
Statistics 600 Problem Set 1

Due Wednesday September 29th at midnight

1. Suppose we use least squares to perform multiple linear regression,
yielding fitted values ŷ = Xβ̂ ∈ Rn. Do these fitted values maximize
the sample correlation coefficient with the response vector, i.e. does the
following hold?

ĉor(Xβ̂, y) = maxb ĉor(Xb, y)

Justify your answer.

Solution: Since the question only involves fitted values, we can linearly
transform the columns of X as follows. Supposing that 1n ∈ col(X) we
can take the first column of X to be 1n, and the remaining columns of
X to be centered. Let X̃ denote the n×p matrix consisting of columns 2
through p+1 ofX. The coefficient vector b can be partitioned b = (b0, b̃)
where b0 ∈ R and b̃ ∈ Rp. Note that for any such b, Xb −Xb = X̃b̃.
Then

ĉor(Xb, y) = ĉor(X̃b̃, y)

=
y′X̃b̃

‖y − ȳ‖ · (b̃′X̃ ′X̃b̃)1/2

∝ y′X̃b̃

(b̃′X̃ ′X̃b̃)1/2
.

Write X̃ ′X̃ = R′R, where R is square and invertible (e.g. using the
QR factorization X̃ = QR, so X̃ ′X̃ = R′R). Now change variables by
setting u = Rb, and the expression above becomes

y′X̃R−1u/‖u‖.

By the Cauchy-Schwarz inequality, the above is maximized by setting

u ∝ R−T X̃Ty, and changing back to the original coordinates we get ˆ̃b ∝
R−1R−T X̃Ty = (X̃ ′X̃)−1X̃ ′y. Since the first column of X is orthogonal
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to all columns of X̃, the least squares fit of y on X is equal to ȳ + X̃ˆ̃b,

which has the same correlation with y as does X̃ˆ̃b. Thus the least
squares fitted values maximize the correlation, as long as 1n ∈ col(X).

If 1n is not in col(X), then let P = I − 1n1′n/n denote the centering
matrix. Then,

ĉor(Xb, y) =
y′(I − P )Xb

‖y − ȳ‖ · (b′X ′(I − P )Xb)1/2

∝ y′(I − P )Xb

(b′X ′(I − P )Xb)1/2
.

Since 1 is not in col(X), X ′(I−P )X is non-singular, so can be written
in the form R′R, and changing variables then using Cauchy-Schwarz
as above, we obtain that the maximizer of the correlation is b̂ =
(X ′(I − P )X)−1X ′(I − P )y. It is easy to show by example that this
choice of b, which is obtained by using OLS on the centered design ma-
trix, has higher correlation with y then the usual least squares fit with
un-centered columns. Thus, OLS does not maximize the correlation
coefficient with y when no intercept is in the model.

2. Suppose we have a least squares problem with more variables than
observations. That is, we observe a response vector y ∈ Rn, and a
design matrix X ∈ Rn×p where p ≥ n and the rows of X are linearly
independent.

(a) Derive an expression for the vector β̂ that minimizes ‖β‖2 subject
to Xβ = y.

Solution

Using the QR decomposition, write X ′ = QR, and since X ′ is
nonsingular, R is invertible and the equation Xβ = y becomes
Q′β = g, where g = R−Ty. Next we will show that β̂ ∈ col(Q) =
row(X). We can write β = θ + γ, where θ ∈ col(Q) and γ ∈
col(Q)⊥. Note that Q′β = Q′θ, and ‖β‖2 = ‖θ‖2 + ‖γ‖2. Thus for
any choice of θ satisfying Q′θ = g, ‖β‖2 will always be minimized
by setting γ = 0. Since θ ∈ col(Q), we can write θ = Qη for some
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η ∈ Rn, and we have Q′Qη = η = g, and θ = Qg. Thus the
solution is β̂ = QR−Ty.

(b) Under what conditions is β̂ unbiased? You may take the usual
generating model y = Xβ + ε with E[ε|X] = 0.

