Statistics 600 Problem Set 1

Due Wednesday September 29th at midnight

1. Suppose we use least squares to perform multiple linear regression, yielding fitted values $\hat{y}=X \hat{\beta} \in \mathcal{R}^{n}$. Do these fitted values maximize the sample correlation coefficient with the response vector, i.e. does the following hold?

$$
\widehat{\operatorname{cor}}(X \hat{\beta}, y)=\max _{b} \widehat{\operatorname{cor}}(X b, y)
$$

Justify your answer.
Solution: Since the question only involves fitted values, we can linearly transform the columns of X as follows. Supposing that $1_{n} \in \operatorname{col}(X)$ we can take the first column of X to be 1_{n}, and the remaining columns of X to be centered. Let \tilde{X} denote the $n \times p$ matrix consisting of columns 2 through $p+1$ of X. The coefficient vector b can be partitioned $b=\left(b_{0}, \tilde{b}\right)$ where $b_{0} \in \mathcal{R}$ and $\tilde{b} \in \mathcal{R}^{p}$. Note that for any such $b, X b-\overline{X b}=\tilde{X} \tilde{b}$. Then

$$
\begin{aligned}
\widehat{\operatorname{cor}}(X b, y) & =\widehat{\operatorname{cor}}(\tilde{X} \tilde{b}, y) \\
& =\frac{y^{\prime} \tilde{X} \tilde{b}}{\|y-\bar{y}\| \cdot\left(\tilde{b}^{\prime} \tilde{X}^{\prime} \tilde{X} \tilde{b}\right)^{1 / 2}} \\
& \propto \frac{y^{\prime} \tilde{X} \tilde{b}}{\left(\tilde{b}^{\prime} \tilde{X}^{\prime} \tilde{X} \tilde{b}\right)^{1 / 2}} .
\end{aligned}
$$

Write $\tilde{X}^{\prime} \tilde{X}=R^{\prime} R$, where R is square and invertible (e.g. using the QR factorization $\tilde{X}=Q R$, so $\tilde{X}^{\prime} \tilde{X}=R^{\prime} R$). Now change variables by setting $u=R b$, and the expression above becomes

$$
y^{\prime} \tilde{X} R^{-1} u /\|u\| .
$$

By the Cauchy-Schwarz inequality, the above is maximized by setting $u \propto R^{-T} \tilde{X}^{T} y$, and changing back to the original coordinates we get $\hat{\tilde{b}} \propto$ $R^{-1} R^{-T} \tilde{X}^{T} y=\left(\tilde{X}^{\prime} \tilde{X}\right)^{-1} \tilde{X}^{\prime} y$. Since the first column of X is orthogonal
to all columns of \tilde{X}, the least squares fit of y on X is equal to $\bar{y}+\tilde{X} \hat{\tilde{b}}$, which has the same correlation with y as does $\tilde{X} \hat{\tilde{b}}$. Thus the least squares fitted values maximize the correlation, as long as $1_{n} \in \operatorname{col}(X)$. If 1_{n} is not in $\operatorname{col}(X)$, then let $P=I-1_{n} 1_{n}^{\prime} / n$ denote the centering matrix. Then,

$$
\begin{aligned}
\widehat{\operatorname{cor}}(X b, y) & =\frac{y^{\prime}(I-P) X b}{\|y-\bar{y}\| \cdot\left(b^{\prime} X^{\prime}(I-P) X b\right)^{1 / 2}} \\
& \propto \frac{y^{\prime}(I-P) X b}{\left(b^{\prime} X^{\prime}(I-P) X b\right)^{1 / 2}}
\end{aligned}
$$

Since 1 is not in $\operatorname{col}(X), X^{\prime}(I-P) X$ is non-singular, so can be written in the form $R^{\prime} R$, and changing variables then using Cauchy-Schwarz as above, we obtain that the maximizer of the correlation is $\hat{b}=$ $\left(X^{\prime}(I-P) X\right)^{-1} X^{\prime}(I-P) y$. It is easy to show by example that this choice of b, which is obtained by using OLS on the centered design matrix, has higher correlation with y then the usual least squares fit with un-centered columns. Thus, OLS does not maximize the correlation coefficient with y when no intercept is in the model.
2. Suppose we have a least squares problem with more variables than observations. That is, we observe a response vector $y \in \mathcal{R}^{n}$, and a design matrix $X \in \mathcal{R}^{n \times p}$ where $p \geq n$ and the rows of X are linearly independent.
(a) Derive an expression for the vector $\hat{\beta}$ that minimizes $\|\beta\|^{2}$ subject to $X \beta=y$.

