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We study how the divide and conquer principle works in non-
standard problems where rates of convergence are typically slower
than

√
n and limit distributions are non-Gaussian, and provide a de-

tailed treatment for a variety of important and well-studied problems
involving nonparametric estimation of a monotone function. We find
that the pooled estimator, obtained by averaging non-standard es-
timates across mutually exclusive subsamples, outperforms the non-
standard monotonicity-constrained (global) estimator based on the
entire sample in the sense of pointwise inference. We also show that,
under appropriate conditions, if the number of subsamples is allowed
to increase at appropriate rates, the pooled estimator is asymptot-
ically normally distributed with a variance that is empirically es-
timable from the subsample-level estimates. Further, in the context
of monotone regression, we show that this gain in pointwise efficiency
comes at a price — the pooled estimator’s performance, in a uniform
sense (maximal risk) over a class of models worsens as the number of
subsamples increases, leading to a version of the super-efficiency phe-
nomenon. In the process, we develop analytical results for the order
of the bias in isotonic regression, which are of independent interest.

1. Introduction. Suppose that W1, . . . ,WN are i.i.d. random elements having a common
distribution P . We assume that P is unknown and θ0 ≡ θ0(P ) is a finite dimensional parameter
of interest. In this paper we focus on non-standard statistical problems where a natural estimator
θ̂ (of θ0) converges in distribution to a non-normal limit at a rate slower than N1/2, i.e.,

(1.1) rN (θ̂ − θ0)
d→ G,

where rN = o(
√
N) and G is non-normal, has mean zero and finite variance σ2. However, σ2

can depend on P in a complicated fashion which often makes it difficult to use (1.1) to con-
struct confidence intervals (CIs) and hypothesis tests for θ0. Such non-standard limits primarily
arise due to the inherent lack of smoothness in the underlying estimation procedure. Also, in
many such scenarios the computation of θ̂ is complicated, requiring computationally intensive
algorithms. Thus, in the face of a humongous sample size N — quite common with present-day
data — these problems present a significant challenge both in computation and inference.
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In this paper, we investigate how such non-standard estimates behave under the “divide-and-
conquer” strategy – a method that has been much used in the analysis of massive data sets;
see e.g., [20, 29, 30] – with an emphasis on function estimation under monotonicity constraints
which constitutes an important genre of non-standard problems of the above type. Indeed, a rich
class of non-standard problems arises in the nonparametric maximum likelihood/least-squares
(NPMLE/LSE) based estimation of a monotone function, an important sub-area of the field
known as shape-restricted inference which has seen much activity over the last few decades. The
literature on monotone function estimation and inference is extensive: for an excellent exposition,
we direct the reader to the recent text [15]. A key feature of the NPMLE/LSE of a monotone
function under standard smoothness assumptions is the pointwise n1/3 rate of convergence to
the truth with a non-Gaussian mean 0 limit distribution. Such estimators have been studied
in a variety of interesting statistical contexts, e.g., isotonic regression [7, 8], where a monotone
regression function is estimated via least squares under that shape constraint, the current status
model (and extensions thereof) [5, 16], where the distribution of a failure time is estimated under
the monotonicity constraint from discrete response data, Grenander’s problem of estimating a
decreasing density [14, 23], nonparametric estimation of a monotone failure rate [3, 18], likelihood
based inference for monotone response models [2], to name a few.

To provide a glimpse of the asymptotic features in monotone function estimation, we elaborate
on the first of the aforementioned examples: the isotonic regression problem. Consider i.i.d. data
{Wi := (Xi, Yi) : i = 1, . . . , N} from the regression model Y = µ(X) + ε where Y ∈ R is the
response variable, X ∈ [0, 1] (with density f) is the covariate, µ is the unknown nonincreasing
regression function, E(ε|X) = 0, and the conditional variance v2(x) := E(ε2|X = x) is finite.
The goal is to estimate µ : [0, 1] → R nonparametrically, under the constraint of monotonicity.
We will consider the LSE µ̂ defined as a minimizer of ψ 7→

∑n
i=1(Yi − ψ(Xi))

2 over the set of
all nonincreasing functions ψ : [0, 1] → R. We know that µ̂ is unique at the data points Xi’s
and is connected to the slope of the least concave majorant of the cumulative sum diagram [25,
Chapter 1]. If µ′(t0) 6= 0, where t0 is an interior point in the support of X, and v is continuous,

(1.2) N1/3(µ̂(t0)− µ(t0))
d→ κZ,

with κ := |4v(t0)2µ′(t0)/f(t0)|1/3 and Z := argmins∈R{W (s) + s2} (where W is a standard two-
sided Brownian motion starting at 0) has the so-called Chernoff’s distribution; see [28, Theorem
1]. It is known that Z is symmetric (around 0) and has mean zero. Lastly σ2 = Var(κZ), the
variance of the limiting distribution, is difficult to estimate as it involves the derivative of µ, the
estimation of which is well-known to be a challenging problem [5].

A closely related problem is the estimation of the inverse isotonic function at a point. If a is
an interior point in the range of µ and t0 = µ−1(a) ∈ (0, 1) satisfies µ′(t0) 6= 0, then

(1.3) N1/3(µ̂−1(a)− µ−1(a))
d→ κ̃Z,

where κ̃ := |4v2(t0)/µ′(t0)2f(t0)|1/3; this can be derived, e.g., from the arguments in [11]. Similar
results hold across a vast array of monotone function problems.

Another class of problems sharing the same convergence rate and exhibiting non-standard
behavior is found in the world of “cube-root asymptotics” [19], which include, e.g., estimation
of the mode [9], Manski’s maximum score estimator [21], change-point estimation under smooth
mis-specification [4], least absolute median of squares [26], shorth estimation [13].
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Divide and Conquer/Sample splitting: In the sample-splitting strategy called divide-and-
conquer, the available data is partitioned into subsamples, an estimate of θ0 is computed from
each subsample, and finally the subsample level estimates are combined appropriately to form
the final estimator. Our combining/pooling strategy will be based on averaging. To be precise,
assume that N is large and write N = n×m, where n is still large and m relatively smaller (e.g.,
n = 1000, m = 50, so that N = 50000). We define our new “averaged” estimator as follows:

1. Divide the set of samples W1, . . . ,WN into m disjoint subsets S1, . . . , Sm.
2. For each j = 1, . . . ,m, compute the estimator θ̂j based on the data points in Sj .
3. Average together these estimators to obtain the final ‘pooled’ estimator:

(1.4) θ̄ =
1

m

m∑
j=1

θ̂j .

