Combinatorics

Counting
An Overview

- Introductory Example
- What to Count

Lists
Permutations
Combinations.

- The Basic Principle
- Counting Formulas
- The Binomial Theorem.
- Partitions
- Solutions

As I was going to St. Ives
I met a man with seven wives
Every wife had seven sacks
Every sack had seven cats
Every cat had seven kits
Kits, cats, sacks, wives
How many were going to St. Ives?

Ans: None.
How many were going the other ways?

7 Wives
$7 \times 7=49$ sacks.
$49 \times 7=343$ cats.
$343 \times 7=2401$ kits

Total $=2800$.

Order Pairs: $(x, y)=(w, z)$ iff $w=x$ and $z=y$.

Ordered Triples: $(x, y, z)=(u, v, w)$ iff $u=x, v=y$, and $w=z$.

Lists of Length r (AKA Order r-tuples):

$$
\left(x_{1}, \cdots, x_{r}\right)=\left(y_{1}, \cdots, y_{s}\right)
$$

iff $s=r$ and $y_{i}=x_{i}$ for $i=1, \cdots, r$.

Example: License Plates. A license plate has the form LMNxyz, where

$$
\begin{gathered}
L, M, N \in\{A, B, \cdots, Z\} \\
x, y, z \in\{0,1, \cdots, 9\}
\end{gathered}
$$

and, so, is a list of length six.

Basic Principle of Combinatorics The Multiplication Principle

For Two: If there are m choices for x and then n choices for y, then there are $m \times n$ choices for (x, y).

For Several: If there are n_{i} choices for x_{i}, $i=1, \cdots, r$, then there are

$$
n_{1} \times n_{2} \times \cdots \times n_{r}
$$

choices for $\left(x_{1}, \cdots, x_{r}\right)$.
Example. There are $7^{3}=7 \times 7 \times 7=343$ choices for (wife, sack, cat).

Example. There are

$$
26^{3} \times 10^{3}=17,576,000
$$

license plates. Of these

$$
26 \times 25 \times 24 \times 10 \times 9 \times 8=11,232,000
$$

have distinct letters and digits (no repetition).

Permutations

A permutation of length r is a list $\left(x_{1}, \cdots, x_{r}\right)$ with distinct components (no repetition); that is, $x_{i} \neq x_{j}$ when $i \neq j$.

Examples. $(1,2,3)$ is a permutation of three elements; $(1,2,1)$ is a list, but not a permutation

Counting Formulas. From n objects,

$$
n^{r}=n \times \cdots \times n(r \text { factors })
$$

lists of length r and

$$
(n)_{r}:=n \times(n-1) \times \cdots \times(n-r+1)
$$

permutations of length r may be formed.
Examples: There are $10^{3}=1000$ three digit numbers of which $(10)_{3}=10 \times 9 \times 8=720$ list distinct digits.

Some Notation. Recall

$$
(n)_{r}=n \times(n-1) \times \cdots \times(n-r+1)
$$

positive integers n and r.
Factorials: When $r=n$, write

$$
n!=(n)_{n}=n \times(n-1) \times \cdots \times 2 \times 1 .
$$

Conventions: $(n)_{0}=1$ and $0!=1$.
Notes a). The book only considers $r=n$.
b). $(n)_{r}=0$ if $r>n$.
c). If $r<n$, then

$$
n!=(n)_{r}(n-r)!
$$

Examples

Example. A group of 9 people may choose officers (P,VP,S,T) in $(9)_{4}=3024$ ways.

Example. 7 books may be arranged in $7!=5040$ ways.

If there are 4 math books and 3 science books, then there are

$$
2 \times 4!\times 3!=288
$$

arrangements in which the math books are together and the science books are together.

Combinations

A combination of size r is a set $\left\{x_{1}, \cdots, x_{r}\right\}$ of r distinct elements. Two combinations are equal if they have the same elements, possibly written in different orders.

Example. $\{1,2,3\}=\{3,2,1\}$, but
$(1,2,3) \neq(3,2,1)$.
Example. How many committees of size 4 may be chosen from 9 people? Choose officers in two steps:

Choose a committee in ?? ways.
Choose officers from the committee in 4 ! ways.

From the Basic Principle

$$
(9)_{4}=4!\times ? ?
$$

So,

$$
? ?=\frac{(9)_{4}}{4!}=126
$$

Binomial Coefficients

Alternatively:

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!} .
$$

The Binomial Theorem: For all
$-\infty<x, y<\infty$,

$$
(x+y)^{n}=\sum_{r=0}^{n}\binom{n}{r} x^{r} y^{n-r} .
$$

Example. When $n=3$,

$$
(x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3} .
$$

Proof. If

$$
(x+y)^{n}=(x+y) \times \cdots \times(x+y)
$$

is expanded, then $x^{r} y^{n-r}$ will appear as often as x can be chosen from r of the n factors; i.e., in

$$
\binom{n}{r}
$$

ways.