Solution

Using the QR decomposition, write $X^{\prime}=Q R$, and since X^{\prime} is nonsingular, R is invertible and the equation $X \beta=y$ becomes $Q^{\prime} \beta=g$, where $g=R^{-T} y$. Next we will show that $\hat{\beta} \in \operatorname{col}(Q)=$ $\operatorname{row}(X)$. We can write $\beta=\theta+\gamma$, where $\theta \in \operatorname{col}(Q)$ and $\gamma \in$ $\operatorname{col}(Q)^{\perp}$. Note that $Q^{\prime} \beta=Q^{\prime} \theta$, and $\|\beta\|^{2}=\|\theta\|^{2}+\|\gamma\|^{2}$. Thus for any choice of θ satisfying $Q^{\prime} \theta=g,\|\beta\|^{2}$ will always be minimized by setting $\gamma=0$. Since $\theta \in \operatorname{col}(Q)$, we can write $\theta=Q \eta$ for some
$\eta \in \mathcal{R}^{n}$, and we have $Q^{\prime} Q \eta=\eta=g$, and $\theta=Q g$. Thus the solution is $\hat{\beta}=Q R^{-T} y$.
(b) Under what conditions is $\hat{\beta}$ unbiased? You may take the usual generating model $y=X \beta+\epsilon$ with $E[\epsilon \mid X]=0$.

Solution We can write

$$
\begin{aligned}
\hat{\beta} & =Q R^{-T} y \\
& =Q R^{-T}(X \beta+\epsilon) \\
& =Q R^{-T}\left(R^{\prime} Q^{\prime} \beta+\epsilon\right) \\
& =Q Q^{\prime} \beta+Q R^{-T} \epsilon .
\end{aligned}
$$

Thus $E[\hat{\beta} \mid X]=Q Q^{\prime} \beta$, which is equal to β under the condition that $\beta \in \operatorname{col}(Q)=\operatorname{col}\left(X^{\prime}\right)$.
(c) Derive an expression for $\operatorname{cov}[\hat{\beta} \mid X]$, under the generating model $y=X \beta+\epsilon$ with $E[\epsilon \mid X]=0$ and $\operatorname{cov}[\epsilon \mid X]=\sigma^{2} I$.

Solution

$$
\begin{aligned}
\operatorname{cov}(\hat{\beta} \mid X) & =\operatorname{cov}\left[Q R^{-T} y \mid X\right] \\
& =\operatorname{cov}\left[Q R^{-T}[X \beta+\epsilon) \mid X\right] \\
& =\operatorname{cov}\left[Q R^{-T}\left(R^{\prime} Q^{\prime} \beta+\epsilon\right) \mid X\right] \\
& \left.=\operatorname{cov}\left[Q Q^{\prime} \beta+Q R^{-T} \epsilon\right) \mid X\right] \\
& \left.=\operatorname{cov}\left[Q R^{-T} \epsilon\right) \mid X\right] \\
& =\sigma^{2} Q R^{-T} R^{-1} Q^{\prime} .
\end{aligned}
$$

(d) What is the value of $E\|\hat{y}-y\|^{2}$?

Solution

$$
\hat{y}=X Q R^{-T} y=R^{\prime} Q^{\prime} Q R^{-T} y=y
$$

Thus $E\|\hat{y}-y\|^{2}=0-$ or \hat{y} is always equal to Y.
(e) What is the value of $E\|\hat{y}-E y\|^{2} / n$?