Observe that if the computation of θ̂, the global estimator based on all N observations, is of
super-linear computational complexity in the sample size, computing θ̄ saves resources compared
to θ̂. Further, the computation of θ̄ can be readily parallelized, using m CPU’s. Such averaged
estimators have been considered by many authors recently to estimate nonparametric functions,
but typically under smoothness constraints; see e.g., [29, 30], and also [20] for a discussion with a
broader scope. The above papers illustrate that the approach significantly reduces the required
amount of primary memory and computation time in a variety of cases, yet statistical optimality
— in the sense that the resulting estimator is as efficient as the global estimate — is retained.

We next lay down the contributions of our paper to the divide and conquer literature.

1. In Sections 2 and 3, we present general results on the asymptotic distribution of the averaged
(pooled) estimator θ̄, both when m is fixed and when allowed to increase as N increases, in which
case a normal distribution arises in the limit (Theorem 3.1). Furthermore, in the latter case,
allowable choices of m, which affect the rate of convergence of θ̄, crucially depend on the order
of the bias of θ̂j . Pooling provides us with a novel way to construct a CI for θ0 whose length

is shorter than that of using θ̂ owing to the faster convergence rate involved. The calibration
of the new CI involves normal quantiles, instead of quantiles of the non-standard limits that
describe θ̂ asymptotically. Moreover, the variance σ2 can be estimated empirically using the
subsample-level estimates, whereas in the method involving θ̂, one is typically forced to impute
values of several nuisance parameters that arise in the expression for σ2 using estimates that
can be quite unreliable.

2. The possible gain by sample-splitting is driven by the bias of the non-standard estimator, that
one needs to quantify. In Section 4, we provide results on the bias of monotonicity constrained
estimators as well as their inverses in a variety of important nonparametric problems : isotonic
regression, current status (case 1 interval) censoring, Grenander’s decreasing density problem,
and the problem of estimating a monotone failure rate. The bias in these problems is hard to
compute because the usual Taylor expansion arguments that work in smooth function estimation
problems cannot be employed. For the first time, we provide a non-trivial bound on the order
of the bias of the monotone LSE/NPMLE under mild regularity assumptions.

Furthermore, establishing the asymptotic normality of the pooled estimator in monotone
function problems requires showing uniform integrability of certain powers of the normalized
LSE/NPMLE as well as its inverse, pointwise. We establish this property for all powers p ≥ 1
under suitable model-specific assumptions in Section 4. As a consequence, we obtain upper
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bounds on the maximal risk of the monotone LSE/NPMLE and its inverse over suitable classes
of functions. Although such bounds on the maximal risk are known for most nonparametric
function estimators, this is the first instance of such a result in the general isotonic regression
problem1. The results on bias and uniform integrability are then used to study the sample-
splitting method in the different models considered, by verifying the conditions of Theorem 3.1.

3. In Section 5, we present a rigorous study of a super-efficiency phenomenon that comes into
play when using the pooled estimator in the context of estimating the inverse of an isotonic
regression function. Let θ denote the average of the µ̂−1

n,j(a)’s, where µ̂n,j is the isotonic LSE

from the j’th subsample and let θ0 := t0 ≡ µ−1(a) (see (1.3)). We show that for a suitably
chosen (large enough) class of models M0, when m ≡ mn →∞, the maximal risk,

sup
µ∈M0

Eµ
[
N2/3(θ − θ0)2

]
diverges to infinity as N →∞ whereas the corresponding maximal risk of the global estimator
θ̂ ≡ µ̂−1

N (a) remains bounded. Thus, while the pooled estimator θ can outperform the LSE under
any fixed model, its performance over a class of models is compromised relative to the isotonic
LSE. The larger the number of splits (m), the better the performance under a fixed model, but
the worse the performance over the entire class. Our discoveries therefore serve as a cautionary
tale that illustrates the potential pitfalls of using sample-splitting: the benefits from sample-
splitting, both computational and in the sense of pointwise inference may come at subtle costs.
The proofs of some of the main results are presented in Section 7 and the supplement provides
detailed coverage of additional technical material.

We note that the class of non-standard problems is large and varied and an integrated treat-
ment of divide and conquer across different genres of non-standard problems [where the core
technical challenges lie in the bias calculations and uniform integrability considerations] appears
infeasible, since the tools and techniques, which are non-trivial, will vary quite substantially
from genre to genre. In this paper, we have developed our computations for several examples
belonging to a single but important genre — namely monotone function estimation — which
submit to a reasonably unified treatment, and hope that the interesting findings of this paper
will spur further studies of divide and conquer in other classes of non-standard problems.

Before we move on to the rest of the paper there is one point on which some clarity needs to be
provided: in subsequent sections, the total sample size N will be written as m×n. Now, starting
with an m, not all sample-sizes N can be represented as a product of that form. To get around
this difficulty, one can work with the understanding that we reduce our sample size from N to
Ñ := m× bN/mc (which is then renamed N) with the last few samples being discarded. Since
finitely many are discarded, the resulting pooled estimate will be as precise in an asymptotic
sense as the one based on the original N , provided m is of a smaller order than N (which will
always be the case in the sequel). In this paper we work with the Ñ interpretation.

2. Fixed m and growing n. Consider the setup of (1.1), where θ0 is the parameter of
interest and let θ̄ be the pooled estimator as defined in (1.4). We start with a simple lemma
that illustrates the statistical benefits of sample-splitting when n is large and m is held fixed.

1Similar risk-bounds are presented in the special case of current status model in Theorem 11.3 in [15]; however,
their derivation uses a special feature of the isotonic estimator in that particular model which is not true in the
general scenarios we consider, as discussed later in Remark 4.1.
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Lemma 2.1. Suppose (1.1) holds with E(G) = 0 and Var(G) = σ2. For m fixed and N = m× n,

(2.1)
√
mrn(θ̄ − θ0)

d→ H := m−1/2(G1 +G2 + . . .+Gm), as n→∞,

where G1, G2, . . . , Gm are i.i.d. G. Note that H has mean zero and variance σ2.

Compare the above result with the fact that if all N data points were used together to obtain
θ̂ we would have the limiting distribution in (1.1): if {[rN (θ̂ − θ0)]2}n≥1 is uniformly integrable
(which we will prove later for certain problems), we conclude that E[r2

N (θ̂ − θ0)2] converges to
Var(G) as N →∞, while

(2.2) E
[
mr2

n

r2
N

r2
N (θ̄ − θ0)2

]
→ Var(G) , as N →∞,

since G and H have the same variance. Thus, the asymptotic relative efficiency of θ̄ with respect
to θ̂ ismr2

n/r
2
N . For example, if rN = Nγ , γ < 1/2, then using θ̄ gives us a reduction in asymptotic

variance by a factor of m1−2γ . Hence, for estimating θ0, the pooled estimator θ̄ outperforms θ̂.

