
Statistics 600 Problem Set 2

Due Wednesday October 20th at midnight

1. Suppose we have a least squares analysis in which the design matrix
satisfies the structure shown on slide 94 of the least squares notes. The
model coefficients are β0, β1, and β2, and the main interest lies in the
difference θ = β2 − β1. We plan to conduct a Wald test of the null
hypothesis θ = 0 (equivalently, β2 = β1). The false positive probability
of this test will be set to 0.05. The power of this test is the probability
that the null hypothesis is rejected for given values of θ, n, r, and
σ2. For simplicity treat β̂ as Gaussian and σ2 as known. Derive an
expression for the power of the test as a function of n, r, σ2 and θ, and
discuss how the power varies with each of these values.

2. Suppose we have a least squares analysis yielding fitted values ŷ =
x′β̂, based on a data set of n observations. We wish to construct a
95% prediction interval for a new observation y∗ taken at a given x∗

(which need not be one of the xi in the data used to estimate β).
Construct a prediction interval in the following way: (i) append x∗ to
the bottom of the design matrix, which now has n+1 rows, (ii) append
a candidate value ỹ to the bottom of the vector y of responses, so that
it now has length n + 1, (iii) use least squares to fit a linear model
to the n + 1 observations constructed in steps (i)-(ii), (iv) calculate
the n + 1 residuals ri, (v) ỹ is in the prediction interval if and only if∑n+1

i=1 I(|rn+1| ≥ |ri|)/(n + 1) ≤ 0.95. You can assume that the set of
y accepted in step (v) is an interval, and approximate the end points
of this interval by selecting an appropriate grid. Conduct a simulation
study to assess the coverage probability of this procedure.

3. Suppose we have p covariates and an intercept in our model, and we
calculate the partial R2 for adding covariate x1 to the model that con-
tains x2, . . . , xp. and an intercept. Show how this partial R2 value can
be monotonically related to an F statistic.

4. Suppose we are applying the Bonferroni procedure in a setting where
the endpoints of the confidence intervals are mutually independent, i.e.
if (Li, Ui) are the lower and upper limits of the interval for the ith target
value, then {(Li, Ui)} is a collection of independent 2-vectors (note that
Li and Ui are not independent of each other). Moreover, each individual

1



confidence interval has coverage probability α. Derive an expression
for the simultaneous coverage probability of the collection of intervals.
Then use a limiting argument to demonstrate that we do not need to
worry about the Bonferroni procedure being too conservative in this
setting.

5. Suppose we are conducting a multiple regression analysis with p co-
variates, where X ′X/n = (1− r)In + r1n1′n, i.e. the sample correlation
coefficient for each pair of covariates is r ≥ 0 and the covariates are
standardized (for this problem it is irrelevant to consider whether there
is an intercept in the design). The sample size is large enough that we
can treat σ2 as known and for simplicity take σ2 = 1, also we can
treat β̂ as being Gaussian. We use the Bonferroni procedure to con-
struct a collection of simultaneous coverage confidence intervals for the
p coefficients in β. (a) Use simulation to estimate the simultaneous
coverage probability of this collection of intervals. Display your results
as a graph of simultaneous coverage probability versus r, for at least
three values of p. (b) Repeat part a for the collection of

(
p
2

)
confidence

intervals for βj − βk, where j < k.

6. Suppose A and B are symmetric matrices, and A, B, and A + B are
all idempotent. Show that AB ≡ 0.

7. Show that if u and v are jointly Gaussian random values, then there
exists a constant c such that u− cv is independent of v. Then, suppose
that we have two covariates x1 and x2, and for this exercise treat them
as jointly Gaussian random values each with mean zero and unit vari-
ance, and suppose that r = cor(x1, x2). We then decide to include the
product interaction x1x2 as a third covariate in the model. What are
the values of E[x1x2], var[x1x2], and cor(x1, x1x2)?

8.

(a) Suppose that U and V are bivariate Gaussian, and g is a function.
Show that

cov(g(U), V ) = cov(U, V )cov(g(U), U)/var(U).

(b) Suppose that we have a “single index model” in which
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y = g(α + β′x) + ε,

Based on part (a), show that if x is multivariate Gaussian with
a non-singular covariance matrix, then OLS regression of y on x
yields ŷ = α̂+ β̂′x, where β̂ consistently (as the sample size n goes
to infinity) estimates kβ for a constant k ∈ R.

9. Suppose we partition our nonsingular design matrix X = [X0 X1],
where X0 is n × p, X1 is n × q, and X is n × p + q. We wish to test
the null hypothesis E[y] ∈ col(X0) versus the alternative hypothesis
E[y] ∈ col(X). Let r = (I − P0)y denote the residuals when regressing
y on X0, and consider the vector X ′1r. Briefly describe why X ′1r having
large elements (in magnitude) is evidence against the null hypothesis.
Then derive the covariance matrix V of X ′1r. How can V and X ′1r
be combined into a test statistic appropriate for this setting? What
is the reference distribution of this test statistic? For simplicity, treat
σ2 as known and take y − E[y] to follow a Gaussian distribution with
covariance σ2In×n under the null hypothesis.

10. Suppose we have a design matrix as in slide 94 of the least squares notes.
We plan to construct a confidence interval for cos(θ)β1 + sin(θ)β2, for
0 ≤ θ < 2π. Taking σ2 to be known, which values of θ give the
narrowest and widest confidence intervals? What is the ratio of the
lengths of the widest and narrowest intervals?
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