Solution

$$
E\|\hat{y}-E y\|^{2} / n=E\|y-E y\|^{2} / n=\sigma^{2}
$$

(f) Suppose we observe a random vector $y^{*} \in \mathcal{R}^{n}$ that has the same distribution as y, but is independent of y. What is the value of $E\left\|y^{*}-\hat{y}\right\|^{2} / n$?

Solution

Write $y^{*}=X \beta+\epsilon^{*}$,

$$
E\left\|X \beta+\epsilon^{*}-(X \beta+\epsilon)\right\|^{2} / n=E\left\|\epsilon-\epsilon^{*}\right\|^{2} / n=2 \sigma^{2}
$$

3. Suppose we observe data from a simple linear model $y=\alpha+\beta x+\epsilon$ where $x, y, \epsilon \in \mathcal{R}^{n}, \alpha, \beta \in \mathcal{R}, n$ is an even integer, $E[\epsilon \mid X]=0$ and $\operatorname{cov}[\epsilon \mid X]=\sigma^{2} I$. Suppose x and y are partitioned as

$$
y=\binom{y_{1}}{y_{2}} \quad x=\binom{x_{1}}{x_{2}}
$$

where y_{1} and y_{2} each have half the length of y, and x_{1} and x_{2} each have half the length of x. Let $\hat{\beta}_{1}$ and $\hat{\beta}_{2}$ denote the least squares estimates obtained by regressing y_{1} on x_{1} and y_{2} on x_{2}, respectively, and let $\tilde{\beta}=\left(\hat{\beta}_{1}+\hat{\beta}_{2}\right) / 2$.
(a) If $\bar{x}_{1}=\bar{x}_{2}=\bar{x}$, state a condition such that $\tilde{\beta}$ has the same variance as the least squares estimate $\hat{\beta}$ obtained by regressing y on x (using all n observations). Then state whether when this condition holds, $\tilde{\beta}$ is the least squares estimate, or is a different estimate with the same variance.

Solution

Let $T_{1}=\sum_{i=1}^{n / 2} \epsilon_{i}\left(x_{i}-\bar{x}_{1}\right)$ and $T_{2}=\sum_{i=n / 2+1}^{n} \epsilon_{i}\left(x_{i}-\bar{x}_{2}\right)$, and let $S_{1}=\sum_{i=1}^{n / 2}\left(x_{i}-\bar{x}_{1}\right)^{2}$ and $S_{2}=\sum_{i=n / 2+1}^{n}\left(x_{i}-\bar{x}_{2}\right)^{2}$. Then

$$
\begin{aligned}
& \hat{\beta}_{1}=\beta+T_{1} / S_{1}, \\
& \hat{\beta}_{2}=\beta+T_{2} / S_{2},
\end{aligned}
$$

and

$$
\tilde{\beta}=\beta+\frac{T_{1}}{2 S_{1}}+\frac{T_{2}}{2 S_{2}} .
$$

Since $\operatorname{var}\left(T_{j}\right)=\sigma^{2} S_{j}$ for $j=1,2$, it follows that

$$
\operatorname{var} \tilde{\beta}=\frac{\sigma^{2}}{4 S_{1}}+\frac{\sigma^{2}}{4 S_{2}} .
$$

The variance of the least squares estimate using all the data is

$$
\sigma^{2} / \sum_{i}\left(X_{i}-\bar{X}\right)^{2}=\sigma^{2} /\left(S_{1}+S_{2}\right)
$$

The two variances are equal if only if

$$
\left(S_{1}+S_{2}\right)^{2}=4 S_{1} S_{2},
$$

which is easily seen to hold if and only if $S_{1}=S_{2}$. This is the condition required for the variance of $\tilde{\beta}$ to equal the variance of $\hat{\beta}$, and it is easy to see that when $S_{1}=S_{2}, \tilde{\beta}=\hat{\beta}$.
(b) Now consider the more general case where \bar{x}_{1} and \bar{x}_{2} may differ. Show that in this case $\operatorname{var} \tilde{\beta}$ is always at least as great as $\operatorname{var} \hat{\beta}$, and derive a concise expression for the difference between the two variances.