Remark 2.1. If {[rn(θ̂j− θ0)]2}n≥1 is uniformly integrable, then the variance of rn(θ̂j− θ0),

which is equal to σ2
n := r2

nVar(θ̂j), converges to σ2 as n → ∞, for every j = 1, . . . ,m. As we

have m independent replicates from the distribution of θ̂j, σ
2 can be approximated by

(2.3) σ̂2 :=
r2
n

m− 1

m∑
j=1

(θ̂j − θ̄)2.

Remark 2.2. For moderate values of m, the m-fold convolution H in (2.1) can be approx-
imated by an appropriate t (or normal) distribution. This yields a simple and natural way to
construct an approximate (1−α) CI for θ0 that completely by-passes the direct estimation of the
problematic nuisance parameter σ2:[

θ̄ − σ̂

rn
√
m
tα/2,m−1, θ̄ +

σ̂

rn
√
m
tα/2,m−1

]
,

where tα,m−1 denotes the (1−α)-th quantile of the t-distribution with m− 1 degrees of freedom.
Furthermore, in certain cases , it is the case that we know the distribution of the centered
non-Gaussian variable Z̃ := G/σ (which has unit variance) and are able to simulate from its
distribution.2 In this case, the Student’s t (or normal) approximation can be avoided. As rn(θ̂j−
θ0)

d→ σZ̃, for j = 1, . . . ,m, the asymptotic distribution of σ̂−1rnm
1/2(θ̄− θ0) coincides with the

distribution of

H̃ :=
[ m∑
i=1

(Z̃i − Z̄m)2/(m− 1)
]−1

m1/2Z̄m,

where Z̃1, . . . , Z̃m are i.i.d. copies of Z̃, and Z̄m denotes their sample mean. Hence one could
replace the t-distribution with the appropriate quantiles of H̃, which can be computed, thanks to
the fact that we are able to simulate from the distribution of Z̃.

2For example, in monotone function estimation, e.g. (1.2), Z̃ is the Chernoff random variable scaled by its own
standard deviation.
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3. Letting m grow with n: asymptotic considerations. In this section, we derive the
asymptotic distribution of

√
mrn(θ̄ − θ0) under certain conditions, as m → ∞. To highlight

the dependence on n, we write m ≡ mn, θ̂j ≡ θ̂n,j and θ̄ = θ̄mn . Consider the triangular array

{ξn,1, ξn,2, . . . , ξn,mn}n≥1 where ξn,j := rn(θ̂n,j − θ0). Let bn := E(ξn,1) = rn(θn − θ0) where

θn := E(θ̂n,1) is assumed to be well-defined. The following theorem is proved in Section 7.1.

Theorem 3.1. Suppose (1.1) holds where E(G) = 0 and Var(G) = σ2. Also, suppose that
bn = O(c−1

n ), where cn →∞ as n→∞, and {ξ2
n,1} is uniformly integrable. Then, as n→∞,

(i) for any mn →∞ such that mn = o(c2
n),
√
mnrn(θ̄mn − θ0)

d→ N(0, σ2);

(ii) if mn ∼ O(c2
n), and furthermore

√
mn bn → τ , then

√
mnrn(θmn − θ0)

d→ N(τ, σ2).

Remark 3.1 (Gains from sample-splitting: “divide to conquer”). The pooled estimator θ̄mn
is more effective than θ̂N , when its convergence rate exceeds that of the latter, i.e.,

rN√
mnrn

→ 0⇔ rN/rn

m
1/2
n

→ 0;

thus, if rN = Nα, using N = n×mn, this requires α < 1/2. In other words, acceleration is only
possible if the initial estimator has a slower convergence rate than the parametric rate.

Remark 3.2 (Choice of mn). As above, let rN = Nα with α < 1/2, and let cn = nφ.
Choosing mn = n2φ−δ, with 0 < δ < 2φ, so that mn = o(c2

n), we have
√
mn rn = nφ−δ/2+α.

Using mn × n = N , we get n = N1/(2φ−δ+1). The convergence rate of the pooled estimator in
terms of the total sample size is therefore N (φ−δ/2+α)/2(φ−δ/2+1/2). Since α < 1/2, this rate is
strictly less than N1/2. Next, the improvement in the convergence rate is given by

φ− δ/2 + α

2(φ− δ/2 + 1/2)
− α = 2

(
1

2
− α

)
φ− δ/2

φ− δ/2 + 1/2
,

which is monotone decreasing in δ. This means that smaller values of δ, corresponding to larger
values of mn = N (2φ−δ)/(2φ−δ+1) give greater improvements in the convergence rate. In the
situation of conclusion (ii) of the above theorem, when δ = 0 and mn = O(c2

n), we get the
maximal convergence rate: N (α+φ)/2(φ+1/2). To get the best possible rate, we would like to get
hold of the optimal value of cn, i.e., we would want bn = O(c−1

n ) but not o(c−1
n ). The optimal

cn might, of course, be difficult to obtain in a particular application; however, sub-optimal cn’s
will also improve the rate of convergence, albeit not to the best possible extent.

From Theorem 3.1 we see that the two key challenges to establishing the asymptotic normality
of the pooled estimator are: (a) establishing uniform integrability as desired above, and, (b)
determining an order for the bias bn. In the following sections we consider the example of
monotone regression and address (a) and (b) for the isotonic MLE and its inverse.

4. Sample splitting in a variety of monotone function problems. In this section,
we study the behavior of the pooled estimator obtained via sample-splitting through a variety
of examples involving the estimation of a monotone function in different contexts: regression,
current status data, density estimation, and hazard rate estimation under right censoring. These
four scenarios cover the four core statistical contexts in which monotone function estimation has
been studied extensively in the literature. As we will see, the results obtained in the four different
scenarios (under broadly similar assumptions) show the recurrence of the same convergence rates.
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4.1. The isotonic regression problem. Our formal treatment is developed in the framework
of [11] which considers a general monotone nonincreasing regression model described below. The
results, of course, extend immediately to the nondecreasing case. Having observed i.i.d. copies
{Wi ≡ (Xi, Yi) : i = 1, . . . , n} of (X,Y ) ∈ [0, 1] × R, we aim at estimating the regression
function µ defined by µ(x) = E(Y |X = x), for x ∈ [0, 1], under the constraint that it is
nonincreasing on [0, 1]. Alternatively, we may be interested in estimating the inverse function
µ−1. With ε = Y − µ(X) we define v2(x) := E(ε2i |Xi = x) for all x ∈ [0, 1] and we make the
following assumptions.