Solution We can write

β̂ = QR−Ty

= QR−T (Xβ + ε)

= QR−T (R′Q′β + ε)

= QQ′β +QR−T ε.

Thus E[β̂|X] = QQ′β, which is equal to β under the condition
that β ∈ col(Q) = col(X ′).

(c) Derive an expression for cov[β̂|X], under the generating model
y = Xβ + ε with E[ε|X] = 0 and cov[ε|X] = σ2I.

Solution

cov(β̂|X) = cov[QR−Ty|X]

= cov[QR−T [Xβ + ε)|X]

= cov[QR−T (R′Q′β + ε)|X]

= cov[QQ′β +QR−T ε)|X]

= cov[QR−T ε)|X]

= σ2QR−TR−1Q′.

(d) What is the value of E‖ŷ − y‖2?

Solution

ŷ = XQR−Ty = R′Q′QR−Ty = y.
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Thus E‖ŷ − y‖2 = 0 – or ŷ is always equal to Y .

(e) What is the value of E‖ŷ − Ey‖2/n?

Solution

E‖ŷ − Ey‖2/n = E‖y − Ey‖2/n = σ2.

(f) Suppose we observe a random vector y∗ ∈ Rn that has the same
distribution as y, but is independent of y. What is the value of
E‖y∗ − ŷ‖2/n?

Solution

Write y∗ = Xβ + ε∗,

E‖Xβ + ε∗ − (Xβ + ε)‖2/n = E‖ε− ε∗‖2/n = 2σ2.

3. Suppose we observe data from a simple linear model y = α + βx + ε
where x, y, ε ∈ Rn, α, β ∈ R, n is an even integer, E[ε|X] = 0 and
cov[ε|X] = σ2I. Suppose x and y are partitioned as

y =

(
y1
y2

)
x =

(
x1
x2

)
,

where y1 and y2 each have half the length of y, and x1 and x2 each have
half the length of x. Let β̂1 and β̂2 denote the least squares estimates
obtained by regressing y1 on x1 and y2 on x2, respectively, and let
β̃ = (β̂1 + β̂2)/2.

(a) If x̄1 = x̄2 = x̄, state a condition such that β̃ has the same variance
as the least squares estimate β̂ obtained by regressing y on x (using
all n observations). Then state whether when this condition holds,
β̃ is the least squares estimate, or is a different estimate with the
same variance.

Solution
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Let T1 =
∑n/2

i=1 εi(xi − x̄1) and T2 =
∑n

i=n/2+1 εi(xi − x̄2), and let

S1 =
∑n/2

i=1(xi − x̄1)2 and S2 =
∑n

i=n/2+1(xi − x̄2)2. Then

β̂1 = β + T1/S1,

β̂2 = β + T2/S2,

and

β̃ = β +
T1
2S1

+
T2
2S2

.

Since var(Tj) = σ2Sj for j = 1, 2, it follows that

varβ̃ =
σ2

4S1

+
σ2

4S2

.

The variance of the least squares estimate using all the data is

σ2/
∑
i

(Xi − X̄)2 = σ2/(S1 + S2).

The two variances are equal if only if

(S1 + S2)
2 = 4S1S2,

which is easily seen to hold if and only if S1 = S2. This is the
condition required for the variance of β̃ to equal the variance of
β̂, and it is easy to see that when S1 = S2, β̃ = β̂.

(b) Now consider the more general case where x̄1 and x̄2 may differ.
Show that in this case var β̃ is always at least as great as var β̂,
and derive a concise expression for the difference between the two
variances.

Solution
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By the Gauss-Markov theorem, since β̃ is linear and unbiased, if
β̃ 6≡ β̂, then var(β̃) must be greater than var(β̂).