Solution

By the Gauss-Markov theorem, since $\tilde{\beta}$ is linear and unbiased, if $\tilde{\beta} \not \equiv \hat{\beta}$, then $\operatorname{var}(\tilde{\beta})$ must be greater than $\operatorname{var}(\hat{\beta})$.

We can show this directly as follows.

$$
\begin{aligned}
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}= & \sum_{i=1}^{n / 2}\left(x_{i}-\bar{x}_{1}+\bar{x}_{1}-\bar{X}_{2}+\bar{x}_{2}-\bar{x}\right)^{2}+ \\
& \sum_{i=n / 2+1}^{n}\left(x_{i}-\bar{x}_{1}+\bar{x}_{1}-\bar{x}_{2}+\bar{x}_{2}-\bar{x}\right)^{2}
\end{aligned}
$$

Taking the first term,

$$
\begin{aligned}
& \sum_{i=1}^{n / 2}\left(X_{i}-\bar{X}_{1}+\bar{X}_{1}-\bar{X}_{2}+\bar{X}_{2}-\bar{X}\right)^{2} \\
& =\sum_{i=1}^{n / 2}\left(X_{i}-\bar{X}_{1}\right)^{2}+\left(\bar{X}_{1}-\bar{X}_{2}\right)^{2}+\left(\bar{X}_{2}-\bar{X}\right)^{2} \\
& \quad \quad+\left(X_{i}-\bar{X}_{1}\right)\left(\bar{X}_{1}-\bar{X}_{2}\right)+\left(X_{i}-\bar{X}_{1}\right)\left(\bar{X}_{2}-\bar{X}\right) \\
& \quad \quad+\left(\bar{X}_{1}-\bar{X}_{2}\right)\left(\bar{X}_{2}-\bar{X}\right) \\
& = \\
& \quad \sum_{i=1}^{n / 2}\left(X_{i}-\bar{X}_{1}\right)^{2}+\left(\bar{X}_{1}-\bar{X}_{2}\right)^{2}+\left(\bar{X}_{2}-\bar{X}\right)^{2}+\left(\bar{X}_{1}-\bar{X}_{2}\right)\left(\bar{X}_{2}-\bar{X}\right) \\
& = \\
& S_{1}+n\left(\bar{X}_{1}-\bar{X}_{2}\right)^{2} / 2+n\left(\bar{X}_{2}-\bar{X}\right)^{2} / 2+n\left(\bar{X}_{1}-\bar{X}_{2}\right)\left(\bar{X}_{2}-\bar{X}\right) / 2 .
\end{aligned}
$$

We can apply a similar calculation to obtain

$$
\begin{aligned}
& \sum_{i=n / 2+1}^{n}\left(X_{i}-\bar{X}_{1}+\bar{X}_{1}-\bar{X}_{2}+\bar{X}_{2}-\bar{X}\right)^{2} \\
& \quad=S_{2}+n\left(\bar{X}_{1}-\bar{X}_{2}\right)^{2} / 2+n\left(\bar{X}_{1}-\bar{X}\right)^{2} / 2+n\left(\bar{X}_{1}-\bar{X}_{2}\right)\left(\bar{X}_{1}-\bar{X}\right) / 2
\end{aligned}
$$

Since

$$
\left(\bar{X}_{1}-\bar{X}_{2}\right)\left(\bar{X}_{2}-\bar{X}\right)+\left(\bar{X}_{1}-\bar{X}_{2}\right)\left(\bar{X}_{1}-\bar{X}\right)=0,
$$

we have

$$
\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=S_{1}+S_{2}+n\left(\bar{X}_{1}-\bar{X}_{2}\right)^{2}+n\left(\bar{X}_{1}-\bar{X}\right)^{2} / 2+n\left(\bar{X}_{2}-\bar{X}\right)^{2} / 2 .
$$