(R1) µ is differentiable and decreasing on [0, 1] with inft |µ′(t)| > 0 and supt |µ′(t)| <∞.
(R2) X has a bounded density f which is bounded away from zero.
(R3) There exists c0 > 0 such that v2(t) ≥ c0(t ∧ (1− t)) for all t ∈ [0, 1].
(R4) There exists α > 0 such that E

(
eθε|X

)
≤ exp(αθ2) a.e. for all θ ∈ R.

Assumption (R3) is less restrictive than the usual assumption of a variance function v bounded
away from zero and allows us to handle the current status model in Subsection 4.2. Assumption
(R4) is fulfilled for instance if the conditional distribution of ε given X is sub-Gaussian and the
variance function v2 is bounded.

4.1.1. The isotonic LSE of µ and the inverse estimator. We start with an exposition of
the characterization of the LSE of µ and its inverse under the monotonicity constraint. With
X(1) < · · · < X(n) the order statistics corresponding to X1, . . . , Xn, and Y(i) the observation
corresponding to X(i), let Λn be the piecewise-linear process on [0, 1] such that

(4.1) Λn

(
i

n

)
=

1

n

∑
j≤i

Y(j)

for all i ∈ {0, . . . , n}, where we set
∑

j≤0 Y(j) = 0. Let λ̂n be the left-hand slope of the least
concave majorant of Λn. It is well known that a monotone µ̂n is an LSE if and only if it satisfies

(4.2) µ̂n(X(i)) = λ̂n(i/n)

for all i = 1, . . . , n. In the sequel, we consider the piecewise-constant left-continuous LSE µ̂n
that is constant on the intervals [0, X(1)], (X(n), 1] and (X(i−1), X(i)] for all i = 2, . . . , n− 1.

Now, recall that for every nonincreasing left-continuous function h : [0, 1]→ R, the generalized
inverse of h is defined as: for every a ∈ R, h−1(a) is the greatest t ∈ [0, 1] that satisfies h(t) ≥ a,
with the convention that the supremum of an empty set is zero. In the sequel, we consider the
generalized inverse µ̂−1

n of µ̂n as an estimator for µ−1.

4.1.2. Uniform integrability and bias. Below, we provide bounds on the maximal risk of
the isotonic LSE and its inverse, which imply uniform integrability. Although such bounds on
the maximal risk over suitable classes of functions are known for most nonparametric function
estimators, this is the first instance for such a result in the context of isotonic regression. We
also establish the order of the bias for both estimators. The proofs are given in Section 7.4.

Theorem 4.1. Assume (R4) and that X has a density function f . Let A1, . . . , A5 be positive
numbers and consider F1, the class of nonincreasing functions µ on [0, 1] such that

(4.3) A1 ≤
∣∣∣∣µ(t)− µ(x)

t− x

∣∣∣∣ ≤ A2 for all t 6= x ∈ [0, 1],
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|µ(t)| < A5 for all t ∈ [0, 1], and A3 < f(t) < A4 for all t. Then, for any p ≥ 1, there exists
Kp > 0 that depends only on p,A1, . . . , A5 and α such that

1. lim sup
n→∞

supµ∈F1
np/3 Eµ

(
|µ̂−1
n (a)− µ−1(a)|p

)
≤ Kp for all fixed a ∈ R,

2. lim sup
n→∞

supµ∈F1
np/3 Eµ (|µ̂n(t)− µ(t)|p) ≤ Kp for all fixed t ∈ (0, 1).

Note that (4.3) holds if µ has a first derivative that is bounded from both infinity and zero.

Remark 4.1. Theorem 4.1 implies that for fixed t, np/3 Eµ (|µ̂n(t)− µ(t)|p) is bounded. This
is similar to [15, (11.32) and (11.33)] in the current status model. However, the inequalities in
[15] hold for all t, whereas the corresponding inequality for the general regression model above
holds only for t in a restricted interval. This is due to a very specific feature of the estimator in
the current status model: it has the same range as the estimated function since both of them are
distribution functions. In particular, the estimator is consistent at the boundaries in the current
status model, whereas it is not in the general regression model. Hence, the strategy of proof in
[15] does not extend to our regression model: whereas the proof in [15] is based solely on an
exponential inequality for the tail probabilities of the inverse estimator, our proof is based on two
tail inequalities, one of them being an extension of Theorem 11.3 in [15] to our setting (Lemma
7.1), and the other one being a sharper inequality for points outside the range of µ (Lemma 7.3).

We next consider the order of the bias. Tackling the bias requires imposing additional smooth-
ness assumptions on the underlying parameters of the problem. Precisely, we assume for some
of our results that v2 has a bounded second derivative on [0, 1], that µ is differentiable with

(4.4) |µ′(x)− µ′(y)| ≤ C|x− y|s, for all x, y ∈ [0, 1],

for some C > 0 and s > 0 (where bounds on s will be specified precisely while stating the actual
results); and, instead of (R2), the more restrictive assumption:

(R5) The density f of X is bounded away from zero with a bounded first derivative on [0, 1].

Theorem 4.2. Assume (R1), (R5), (R3) and (R4). Assume, furthermore, that v2 has a
bounded second derivative on [0, 1] and µ satisfies (4.4) for some C > 0 and s > 1/2. Then,

E
(
µ̂−1
n (a)− µ−1(a)

)
= o(n−1/2)+O(n−(2s+3)/9(log n)25/2)

uniformly in a ∈ [µ(1) +Kn−1/6 log n, µ(0)−Kn−1/6 log n].

Now, consider the bias of the direct estimator. For technical reasons, we require a higher degree
of smoothness s = 1 on µ′ than needed for dealing with the inverse function and we obtain a
slower rate than for the inverse.

Theorem 4.3. Assume (R1), (R5), (R3), (R4), v2 has a bounded second derivative on [0, 1]
and (4.4) holds for some C > 0 and s = 1. For an arbitrary fixed [c1, c2] ⊂ (0, 1), we have

E (µ̂n(t)− µ(t)) = O(n−7/15+ζ)

with an arbitrary ζ > 0, where the big-O term is uniform in t ∈ [c1, c2].
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4.1.3. On the criticality of the smoothness assumption on µ. Theorems 4.2 and 4.3 show that
under appropriate smoothness assumptions, the bias of the isotonic LSE and its inverse converge
to 0 at a rate strictly faster than n−1/3; e.g., in the inverse problem, n1/3(E(µ̂−1

n (a)−µ−1(a)) =
o(c−1

n ) for some cn going to infinity, whence by Theorem 3.1, we can choose the number of
sub-samples mn → ∞ (in terms of cn) for constructing the pooled estimator, achieving in the
process an acceleration in the convergence rate compared to the global estimator. However, the
cube-root convergence rate in the isotonic regression problem does not require smoothness: it is
valid even under a Lipschitz assumption on the regression function. It is, therefore, interesting to
consider whether the divide and conquer method works under the weaker Lipschitz assumption.
This boils down to the question whether the bias of the isotonic estimator (or its inverse) also
disappears at a rate faster than n−1/3 under Lipschitz continuity. We show in Section 8.13 of
the supplement (in the inverse problem setting) that without smoothness, Lipschitz continuity
in itself is not sufficient to guarantee a bias that vanishes sufficiently quickly. Indeed, in our
example, n1/3(E(µ̂−1

n (a)) − µ−1(a)) converges to a non-zero quantity. The pooled estimator
therefore accumulates bias and its MSE goes to infinity as mn increases and divide and conquer
fails dramatically.