We can show this directly as follows.

n∑
i=1

(xi − x̄)2 =
n/2∑
i=1

(xi − x̄1 + x̄1 − X̄2 + x̄2 − x̄)2 +

n∑
i=n/2+1

(xi − x̄1 + x̄1 − x̄2 + x̄2 − x̄)2

Taking the first term,

n/2∑
i=1

(Xi − X̄1 + X̄1 − X̄2 + X̄2 − X̄)2

=
n/2∑
i=1

(Xi − X̄1)
2 + (X̄1 − X̄2)

2 + (X̄2 − X̄)2

+(Xi − X̄1)(X̄1 − X̄2) + (Xi − X̄1)(X̄2 − X̄)

+(X̄1 − X̄2)(X̄2 − X̄)

=
n/2∑
i=1

(Xi − X̄1)
2 + (X̄1 − X̄2)

2 + (X̄2 − X̄)2 + (X̄1 − X̄2)(X̄2 − X̄)

= S1 + n(X̄1 − X̄2)
2/2 + n(X̄2 − X̄)2/2 + n(X̄1 − X̄2)(X̄2 − X̄)/2.

We can apply a similar calculation to obtain

n∑
i=n/2+1

(Xi − X̄1 + X̄1 − X̄2 + X̄2 − X̄)2

= S2 + n(X̄1 − X̄2)
2/2 + n(X̄1 − X̄)2/2 + n(X̄1 − X̄2)(X̄1 − X̄)/2.

Since

(X̄1 − X̄2)(X̄2 − X̄) + (X̄1 − X̄2)(X̄1 − X̄) = 0,
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we have

n∑
i=1

(Xi−X̄)2 = S1+S2+n(X̄1−X̄2)
2+n(X̄1−X̄)2/2+n(X̄2−X̄)2/2.

Thus the difference in variances is

var(β̃)− var(β̂) = σ2/4S1 + σ2/4S2 − 1/(S1 + S2 +D)

where D = n(X̄1 − X̄)2/n+ n(X̄2 − X̄)2/2.

The difference in variances simplifies to

(S1 − S2)
2 +D(S1 + S2)

4S1S2(S1 + S2 +D)
.

4. Prove that the “horizontal residuals” in simple linear regression sum to
zero in a least squares fit of y (the dependent variable) on x (the inde-
pendent variable). The horizontal residuals are the signed horizontal
displacements along the line segments connecting each data point xi,yi
to the fitted line α̂ + β̂x.

Solution

To get the ith horizontal residual, solve

α̂ + β̂x = yi

to get x̂i = (yi − α̂)/β̂, so the residual becomes hi ≡ xi − (yi − α̂)/β̂.
Now if we sum these values we get

∑
i

hi =
∑
i

xi − (yi − ȳ + β̂x̄)/β̂

=
∑
i

(−yi + ȳ + β̂(xi − x̄))/β̂
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=
∑
i

(ȳ − yi)/β̂ +
∑
i

(xi − x̄)

= 0.

5. (a) Suppose that F ∈ Rd is a vector, and I is the d×d identity matrix.
Derive explicit expressions for (I+FF ′)−1 and (I−FF ′)−1. Hint:
the answers have the form I + λFF ′, for λ ∈ R.

Solution

To determine the inverse of I + FF ′, set

I = (I + FF ′)(I + λFF ′)

= I + λFF ′ + FF ′ + λ‖F‖2FF ′

= I + (λ+ 1 + λ‖F‖2)FF ′.

We must have 1 + λ(1 + ‖F‖2) = 0, so λ = −1/(1 + ‖F‖2).

To determine the inverse of I − FF ′, set

I = (I − FF ′)(I + λFF ′)

= I + λFF ′ − FF ′ − λ‖F‖2FF ′

= I + (λ− 1− λ‖F‖2)FF ′.

We must have −1 + λ(1− ‖F‖2) = 0, so λ = 1/(1− ‖F‖2).

(b) Suppose we have an orthogonal design matrix X ∈ Rn×p+1, and
we are able to add one additional observation to the data set
(i.e. add one row to X). This row, denoted x, must satisfy the
constraint ‖x‖2 = 1. Describe how x should be chosen so as to
minimize the maximum of the variances of β̂0, . . . , β̂p.