Thus the difference in variances is

$$
\operatorname{var}(\tilde{\beta})-\operatorname{var}(\hat{\beta})=\sigma^{2} / 4 S_{1}+\sigma^{2} / 4 S_{2}-1 /\left(S_{1}+S_{2}+D\right)
$$

where $D=n\left(\bar{X}_{1}-\bar{X}\right)^{2} / n+n\left(\bar{X}_{2}-\bar{X}\right)^{2} / 2$.
The difference in variances simplifies to

$$
\frac{\left(S_{1}-S_{2}\right)^{2}+D\left(S_{1}+S_{2}\right)}{4 S_{1} S_{2}\left(S_{1}+S_{2}+D\right)}
$$

4. Prove that the "horizontal residuals" in simple linear regression sum to zero in a least squares fit of y (the dependent variable) on x (the independent variable). The horizontal residuals are the signed horizontal displacements along the line segments connecting each data point x_{i}, y_{i} to the fitted line $\hat{\alpha}+\hat{\beta} x$.

Solution

To get the $i^{\text {th }}$ horizontal residual, solve

$$
\hat{\alpha}+\hat{\beta} x=y_{i}
$$

to get $\hat{x}_{i}=\left(y_{i}-\hat{\alpha}\right) / \hat{\beta}$, so the residual becomes $h_{i} \equiv x_{i}-\left(y_{i}-\hat{\alpha}\right) / \hat{\beta}$. Now if we sum these values we get

$$
\begin{aligned}
\sum_{i} h_{i} & =\sum_{i} x_{i}-\left(y_{i}-\bar{y}+\hat{\beta} \bar{x}\right) / \hat{\beta} \\
& =\sum_{i}\left(-y_{i}+\bar{y}+\hat{\beta}\left(x_{i}-\bar{x}\right)\right) / \hat{\beta}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i}\left(\bar{y}-y_{i}\right) / \hat{\beta}+\sum_{i}\left(x_{i}-\bar{x}\right) \\
& =0
\end{aligned}
$$

5. (a) Suppose that $F \in \mathcal{R}^{d}$ is a vector, and I is the $d \times d$ identity matrix. Derive explicit expressions for $\left(I+F F^{\prime}\right)^{-1}$ and $\left(I-F F^{\prime}\right)^{-1}$. Hint: the answers have the form $I+\lambda F F^{\prime}$, for $\lambda \in \mathcal{R}$.

Solution

To determine the inverse of $I+F F^{\prime}$, set

$$
\begin{aligned}
I & =\left(I+F F^{\prime}\right)\left(I+\lambda F F^{\prime}\right) \\
& =I+\lambda F F^{\prime}+F F^{\prime}+\lambda\|F\|^{2} F F^{\prime} \\
& =I+\left(\lambda+1+\lambda\|F\|^{2}\right) F F^{\prime} .
\end{aligned}
$$

We must have $1+\lambda\left(1+\|F\|^{2}\right)=0$, so $\lambda=-1 /\left(1+\|F\|^{2}\right)$.
To determine the inverse of $I-F F^{\prime}$, set

$$
\begin{aligned}
I & =\left(I-F F^{\prime}\right)\left(I+\lambda F F^{\prime}\right) \\
& =I+\lambda F F^{\prime}-F F^{\prime}-\lambda\|F\|^{2} F F^{\prime} \\
& =I+\left(\lambda-1-\lambda\|F\|^{2}\right) F F^{\prime} .
\end{aligned}
$$

We must have $-1+\lambda\left(1-\|F\|^{2}\right)=0$, so $\lambda=1 /\left(1-\|F\|^{2}\right)$.
(b) Suppose we have an orthogonal design matrix $X \in \mathcal{R}^{n \times p+1}$, and we are able to add one additional observation to the data set (i.e. add one row to X). This row, denoted x, must satisfy the constraint $\|x\|^{2}=1$. Describe how x should be chosen so as to minimize the maximum of the variances of $\hat{\beta}_{0}, \ldots, \hat{\beta}_{p}$.