4.1.4. Sample splitting in the isotonic regression model. We next study the effect of sample-
splitting in the isotonic regression model. We consider N i.i.d. copies {(Xi, Yi)}Ni=1 of (X,Y ) as
above. The parameter of interest is θ0 ≡ µ(t0) which is estimated by

θ̄mn =
1

mn

mn∑
j=1

µ̂n,j(t0),

µ̂n,j being the isotonic LSE computed from the j-th split-sample. Under (a subset of) the
assumptions on the parameters of the model made in Theorem 4.3, convergence in law to Cher-
noff’s distribution holds: with µ̂ denoting the global estimator based on all N observations,
we have (1.2) with κ := |4v2(t0)µ′(t0)/f(t0)|1/3. To apply Theorem 3.1, we need to show that:
(a) n1/3(θn − µ(t0)) = O(n−φ) (here θn = E[µ̂n,1(t0)]) for some φ > 0, and (b) the uniform
integrability of the sequence {n2/3(µ̂n,1(t0)− µ(t0))2}n≥1.

Now, (b) is a direct consequence of Theorem 4.1 applied with any p > 2. As far as (a) is
concerned, by Theorem 4.3, we know that the desired condition in (a) is satisfied for s = 1
in (4.4) for any fixed t0 ∈ (0, 1), by taking φ = (7/15−1/3)− ζ = (2/15− ζ) where ζ > 0 can be
taken to be arbitrarily small. From Remark 3.2, choosing mn = n2φ−δ = n4/15−2ζ−δ for a small
enough 0 < δ < 2φ, we conclude that with σ2 = κ2 Var(Z), we have

(4.5) N (7/15−ζ−δ/2)/(19/15−2ζ−δ)(θmn − θ0)
d→ N(0, σ2) .

4.1.5. Inverse function estimation at a point. Consider the same set-up as in Section 4.1.4.
We now consider estimation of µ−1(a) via the inverse isotonic LSE under the assumptions of
Theorem 4.2. The behavior of the isotonic estimator µ̂−1 based on the entire data of size N is
given by (1.3) where κ̃ := |4v2(t0)/µ′(t0)2f(t0)|1/3, with t0 = µ−1(a). To apply Theorem 3.1,
we need to show that: (a) n1/3(θn − µ−1(a)) = O(n−φ) (here θn = E[µ̂−1

n,1(a)]) for some φ > 0,

and (b) the uniform integrability of the sequence {n2/3(µ̂−1
n,1(a)− µ−1(a))2}n≥1.

In this case, (b) is a direct consequence of Theorem 4.1 applied with any p > 2. As far as (a)
is concerned, by Theorem 4.2, we know that the desired condition in (a) is satisfied for s > 3/4

imsart-aos ver. 2013/03/06 file: D&C_Revision_AoS_May19.tex date: May 22, 2017
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in (4.4) for any fixed a in the interior of the range of µ by taking φ = (1/2− 1/3) = 1/6. From
Remark 3.2, choosing mn = n2φ = n1/3 (for the inverse function estimation problem we are
actually in the situation of conclusion (ii) of Theorem 3.1 with τ = 0), we conclude that:

(4.6) N (1/3+1/6)/[2(1/6+1/2)](θmn − θ0) ≡ N3/8(θmn − θ0)
d→ N(0, σ̃2) ,

where σ̃2 = κ̃2 Var(Z). The pooled estimator, therefore, has a convergence rate of N3/8.

Remark 4.2. The order of the bias obtained in the forward problem (Theorem 4.3) is slower
than that obtained in the inverse problem (Theorem 4.2) and comes at the expense of increased
smoothness (s = 1) compared to Theorem 4.2. This seems to be, at least partly, an artifact of our
approach where we start from the characterization of the inverse estimator and derive results
for the forward problem from those in the inverse problem through the switching relationship.

Next, even for the inverse problem, it is not clear at this point whether the order of the bias
obtained in Theorem 4.2 is optimal, i.e., the best possible one under the assumed smoothness.
It is conceivable that when s > 3/4 the exact order of the bias is smaller than the obtained
o(n−1/2) rate from Theorem 4.2. A smaller bias would allow a faster rate of convergence than
N3/8 through an appropriate choice of mn. A complete resolution of the bias problem is outside
the scope of this paper. It is, however, worth reiterating that Theorems 4.2 and 4.3 are the first
systematic attempts in the literature to quantify the bias of isotonic estimators.

4.2. The current status model. The current status model has found extensive applications
in epidemiology and biomedicine. One version of this problem is to estimate the distribution
function FT of a failure time T ≥ 0 on [0, 1], based on observing n independent copies of the
censored pair (X, 1IT≤X). Here, X ∈ [0, 1] is the observation time independent of T , and 1IT≤X
stipulates whether or not the failure has occurred before time X. Then,

FT (x) = P(T ≤ x) = E(1IT≤X |X = x)

for all x ∈ [0, 1]. This falls in the general framework of Section 4.1 with Y = −1IT≤X and
µ = −FT , which is nonincreasing. It follows from [17, Remark page 30] that the NPMLE of FT is
precisely the right-continuous version of F̂Tn := −µ̂n where µ̂n is the LSE from Section 4.1.1. We
give below a separate treatement for F̂Tn in the current status model since ε := −1IT≤X +FT (X)
does not satisfy the assumption (R4). The following theorem is proved in Section 7.2.

Theorem 4.4. Assume that we observe n independent copies of (X, 1IT≤X), where X ∈ [0, 1]
is independent of T ≥ 0. Assume that T has a continuous density function fT that is bounded
away from both zero and infinity on [0, 1], and that X has a density function f on [0, 1] that is
bounded away from zero and has a continuous first derivative on [0, 1]. With F̂Tn as above and
the corresponding inverse F̂−1

Tn (a) = µ̂−1
n (−a) we have:

1. For any p ≥ 1, there exists Kp > 0 such that for all n, t ∈ [0, 1] and a ∈ [0, 1],

E
(
|F̂Tn(t)− FT (t)|p

)
≤ Kpn

−p/3 and E
(
|F̂−1
Tn (a)− F−1

T (a)|p
)
≤ Kpn

−p/3.