Solution

Let β̂ denote the slope estimates based on all n + 1 cases. Then
X ′X = I + xx′, so cov(β̂) = I − xx′/2. Thus the variance of β̂j is
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σ2(1 − x2j/2). The maximum of these variances is determined by
the smallest of the x2j . Thus we want to maximize minjx

2
j subject

to
∑

j x
2
j = 1. The solution is to have xj = 1/

√
p+ 1 for all j.

6. (a) Derive an expression for cov(y, ŷ), i.e. the n×n matrix containing
all population covariances between elements of y and elements of
ŷ.

Solution

Let P denote the projection onto the columnspace of X. Then,

cov(y, ŷ) = cov(y, Py)

= cov(ε, P ε)

= E[εε′]P

= σ2P.

(b) Derive an expression for the expected value of the sample covari-
ance between the observed and fitted values, Eĉov(ŷ, y) – note
that this is a scalar. Consider whether this covariance can or
cannot be positive, negative, or zero.

Solution

Let P be the projection matrix onto col(X). Then,

ĉov(ŷ, y) = (Py)′(y − ȳ)/n

= (y − ȳ + ȳ)′P (y − ȳ)/n

= (y − ȳ)′P (y − ȳ)/n+ ȳ′P (y − ȳ)/n.

Here, ȳ is interpreted as an n-vector in which all values are equal
to the sample mean of the yi. This can be written ȳ = n−111′y,
where 1 is a n-vector of 1’s. Since there is an intercept in the
model, P1 = 1, so the second summand above is equal to
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n−111′(y − ȳ)

n
,

which is zero since 1′(y − ȳ) = 0. Thus

ĉov(ŷ, y) =
(y − ȳ)′P (y − ȳ)

n
≥ 0.

The covariance cannot be negative. It can only be zero if y − ȳ ∈
span(X)⊥.

7. “Total least squares” (TLS) for one covariate aims to identify a line `
that minimizes

∑
i

d ((Xi, Yi), `)
2 ,

where d(Q, `) is the minimum distance in R2 between the point Q and
any point on the line `.

(a) Parameterize ` in the form {(X,α + βX)|X ∈ R}, for scalars α
and β. Write down expressions for d(Q, `) and a loss function that
can be minimized to identify α and β. Both expressions should
be explicit functions of α and β.

Solution

To identify the point on ` that is closest to Xi, Yi, we minimize

(X −Xi)
2 + (α + βX − Yi)2

as a function of X. Setting the first derivative to zero yields

X =
Xi − αβ + Yiβ

1 + β2
,

and the second derivative is 2(1+β2), so this is a global minimizer.
The loss function is
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(1 + β2)−1
∑
i

R2
i ,

where Ri = Yi − α− βXi is the usual OLS residual.

(b) Parameterize ` in the form {Z ∈ R2|B′(Z−W ) = 0}, for 2-vectors
B and W with ‖B‖ = 1. Write down expressions for d(Q, `) and a
loss function that can be minimized to identify B and W (W can
be any point on ` and is therefore not uniquely identified). Both
expressions should be explicit functions of B and W .

Solution

Let Qi = (Xi, Yi) be a data point. Let Pi be the point on ` that
is closest to Qi. Then Qi − Pi is parallel to B, so we can write
Pi = Qi − λB for some λ ∈ R, and since Pi is on ` we must have
B′(Pi −W ) = 0. Combining these two equations we can identify
λ = B′(Qi −W ). Therefore the d(Qi, `)

2 is

B′(Qi −W )(Qi −W )′B

so the loss function is

B′
(∑

i

(Qi −W )(Qi −W )′
)
B.

(c) Based on your expression in part (b), show that the TLS solution
passes through the center of the data (X̄, Ȳ ), and use this to define
a minimizing value for W .