Combinations Formula

From $n \geq 1$ objects,

$$
\binom{n}{r}=\frac{1}{r!}(n)_{r}
$$

combinations of size $r \leq n$ may be formed.
Example.

$$
\binom{9}{4}=\frac{1}{4!}(9)_{4}=126 .
$$

Proof: Replace 9 and 4 by n and r in the example.

Example: Bridge. A bridge hand is a combination of $n=13$ cards drawn from a standard deck of $N=52$. There are

$$
\binom{52}{13}=635,013,559,600
$$

such hands.

Binomial Identities

Recall:

$$
(x+y)^{n}=\sum_{r=0}^{n}\binom{n}{r} x^{r} y^{n-r} .
$$

Examples -a). Setting $x=y=1$,

$$
\sum_{r=0}^{n}\binom{n}{r}=2^{n}
$$

b). Letting $x=-1$ and $y=1$,

$$
\sum_{r=0}^{n}\binom{n}{r}(-1)^{r}=0
$$

for $n \geq 1$.

Partitions
 AKA Divisions
 An Example

Q: How many distinct arrangements can be formed from the letters

MISSISSIPPI?

A: There are 11 letters which may be arranged in

$$
\begin{equation*}
11!=39,916,800 \tag{*}
\end{equation*}
$$

ways, but this leads to double counting. If the 4 " S "s are permuted, then nothing is changed.
Similarly, for the 4 "I"s and 2 "P"s. So, (*) the each configuration of letters

$$
4!\times 4!\times 2!=1,152
$$

times and the answer is

$$
\frac{11!}{4!\times 4!\times 2!}=34,650
$$

Partitions
 Defintions

Let Z be a set with n elements. If $r \geq 2$ is an integer,then an ordered partition of Z into r subsets is a list

$$
\left(Z_{1}, \cdots, Z_{r}\right)
$$

where Z_{1}, \cdots, Z_{r} are mutually exclusive subsets of Z whose union is Z; that is,

$$
Z_{i} \cap Z_{j}=\emptyset \text { if } i \neq j
$$

and

$$
Z_{1} \cup \cdots \cup Z_{r}=Z
$$

Let

$$
n_{i}=\# Z_{i}
$$

the number of elements in Z_{i}. Then

$$
n_{1}, \cdots, n_{r} \geq 0
$$

and

$$
n_{1}+\cdots+n_{r}=n
$$

The Partitions Formula

Let n, r, and n_{1}, \cdots, n_{r} be integers for which

$$
\begin{gathered}
n, r \geq 1 \\
n_{1}, \cdots, n_{r} \geq 0 \\
n_{1}+\cdots+n_{r}=n
\end{gathered}
$$

If Z is a set of n elements, then there are

$$
\binom{n}{n_{1}, \cdots, n_{r}}:=\frac{n!}{n_{1}!\times \cdots \times n_{r}!}
$$

ways to partition Z into r subsets $\left(Z_{1}, \cdots, Z_{r}\right)$
for which $\# Z_{i}=n_{i}$ for $i=1, \cdots, r$.
Example.

$$
\binom{11}{4,1,2,4}=34,650
$$

Def. Called multinomial coefficients

The Number of Solutions

If n and r are positive integers, how many integer solutions to the equations

$$
\begin{gathered}
n_{1}, \cdots, n_{r} \geq 0 \\
n_{1}+\cdots+n_{r}=n
\end{gathered}
$$

are there?
First Warm Up Example. How many
arrangements from a A's and b B's-for example, ABAAB)? There are

$$
\binom{a+b}{a}=\binom{a+b}{b}
$$

such, since an arrangement is determined by the a places occupied by A.

The Number of Solutions

Continued
Second Warm Up Example. Suppose $n=8$ and $r=4$. Represent solutions by o and $"+"$ by \mid. For example,
ooo|oo||ooo
means

$$
\begin{aligned}
& n_{1}=3, \\
& n_{2}=2, \\
& n_{3}=0, \\
& n_{4}=3 .
\end{aligned}
$$

Note: Only $r-1=3 \mid$'s are needed.
There are as many solutions as there are ways to arrange o and \mid. By the last example, there are

$$
\binom{8+3}{3}=\binom{11}{3}=165
$$

solutions.

A General Formula

If n and r are positive integers, then there are

$$
\binom{n+r-1}{r-1}=\binom{n+r-1}{n}
$$

integer solutios to

$$
\begin{gathered}
n_{1}, \cdots, n_{r} \geq 0 \\
n_{1}+\cdots+n_{r}=n .
\end{gathered}
$$

If $n \geq r$, then there are

$$
\binom{n-1}{r-1}
$$

solutions with

$$
n_{i} \geq 1
$$

for $i=1, \cdots, r$.

Combinatorics

Summary

- Lists, permuatations, and combinations.
- The Basic Principle
- Counting Formulas

Lists n^{r}
Permuations $(n)_{r}$
Combinations $\binom{n}{r}$
Partitions $\binom{n}{n_{1}, \cdots, n_{r}}$
Solutions $\binom{n+r-1}{r-1}$