2. If moreover, fT is Lipschitz continuous, then with arbitrary positive K, c1, φ and c2 < 1,

E
(
F̂−1
Tn (a)− F−1

T (a)
)

= o(n−1/2) and E
(
F̂Tn(t)− FT (t)

)
= O(n−7/15+φ)

uniformly for all a ∈ [Kn−1/6 log n, 1−Kn−1/6 log n] and t ∈ [c1, c2].

imsart-aos ver. 2013/03/06 file: D&C_Revision_AoS_May19.tex date: May 22, 2017



DIVIDE AND CONQUER IN NON-STANDARD PROBLEMS 11

3. Now, let F̂TN denote the MLE based on N = mn × n observations from the current

status model, F̂
(j)
Tn the MLE from the j’th subsample and Fmn the pooled isotonic estimator

obtained by averaging the F̂
(j)
Tns. Under the above assumptions, for all ζ, δ > 0, sufficiently

small, and any 0 < t < 1, we have

N (7/15−ζ−δ/2)/(19/15−2ζ−δ)(Fmn(t)− F (t))
d→ N(0, σ2) ,

where σ2 = {4FT (t)(1 − FT (t))fT (t)/f(t)}2/3 Var(Z). Moreover, for any a ∈ (0, 1), with

θmn the pooled estimator obtained by averaging the (F̂
(j)
Tn)−1(a)s,

N3/8(θmn − F−1
T (a))

d→ N(0, σ̃2) ,

where σ̃2 = {4 a(1− a)/f
′
T (ta)

2f(ta)}2/3 Var(Z) with ta = F−1
T (a). On the other hand,

N1/3(F̂TN (t)− F (t))
d→ {4FT (t)(1− FT (t))fT (t)/f(t)}1/3 Z ,

while
N1/3(F̂−1

TN (a)− F−1
T (a))

d→ {4 a(1− a)/fT (ta)
2f(ta)}1/3 Z .

4.3. The monotone density and monotone hazard problems. We further illustrate our results
on two widely studied monotone function problems, where the goal is to estimate a function λ
on [0, 1] under the known constraint that it is nonincreasing.

(a) Grenander estimator: Consider i.i.d. data W1, . . . ,Wn with common nonincreasing den-
sity function λ on the interval [0, 1]. The nonparametric MLE of λ is λ̂n, the left-hand slope
of the least concave majorant of the empirical distribution function Λn corresponding to
W1, . . . ,Wn.

(b) Monotone hazard under right censoring: Consider i.i.d. data {Wi := (Xi, δi) : i =
1, . . . , n} from the random censorship model: Xi = min(Ti, Ci) and δi = 1I{Ti≤Ci}. The
failure times Ti are assumed to be nonnegative with density f and to be independent of the
i.i.d. censoring times Ci that have a distribution function G. The failure rate λ = f/(1−F ),
where F is the distibution function corresponding to f , is assumed to be nonincreasing.
We will consider the Huang-Wellner estimator λ̂n on [0, 1], defined as the left-hand slope
of the least concave majorant of the restriction of the Nelson-Aalen estimator Λn to [0, 1]
[18]. Recall that if t1 < · · · < tK denote the ordered distinct uncensored failure times,
and nk the number of i ∈ {1, . . . , n} with Xi ≥ tk, then Λn is constant on [tk, tk+1) with
Λn(tk) =

∑
i≤k n

−1
i for all k, Λn(t) = 0 for all t < t1, and Λn(t) = Λn(tK) for all t ≥ tK .

Given some t0 ∈ (0, 1) the parameter of interest is θ0 = λ(t0).

Theorem 4.5. Assume that we observe n independent copies of W in either the frame-
work (a) or (b), with the corresponding estimator λ̂n of λ. Assume that λ is differentiable and
decreasing on [0, 1] with inft λ(t) > 0 and

(4.7) A1 ≤
∣∣∣∣λ(t)− λ(x)

t− x

∣∣∣∣ ≤ A2 for all t 6= x ∈ [0, 1],

In addition, under (b), assume that F (1) < 1, limt↑1G(t) < 1, and G has a bounded continuous
derivative on (0, 1). We then have, in both settings (a) and (b):
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1. For any p ≥ 1, there exists Kp > 0 such that for all n, t ∈ [n−1/3, 1− n−1/3] and a ∈ R,

E
(
|λ̂n(t)− λ(t)|p

)
≤ Kpn

−p/3 and E
(
|λ̂−1
n (a)− λ−1(a)|p

)
≤ Kpn

−p/3.

2. If moreover, λ has a first derivative that satisfies |λ′(t)−λ′(x)| ≤ A|t−x| for all t, x ∈ [0, 1]
and some A > 0, then with K > 0, c1 > 0, c2 < 1, and φ > 0 arbitrary constants,

E
(
λ̂−1
n (a)− λ−1(a)

)
= o(n−1/2) and E

(
λ̂n(t)− λ(t)

)
= O(n−7/15+φ)

uniformly for all a ∈ [Kn−1/6 log n, 1−Kn−1/6 log n] and t ∈ [c1, c2].

3. Now, let λ̂N denote the MLE based on N = mn × n observations, λ̂
(j)
n the MLE from

the j’th subsample and λmn the pooled isotonic estimator obtained by averaging the λ̂
(j)
n s.

Under the above assumption, for all ζ, δ > 0 sufficiently small, and any 0 < t < 1, we have

N (7/15−ζ−δ/2)/(19/15−2ζ−δ)(λmn(t)− λ(t))
d→ N(0, κ2Var(Z)) ,

where κ = |4λ(t)λ
′
(t)|1/3 under (a) and κ = |4λ(t)λ

′
(t)/H(t)|1/3 under (b), where H(t) =

(1 − F (t))(1 − G(t)). Moreover, for any a ∈ (0, 1), with θmn being the pooled estimator

obtained by averaging the (λ̂
(j)
n )−1(a)s,

N3/8(θmn − λ−1(a))
d→ N(0, κ̃2Var(Z)) ,

with κ̃ = |4a/[λ′(λ−1(a))]2|1/3 under (a) and κ̃ = |4a/[λ′(λ−1(a))]2H(λ−1(a))|1/3 under
(b). On the other hand:

N1/3(λ̂N (t0)− λ(t0))
d→ κZ ,

while
N1/3(λ̂−1

N (a)− λ−1(a))
d→ κ̃Z .

To save space, and given that the proof techniques are similar to those of the models considered
earlier, an outline of the proof of the above theorem is relegated to Section 8.14 of the supplement.

