases. Then X'X = I + xx', so $\operatorname{cov}(\hat{\beta}) = I - xx'/2$. Thus the variance of $\hat{\beta}_j$ is

 $\sigma^2(1-x_j^2/2)$. The maximum of these variances is determined by the smallest of the x_j^2 . Thus we want to maximize $\min_j x_j^2$ subject to $\sum_j x_j^2 = 1$. The solution is to have $x_j = 1/\sqrt{p+1}$ for all j.

(a) Derive an expression for cov(y, ŷ), i.e. the n×n matrix containing all population covariances between elements of y and elements of ŷ.

Solution

Let P denote the projection onto the columnspace of X. Then,

$$cov(y, \hat{y}) = cov(y, Py)$$

= cov(\epsilon, P\epsilon)
= E[\epsilon\epsilon']P
= \sigma^2 P.

(b) Derive an expression for the expected value of the sample covariance between the observed and fitted values, $E\widehat{\text{cov}}(\hat{y}, y)$ – note that this is a scalar. Consider whether this covariance can or cannot be positive, negative, or zero.

Solution

Let P be the projection matrix onto col(X). Then,

$$\begin{aligned} \widehat{\text{cov}}(\hat{y}, y) &= (Py)'(y - \bar{y})/n \\ &= (y - \bar{y} + \bar{y})' P(y - \bar{y})/n \\ &= (y - \bar{y})' P(y - \bar{y})/n + \bar{y}' P(y - \bar{y})/n. \end{aligned}$$

Here, \bar{y} is interpreted as an *n*-vector in which all values are equal to the sample mean of the y_i . This can be written $\bar{y} = n^{-1}\mathbf{11'}y$, where **1** is a *n*-vector of 1's. Since there is an intercept in the model, $P\mathbf{1} = 1$, so the second summand above is equal to

$$\frac{n^{-1}\mathbf{11'}(y-\bar{y})}{n}$$

which is zero since $\mathbf{1}'(y - \bar{y}) = 0$. Thus

$$\widehat{\operatorname{cov}}(\hat{y}, y) = \frac{(y - \bar{y})' P(y - \bar{y})}{n} \ge 0$$

The covariance cannot be negative. It can only be zero if $y - \bar{y} \in \text{span}(X)^{\perp}$.

7. "Total least squares" (TLS) for one covariate aims to identify a line ℓ that minimizes

$$\sum_{i} d\left((X_i, Y_i), \ell \right)^2,$$

where $d(Q, \ell)$ is the minimum distance in \mathcal{R}^2 between the point Q and any point on the line ℓ .

(a) Parameterize ℓ in the form $\{(X, \alpha + \beta X) | X \in \mathcal{R}\}$, for scalars α and β . Write down expressions for $d(Q, \ell)$ and a loss function that can be minimized to identify α and β . Both expressions should be explicit functions of α and β .

Solution

To identify the point on ℓ that is closest to X_i, Y_i , we minimize

$$(X - X_i)^2 + (\alpha + \beta X - Y_i)^2$$

as a function of X. Setting the first derivative to zero yields

$$X = \frac{X_i - \alpha\beta + Y_i\beta}{1 + \beta^2},$$

and the second derivative is $2(1+\beta^2)$, so this is a global minimizer. The loss function is

$$(1+\beta^2)^{-1}\sum_i R_i^2,$$

where $R_i = Y_i - \alpha - \beta X_i$ is the usual OLS residual.

(b) Parameterize ℓ in the form $\{Z \in \mathcal{R}^2 | B'(Z-W) = 0\}$, for 2-vectors B and W with ||B|| = 1. Write down expressions for $d(Q, \ell)$ and a loss function that can be minimized to identify B and W (W can be any point on ℓ and is therefore not uniquely identified). Both expressions should be explicit functions of B and W.

Solution

Let $Q_i = (X_i, Y_i)$ be a data point. Let P_i be the point on ℓ that is closest to Q_i . Then $Q_i - P_i$ is parallel to B, so we can write $P_i = Q_i - \lambda B$ for some $\lambda \in \mathcal{R}$, and since P_i is on ℓ we must have $B'(P_i - W) = 0$. Combining these two equations we can identify $\lambda = B'(Q_i - W)$. Therefore the $d(Q_i, \ell)^2$ is

$$B'(Q_i - W)(Q_i - W)'B$$

so the loss function is

$$B'\left(\sum_{i}(Q_i-W)(Q_i-W)'\right)B.$$

(c) Based on your expression in part (b), show that the TLS solution passes through the center of the data (\bar{X}, \bar{Y}) , and use this to define a minimizing value for W.

$$\sum_{i} (Q_{i} - W)(Q_{i} - W)' = \sum_{i} (Q_{i} - \bar{Q} + \bar{Q} - W)(Q_{i} - \bar{Q} + \bar{Q} - W)'$$
$$= \sum_{i} (Q_{i} - \bar{Q})(Q_{i} - \bar{Q})' + \sum_{i} (Q_{i} - \bar{Q})(\bar{Q} - W)' + \sum_{i} (Q_$$

$$\sum_{i} (\bar{Q} - W)(Q_{i} - \bar{Q})' + n(\bar{Q} - W)(\bar{Q} - W)'$$

=
$$\sum_{i} (Q_{i} - \bar{Q})(Q_{i} - \bar{Q})' + n(\bar{Q} - W)(\bar{Q} - W)'.$$

therefore the value of the loss function will either stay constant or be reduced if we set $W = \overline{Q}$, which guarantees that ℓ contains \overline{Q} .