Solution

Let $\hat{\beta}$ denote the slope estimates based on all $n+1$ cases. Then $X^{\prime} X=I+x x^{\prime}$, so $\operatorname{cov}(\hat{\beta})=I-x x^{\prime} / 2$. Thus the variance of $\hat{\beta}_{j}$ is
$\sigma^{2}\left(1-x_{j}^{2} / 2\right)$. The maximum of these variances is determined by the smallest of the x_{j}^{2}. Thus we want to maximize $\min _{j} x_{j}^{2}$ subject to $\sum_{j} x_{j}^{2}=1$. The solution is to have $x_{j}=1 / \sqrt{p+1}$ for all j.
6. (a) Derive an expression for $\operatorname{cov}(y, \hat{y})$, i.e. the $n \times n$ matrix containing all population covariances between elements of y and elements of \hat{y}.

Solution

Let P denote the projection onto the columnspace of X. Then,

$$
\begin{aligned}
\operatorname{cov}(y, \hat{y}) & =\operatorname{cov}(y, P y) \\
& =\operatorname{cov}(\epsilon, P \epsilon) \\
& =E\left[\epsilon \epsilon^{\prime}\right] P \\
& =\sigma^{2} P .
\end{aligned}
$$

(b) Derive an expression for the expected value of the sample covariance between the observed and fitted values, $E \widehat{\operatorname{cov}}(\hat{y}, y)$ - note that this is a scalar. Consider whether this covariance can or cannot be positive, negative, or zero.

Solution

Let P be the projection matrix onto $\operatorname{col}(X)$. Then,

$$
\begin{aligned}
\widehat{\operatorname{cov}}(\hat{y}, y) & =(P y)^{\prime}(y-\bar{y}) / n \\
& =(y-\bar{y}+\bar{y})^{\prime} P(y-\bar{y}) / n \\
& =(y-\bar{y})^{\prime} P(y-\bar{y}) / n+\bar{y}^{\prime} P(y-\bar{y}) / n .
\end{aligned}
$$

Here, \bar{y} is interpreted as an n-vector in which all values are equal to the sample mean of the y_{i}. This can be written $\bar{y}=n^{-1} \mathbf{1 1} y$, where $\mathbf{1}$ is a n-vector of 1 's. Since there is an intercept in the model, $P \mathbf{1}=1$, so the second summand above is equal to

$$
\frac{n^{-1} 11^{\prime}(y-\bar{y})}{n}
$$

which is zero since $\mathbf{1}^{\prime}(y-\bar{y})=0$. Thus

$$
\widehat{\operatorname{cov}}(\hat{y}, y)=\frac{(y-\bar{y})^{\prime} P(y-\bar{y})}{n} \geq 0
$$

The covariance cannot be negative. It can only be zero if $y-\bar{y} \in$ $\operatorname{span}(X)^{\perp}$.
7. "Total least squares" (TLS) for one covariate aims to identify a line ℓ that minimizes

$$
\sum_{i} d\left(\left(X_{i}, Y_{i}\right), \ell\right)^{2}
$$

where $d(Q, \ell)$ is the minimum distance in \mathcal{R}^{2} between the point Q and any point on the line ℓ.
(a) Parameterize ℓ in the form $\{(X, \alpha+\beta X) \mid X \in \mathcal{R}\}$, for scalars α and β. Write down expressions for $d(Q, \ell)$ and a loss function that can be minimized to identify α and β. Both expressions should be explicit functions of α and β.

Solution

To identify the point on ℓ that is closest to X_{i}, Y_{i}, we minimize

$$
\left(X-X_{i}\right)^{2}+\left(\alpha+\beta X-Y_{i}\right)^{2}
$$

as a function of X. Setting the first derivative to zero yields

$$
X=\frac{X_{i}-\alpha \beta+Y_{i} \beta}{1+\beta^{2}}
$$

and the second derivative is $2\left(1+\beta^{2}\right)$, so this is a global minimizer. The loss function is

$$
\left(1+\beta^{2}\right)^{-1} \sum_{i} R_{i}^{2}
$$

where $R_{i}=Y_{i}-\alpha-\beta X_{i}$ is the usual OLS residual.
(b) Parameterize ℓ in the form $\left\{Z \in \mathcal{R}^{2} \mid B^{\prime}(Z-W)=0\right\}$, for 2-vectors B and W with $\|B\|=1$. Write down expressions for $d(Q, \ell)$ and a loss function that can be minimized to identify B and W (W can be any point on ℓ and is therefore not uniquely identified). Both expressions should be explicit functions of B and W.