5. Sample-splitting and the super-efficiency phenomenon. The variance reduction
accomplished by sample-splitting (see (2.2)) for estimating a fixed monotone function, or its
inverse, at a given point comes at a price. We show in this section, in the context of the inverse
isotonic regression problem, that though a larger number of splits (m) brings about greater
reduction in the variance for a fixed function, the performance of the pooled estimator in a
uniform sense, over an appropriately large class of functions, deteriorates in comparison to the
global estimator as m increases. This can be viewed as a super-efficiency phenomenon: a trade-off
between point wise performance and performance in a uniform sense.

5.1. Super-efficiency of the pooled estimator. Fix a nonincreasing function µ0 on [0, 1] that is
continuously differentiable on [0, 1] with 0 < c < |µ′0(t)| < d <∞ for all t ∈ [0, 1]. Let x0 ∈ (0, 1).
Define a neighborhoodM0 of µ0 as the class of all continuous nonincreasing functions µ on [0, 1]
that are continuously differentiable on [0, 1], that coincide with µ0 outside of (x0 − ε0, x0 + ε0)
for some (small) ε0 > 0, and such that 0 < c < |µ′(t)| < d < ∞ for all t ∈ [0, 1]. Now, consider
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N i.i.d. observations {(Xi, Yi)}Ni=1 from (X,Y ) as in Section 4.1 where X ∼ Uniform(0, 1) is
independent of ε ∼ N(0, v2). We know that the isotonic estimate θ̂N of θ0 := µ−1

0 (a) satisfies

(5.1) N1/3 (θ̂N − θ0)
d→ G,

as N → ∞, where G =d κ̃Z, Z being the Chernoff random variable, and κ̃ > 0 is a constant.
If we split N as m × n, where m is a fixed integer, then as N → ∞, Lemma 2.1 tells us that
N1/3(θm − θ0) converges in distribution to m−1/6H, where θm is the pooled estimator and H
has the same variance as G. By Theorem 4.1 we have uniform integrability under µ0, whence

(5.2) Eµ0
[
N2/3(θ̂N − θ0)2

]
→ Var(G) and Eµ0

[
N2/3(θm − θ0)2

]
→ m−1/3 Var(G),

as N →∞. Hence, the pooled estimator outperforms the inverse isotonic regression estimator.

We now focus on comparing the performance of the two estimators over the classM0. In this
regard we have the following theorem, proved in Section 7.3.

Theorem 5.1. Let

(5.3) E := lim sup
N→∞

sup
µ∈M0

Eµ
[
N2/3(θ̂N − θ0)2

]
and Em := lim inf

N→∞
sup
µ∈M0

Eµ
[
N2/3(θm − θ0)2

]
where the subscript m indicates that the maximal risk of the m-fold pooled estimator (m fixed)
is being considered. Then E <∞ while Em ≥ m2/3 c0, for some c0 > 0. When m = mn diverges
to infinity,

lim inf
N→∞

sup
µ∈M0

Eµ
[
N2/3(θmn − θ0)2

]
=∞ .

Therefore, from Theorem 5.1 it follows that the asymptotic maximal risk of the pooled esti-
mator diverges to∞ (at least) at rate m2/3. Thus, the better off we are in a pointwise sense with
the pooled estimator, the worse off we are in the uniform sense over the class of functions M0.

Remark 5.1. As an inspection of the proof of this theorem reveals, the super-efficiency
phenomenon with this dichotomy of pointwise and uniform risk is really an outcome of a bias-
related problem. The maximal squared bias of the appropriately normalized pooled estimator over
the class of functions M0 considered in the above theorem diverges to ∞ owing to the fact that
the maximal squared bias (over the class M0) of the subsample level isotonic estimates fails to
go to 0. Essentially, the class M0 is so large that the Hölder condition (4.4) is not satisfied
uniformly over M0.

Table 1 gives the ratios of the (estimated) mean squared errors E
[
(µ̂−1
N (a)− θ0)2

]
/E
[
(θm − θ0)2

]
comparing the performance of the pooled estimator θm with the global estimator µ̂−1

N (a) as n
and m change for two different models, which are described in the caption to the table. For
the first model (left table) we fix µ(x) = x and let N → ∞ and find that the pooled estimator
has superior performance to the global estimator as m (and n) grows. The ratio of the mean
squared errors is generally close to m1/3, as per (5.2). The second model considered (right ta-
ble) illustrates the phenomenon described in Theorem 5.1. We lower bound the supremum risk
overM0 by considering a sequence of alternatives inM0 (obtained from local perturbations to
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(n,m) 5 10 15 30 45 60 90

50 1.67 1.71 1.90 1.66 1.57 1.65 1.17
100 1.31 1.76 2.21 2.29 2.16 2.46 2.33
200 1.75 2.06 2.42 2.81 2.58 3.16 3.39
500 1.70 2.13 2.12 2.80 3.16 3.59 4.11

1000 1.46 2.04 2.46 2.88 3.60 3.51 4.31
3000 1.63 2.12 2.33 3.11 4.15 3.84 3.69

10000 1.75 2.11 2.70 2.86 3.31 5.08 5.18

5 10 15 30 45 60 90

1.47 1.21 0.94 0.70 0.55 0.54 0.39
1.04 0.97 0.90 0.59 0.47 0.40 0.31
1.03 0.94 0.76 0.68 0.42 0.38 0.29
1.01 0.90 0.69 0.54 0.44 0.34 0.24
1.16 0.88 0.66 0.52 0.36 0.34 0.24
1.09 0.87 0.75 0.43 0.40 0.31 0.21
0.94 0.79 0.80 0.43 0.33 0.31 0.23

Table 1

Ratios of the (estimated) mean squared errors
E[(µ̂−1

N
(a)−θ0)2]

E[(θm−θ0)2]
comparing the performance of the pooled estimator

θm with the global estimator µ̂−1
N as n and m change for the model: Y = µ(X) + ε, X ∼ Unif(0, 1),

ε ∼ N(0, 0.22), and a = 0.5, with (i) µ(x) = x, and (ii) µ(x) = µn(x) = x+ n−1/3B(n1/3(x− x0)) with
B(u) = 2−1(1− (|u| − 1)2)21I{|u|≤2}. For both (i) and (ii), θ0 ≡ µ−1(a) = 0.5.

µ(x) = x around x0 = 0.5) for which the ratio of the mean squared errors falls dramatically
below 1, suggesting that in such a scenario it is better to use the global estimator µ̂−1

N (a).