(d) Building on (b) and (c), construct a quadratic form whose minimizing value subject to ||B|| = 1 solves the TLS problem for B.

Solution

The quadratic form is

$$B'\left(\sum_i (Q_i - \bar{Q})(Q_i - \bar{Q})'\right)B.$$

8. (a) Suppose we are fitting a simple linear regression model to a data set of size *n*. Let $V_n = \widehat{var}(x_1, \ldots, x_n)$. Determine the fastest rate at which $V_n \to 0$ for which we still have $var(\hat{\beta}_n) \to 0$.

Solution

Since

$$\operatorname{var}(\hat{\beta}) = \frac{\sigma^2}{(n-1)V_n}$$

we need $nV_n \to \infty$ (or $V_n \to 0$ "slower than 1/n").

(b) Suppose we are fitting a regression model with two explanatory variables, having the form $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2$, and the covariates are asymptotically standardized so that $\bar{x}_1, \bar{x}_2 \to 0$, and $\widehat{\operatorname{var}}(x_1), \widehat{\operatorname{var}}(x_2) \to 1$. Let $r_n = \widehat{\operatorname{cov}}(x_1, x_2)$. What is the fastest rate at which $r_n \to 1$ such that we will still have $\operatorname{var}(\hat{\beta}_1), \operatorname{var}(\hat{\beta}_2) \to 0$?

The variance of $\hat{\beta}_1$ (which is the same as the variance of $\hat{\beta}_2$ is

$$\frac{1}{n(1-r_n^2)} = \frac{1}{n(1-r_n)(1+r_n)}$$

So we need $n(1-r_n) \to \infty$, or $1-r_n$ goes to zero "slower than rate 1/n".

9. This exercise aims to illustrate the effect of outliers in least squares fitting. Suppose we observe data that follows a linear model with p = 1covariate: $y = \alpha + \beta x + \epsilon$. Specifically, consider a triangular array of data y_{in}, x_{in} , where i = 1, ..., n. There is also a random indicator $\delta_{in} \in \{0, 1\}$, that we do not observe, such that $\operatorname{var}(\epsilon_{in}|X, \delta_{in} = 1) =$ $k_n \sigma^2$, and $\operatorname{var}(\epsilon_{in}|X, \delta_{in} = 0) = \sigma^2$ (the errors are centered, so that $E[\epsilon|X, \delta] \equiv 0$). Suppose the x_i are sampled independently from a population with variance σ_x^2 , and $P(\delta_{in} = 1) = p_n$. Derive conditions on k_n and p_n such that (i) $n \cdot \operatorname{var}(\hat{\beta})$ has a finite limit, and (ii) $n \cdot \operatorname{var}(\hat{\beta})$ has the same limit that would occur if $k_n \equiv 1$.

Solution

The least squares estimator can be written

$$\hat{\beta}_n = \beta + \sum_i \epsilon_{in} (x_{in} - \bar{x}_n) / \sum_i (x_{in} - \bar{x}_n)^2.$$

Since the variance of the error term can be expressed

$$\operatorname{var}(\epsilon_{in}) = \operatorname{var} E(\epsilon_{in}|\delta_{in}) + E\operatorname{var}(\epsilon_{in}|\delta_{in}) \\ = \sigma^2(p_n k_n + 1 - p_n),$$

the variance of the estimator is

$$\operatorname{var}\hat{\beta}_n = \sigma^2 (p_n k_n + 1 - p_n) / \sum_i (X_{in} - \bar{X}_n)^2.$$

Scaling by n,

$$n \times \operatorname{var} \hat{\beta}_n = \sigma^2 (p_n k_n + 1 - p_n) / n^{-1} \sum_i (X_{in} - \bar{X}_n)^2 \sim \sigma^2 (p_n k_n + 1 - p_n) / \sigma_x^2.$$

Thus for (i), we need $p_n k_n + 1 - p_n$ to have a limit, and for (ii), we need $p_n(k_n - 1) \rightarrow 0$. A reasonable interpretation of this is that the outliers will not prevent the variance of $\hat{\beta}$ from going to zero at the usual rate as long as $p_n k_n$ stays bounded. For example, if fraction $p_n = 0.1$ of the errors have $k_n = 10$ times greater variance ($\sqrt{10} \approx 3.2$ times greater standard deviation), then the variance of $\hat{\beta}_n$ will decrease at the usual rate. But if we want the limiting variance ($\lim_{n\to\infty} n \operatorname{var} \hat{\beta}_n$) to be the same as when no outliers are present, we would need p_n to be much smaller, say $p_n = 0.01$.