Solution

Let $Q_{i}=\left(X_{i}, Y_{i}\right)$ be a data point. Let P_{i} be the point on ℓ that is closest to Q_{i}. Then $Q_{i}-P_{i}$ is parallel to B, so we can write $P_{i}=Q_{i}-\lambda B$ for some $\lambda \in \mathcal{R}$, and since P_{i} is on ℓ we must have $B^{\prime}\left(P_{i}-W\right)=0$. Combining these two equations we can identify $\lambda=B^{\prime}\left(Q_{i}-W\right)$. Therefore the $d\left(Q_{i}, \ell\right)^{2}$ is

$$
B^{\prime}\left(Q_{i}-W\right)\left(Q_{i}-W\right)^{\prime} B
$$

so the loss function is

$$
B^{\prime}\left(\sum_{i}\left(Q_{i}-W\right)\left(Q_{i}-W\right)^{\prime}\right) B
$$

(c) Based on your expression in part (b), show that the TLS solution passes through the center of the data (\bar{X}, \bar{Y}), and use this to define a minimizing value for W.

Solution

$$
\begin{aligned}
\sum_{i}\left(Q_{i}-W\right)\left(Q_{i}-W\right)^{\prime} & =\sum_{i}\left(Q_{i}-\bar{Q}+\bar{Q}-W\right)\left(Q_{i}-\bar{Q}+\bar{Q}-W\right)^{\prime} \\
& =\sum_{i}\left(Q_{i}-\bar{Q}\right)\left(Q_{i}-\bar{Q}\right)^{\prime}+\sum_{i}\left(Q_{i}-\bar{Q}\right)(\bar{Q}-W)^{\prime}+
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{i}(\bar{Q}-W)\left(Q_{i}-\bar{Q}\right)^{\prime}+n(\bar{Q}-W)(\bar{Q}-W)^{\prime} \\
= & \sum_{i}\left(Q_{i}-\bar{Q}\right)\left(Q_{i}-\bar{Q}\right)^{\prime}+n(\bar{Q}-W)(\bar{Q}-W)^{\prime} .
\end{aligned}
$$

therefore the value of the loss function will either stay constant or be reduced if we set $W=\bar{Q}$, which guarantees that ℓ contains \bar{Q}.
(d) Building on (b) and (c), construct a quadratic form whose minimizing value subject to $\|B\|=1$ solves the TLS problem for B.

Solution

The quadratic form is

$$
B^{\prime}\left(\sum_{i}\left(Q_{i}-\bar{Q}\right)\left(Q_{i}-\bar{Q}\right)^{\prime}\right) B .
$$

8. (a) Suppose we are fitting a simple linear regression model to a data set of size n. Let $V_{n}=\widehat{\operatorname{var}}\left(x_{1}, \ldots, x_{n}\right)$. Determine the fastest rate at which $V_{n} \rightarrow 0$ for which we still have $\operatorname{var}\left(\hat{\beta}_{n}\right) \rightarrow 0$.

Solution

Since

$$
\operatorname{var}(\hat{\beta})=\frac{\sigma^{2}}{(n-1) V_{n}}
$$

we need $n V_{n} \rightarrow \infty$ (or $V_{n} \rightarrow 0$ "slower than $1 / n$ ").
(b) Suppose we are fitting a regression model with two explanatory variables, having the form $\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{1}+\hat{\beta}_{2} x_{2}$, and the covariates are asymptotically standardized so that $\bar{x}_{1}, \bar{x}_{2} \rightarrow 0$, and $\widehat{\operatorname{var}}\left(x_{1}\right), \widehat{\operatorname{var}}\left(x_{2}\right) \rightarrow 1$. Let $r_{n}=\widehat{\operatorname{cov}}\left(x_{1}, x_{2}\right)$. What is the fastest rate at which $r_{n} \rightarrow 1$ such that we will still have $\operatorname{var}\left(\hat{\beta}_{1}\right), \operatorname{var}\left(\hat{\beta}_{2}\right) \rightarrow$ 0 ?