Solution

∑
i

(Qi −W )(Qi −W )′ =
∑
i

(Qi − Q̄+ Q̄−W )(Qi − Q̄+ Q̄−W )′

=
∑
i

(Qi − Q̄)(Qi − Q̄)′ +
∑
i

(Qi − Q̄)(Q̄−W )′ +
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∑
i

(Q̄−W )(Qi − Q̄)′ + n(Q̄−W )(Q̄−W )′

=
∑
i

(Qi − Q̄)(Qi − Q̄)′ + n(Q̄−W )(Q̄−W )′.

therefore the value of the loss function will either stay constant or
be reduced if we set W = Q̄, which guarantees that ` contains Q̄.

(d) Building on (b) and (c), construct a quadratic form whose mini-
mizing value subject to ‖B‖ = 1 solves the TLS problem for B.

Solution

The quadratic form is

B′
(∑

i

(Qi − Q̄)(Qi − Q̄)′
)
B.

8. (a) Suppose we are fitting a simple linear regression model to a data
set of size n. Let Vn = v̂ar(x1, . . . , xn). Determine the fastest rate
at which Vn → 0 for which we still have var(β̂n)→ 0.

Solution

Since

var(β̂) =
σ2

(n− 1)Vn

we need nVn →∞ (or Vn → 0 “slower than 1/n”).

(b) Suppose we are fitting a regression model with two explanatory
variables, having the form ŷ = β̂0 + β̂1x1 + β̂2x2, and the co-
variates are asymptotically standardized so that x̄1, x̄2 → 0, and
v̂ar(x1), v̂ar(x2) → 1. Let rn = ĉov(x1, x2). What is the fastest
rate at which rn → 1 such that we will still have var(β̂1), var(β̂2)→
0?

Solution
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The variance of β̂1 (which is the same as the variance of β̂2 is

1

n(1− r2n)
=

1

n(1− rn)(1 + rn)
.

So we need n(1 − rn) → ∞, or 1 − rn goes to zero “slower than
rate 1/n”.

9. This exercise aims to illustrate the effect of outliers in least squares
fitting. Suppose we observe data that follows a linear model with p = 1
covariate: y = α + βx + ε. Specifically, consider a triangular array of
data yin, xin, where i = 1, . . . , n. There is also a random indicator
δin ∈ {0, 1}, that we do not observe, such that var(εin|X, δin = 1) =
knσ

2, and var(εin|X, δin = 0) = σ2 (the errors are centered, so that
E[ε|X, δ] ≡ 0). Suppose the xi are sampled independently from a
population with variance σ2

x, and P (δin = 1) = pn. Derive conditions
on kn and pn such that (i) n ·var(β̂) has a finite limit, and (ii) n ·var(β̂)
has the same limit that would occur if kn ≡ 1.

Solution

The least squares estimator can be written

β̂n = β +
∑
i

εin(xin − x̄n)/
∑
i

(xin − x̄n)2.

Since the variance of the error term can be expressed

var(εin) = varE(εin|δin) + Evar(εin|δin)

= σ2(pnkn + 1− pn),

the variance of the estimator is

varβ̂n = σ2(pnkn + 1− pn)/
∑
i

(Xin − X̄n)2.

13



Scaling by n,

n×varβ̂n = σ2(pnkn+1−pn)/n−1
∑
i

(Xin−X̄n)2 ∼ σ2(pnkn+1−pn)/σ2
x.

Thus for (i), we need pnkn +1−pn to have a limit, and for (ii), we need
pn(kn − 1)→ 0. A reasonable interpretation of this is that the outliers
will not prevent the variance of β̂ from going to zero at the usual rate
as long as pnkn stays bounded. For example, if fraction pn = 0.1 of the
errors have kn = 10 times greater variance (

√
10 ≈ 3.2 times greater

standard deviation), then the variance of β̂n will decrease at the usual
rate. But if we want the limiting variance (limn→∞ nvarβ̂n) to be the
same as when no outliers are present, we would need pn to be much
smaller, say pn = 0.01.
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