Solution

The variance of $\hat{\beta}_{1}$ (which is the same as the variance of $\hat{\beta}_{2}$ is

$$
\frac{1}{n\left(1-r_{n}^{2}\right)}=\frac{1}{n\left(1-r_{n}\right)\left(1+r_{n}\right)} .
$$

So we need $n\left(1-r_{n}\right) \rightarrow \infty$, or $1-r_{n}$ goes to zero "slower than rate $1 / n$ ".
9. This exercise aims to illustrate the effect of outliers in least squares fitting. Suppose we observe data that follows a linear model with $p=1$ covariate: $y=\alpha+\beta x+\epsilon$. Specifically, consider a triangular array of data $y_{i n}, x_{i n}$, where $i=1, \ldots, n$. There is also a random indicator $\delta_{\text {in }} \in\{0,1\}$, that we do not observe, such that $\operatorname{var}\left(\epsilon_{i n} \mid X, \delta_{i n}=1\right)=$ $k_{n} \sigma^{2}$, and $\operatorname{var}\left(\epsilon_{i n} \mid X, \delta_{\text {in }}=0\right)=\sigma^{2}$ (the errors are centered, so that $E[\epsilon \mid X, \delta] \equiv 0)$. Suppose the x_{i} are sampled independently from a population with variance σ_{x}^{2}, and $P\left(\delta_{i n}=1\right)=p_{n}$. Derive conditions on k_{n} and p_{n} such that (i) $n \cdot \operatorname{var}(\hat{\beta})$ has a finite limit, and (ii) $n \cdot \operatorname{var}(\hat{\beta})$ has the same limit that would occur if $k_{n} \equiv 1$.

Solution

The least squares estimator can be written

$$
\hat{\beta}_{n}=\beta+\sum_{i} \epsilon_{i n}\left(x_{i n}-\bar{x}_{n}\right) / \sum_{i}\left(x_{i n}-\bar{x}_{n}\right)^{2} .
$$

Since the variance of the error term can be expressed

$$
\begin{aligned}
\operatorname{var}\left(\epsilon_{i n}\right) & =\operatorname{var} E\left(\epsilon_{i n} \mid \delta_{i n}\right)+E \operatorname{var}\left(\epsilon_{i n} \mid \delta_{i n}\right) \\
& =\sigma^{2}\left(p_{n} k_{n}+1-p_{n}\right),
\end{aligned}
$$

the variance of the estimator is

$$
\operatorname{var} \hat{\beta}_{n}=\sigma^{2}\left(p_{n} k_{n}+1-p_{n}\right) / \sum_{i}\left(X_{i n}-\bar{X}_{n}\right)^{2}
$$

Scaling by n,
$n \times \operatorname{var} \hat{\beta}_{n}=\sigma^{2}\left(p_{n} k_{n}+1-p_{n}\right) / n^{-1} \sum_{i}\left(X_{i n}-\bar{X}_{n}\right)^{2} \sim \sigma^{2}\left(p_{n} k_{n}+1-p_{n}\right) / \sigma_{x}^{2}$.

Thus for (i), we need $p_{n} k_{n}+1-p_{n}$ to have a limit, and for (ii), we need $p_{n}\left(k_{n}-1\right) \rightarrow 0$. A reasonable interpretation of this is that the outliers will not prevent the variance of $\hat{\beta}$ from going to zero at the usual rate as long as $p_{n} k_{n}$ stays bounded. For example, if fraction $p_{n}=0.1$ of the errors have $k_{n}=10$ times greater variance ($\sqrt{10} \approx 3.2$ times greater standard deviation), then the variance of $\hat{\beta}_{n}$ will decrease at the usual rate. But if we want the limiting variance $\left(\lim _{n \rightarrow \infty} n \operatorname{var} \hat{\beta}_{n}\right)$ to be the same as when no outliers are present, we would need p_{n} to be much smaller, say $p_{n}=0.01$.