The super-efficiency phenomenon noted in connection with the pooled estimator in the mono-
tone regression model is also seen with sample-splitting with smoothing based procedures, e.g.,
kernel based estimation, if the bandwidth used in the divide and conquer method is not ap-
propriately adjusted. We describe the phenomenon in a density estimation setting, since this
is the easiest to deal with, in Section 8.15 of the supplementary document. Indeed, several au-
thors have criticized such super-efficiency phenomena in nonparametric function estimation; see
e.g., [6], [27, Section 1.2.4]. Indeed, it is shown in the second reference that (under the usual
twice differentiability assumptions) there exist infinitely many bandwidths that, under any fixed
density, produce kernel estimates with asymptotically strictly smaller MSE than the Epanech-
nikov oracle and argued therein that the criterion of assessment of an estimator should therefore
be quantified in terms of its maximal risk over an entire class of densities.

While this is certainly a reasonable perspective, we believe that there is also some merit in
studying the pointwise behavior of estimators such as in (5.1) (as opposed to a uniform measure
such as (5.3)). For construction of CIs statisticians usually rely on such pointwise asymptotic
results as it is often quite difficult to obtain useful practical procedures that have justification
in a uniform sense. Moreover, in the regime of massive datasets, sample-splitting can provide
practical gains over the global estimator which might be impossible to compute.

6. Conclusion. We have established rigorous results on the behavior of the pooled (by
averaging) estimator using sample-splitting in a variety of nonparametric monotone function
estimation problems and demonstrated both its pros and cons. The dichotomy between pointwise
risk and maximal risk demonstrated in this paper is expected to arise more broadly in many
of the other cube-root M -estimation problems mentioned in the Introduction and developed in
[19], since the inverse monotone regression problem treated in this paper is as an M -estimation
problem of the type considered in [19]. A generic treatment of this class of problems should
provide an interesting avenue for future research but is outside the scope of this paper. A more
general (and harder) question worth considering is a broad characterization of non-standard
problems (not necessarily with cube-root convergence rates) where sample-splitting followed by
averaging improves the point-wise risk but produces out-of-control uniform risk bounds, and also
how one can circumvent this dichotomy by the use of other clever divide-and-conquer algorithms.
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7. Proofs of the main results.

7.1. Proof of Theorem 3.1. Since {ξ2
n,1}n≥1 is uniformly integrable and ξn,1

d→ G, σ2
n :=

Var(ξn,1)→ σ2 as n→∞. Set

Zn :=

mn∑
j=1

(ξn,j − bn)

and let B2
n := Var(Zn) = mnσ

2
n. Now, with ξ̄n = m−1

n

∑mn
j=1 ξn,j we have

Zn
Bn

=

∑mn
j=1(ξn,j − bn)
√
mnσn

=

√
mnrn(θ̄mn − θ0)

σn
−
√
mn bn
σn

≡ In − IIn.

To show that Zn/Bn
d→ N(0, 1), we just need to verify the Lindeberg condition: for every ε > 0,

1

σ2
n

E[(ξn,1 − bn)21{|ξn,1 − bn| > ε
√
mn σn}]→ 0.

Since σ2
n converges to σ2 > 0 and mn → ∞, the above condition is implied by the uniform

integrability of {(ξn,1 − bn)2}n≥1 which is guaranteed by the uniform integrability of {ξ2
n,1}

(since the sequence bn goes to 0 and is therefore bounded). Hence, Zn/Bn
d→ N(0, 1).

Now assume that mn is as in (i). Then, IIn → 0, which implies that In converges to a standard
Gaussian law, whence (i) follows. Next, if mn is as in (ii), IIn → τ/σ, and (ii) follows.

7.2. Proof of Theorem 4.4. Let µ = −FT and for all i = 1, . . . , n, let Yi = −1ITi≤Xi and
εi = Yi−µ(Xi) ∈ [−1, 1]. Moreover, define v2(x) := E(ε2i |Xi = x) for all x ∈ [0, 1]. We then have

v2(x) = Var(1IT≤x) = FT (x)(1− FT (x)).

Note that F−1
T (a) = µ−1(−a). Under the assumptions of Theorem 4.4, (R1) and (R5) hold

true. The assumption (R3) holds since T has a density function that is bounded away from
zero. However, (R4) does not hold so Theorems 4.1, 4.2 and 4.3 cannot be directly applied to
obtain the results in the current status model. Nevertheless, we will follow the same line of
proof in the current status model as in the general regression model. Note that in the current
setting, the variance function v2 may not have a bounded second derivative but instead, it has
a Lispschitz first derivative with is in fact enough for our purposes. Hence, the first step is to
obtain analoguous of the preliminary lemmas of Section 7.4.1 for the current status model. As a
consequence of Theorem 11.3 in [15], the inequality (7.8) still holds for all a ∈ [0, 1] and x > 0.
Because µ̂−1

n (a) = µ−1(a) for all a 6∈ [0, 1] in the current status case, the inequality also holds
for all a ∈ R. Because thanks to (7.4), Ûn = Fn(µ̂−1

n ) + O(n−1), combining this with Corollary
1 in [22] implies that (7.9) also holds for all a ∈ R and x > 0. Now, µ̂−1

n (a) is equal ot 0 for
all a > λ(0) and to 1 for all a < λ(1), so (7.10) holds for all a > λ(0) and x > n−1 (since the
probability on the left-hand side is zero), whereas (7.11) holds for all a > λ(1) and x > n−1.
This means that one can still apply Lemmas 7.1, 7.2 and 7.3 in the current status model.

The second assertion of Theorem 4.4 follows from Theorem 11.3 in [15]. The first one follows
from (11.32) and (11.33) of that book. The conclusions in 2 (on the orders of the bias of F̂Tn
and F̂−1

Tn ) follow by the same arguments as for the proof of Theorems 4.2 and 4.3 using that
the preparatory lemmas of Section 7.4.1 still apply and |εi| ≤ 1, and the conclusions in 3 follow
exactly in the same fashion as for the general regression model considered above.
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7.3. Proof of Theorem 5.1. Here, we assume that µ0 is nondecreasing — this is convenient as
we borrow several results from other papers stated in the context when µ0 is nondecreasing. The
neighborhood M0 in the statement of the theorem needs to be similarly modified. (Of course,
appropriate changes will lead to the proof of the case when µ0 is nonincreasing.)

By Theorem 4.1 (adapted to nondecreasing functions), with p = 2 and noting that M0 is a
subset of an appropriate F1 we conclude that E <∞. Letting

V1 := lim sup
N→∞

sup
µ∈M0

Varµ[N1/3(θ̂N − µ−1(a))],

and
V2 := lim sup

N→∞
sup
µ∈M0

N2/3[Eµ θ̂N − µ−1(a)]2 ,

we have V1 ∨ V2 ≤ E ≤ V1 + V2 < ∞. Recall that as θm is the average of the m i.i.d. random
variables µ̂−1

n,j(a), j = 1, . . . ,m, Eµ(θm) = Eµ(µ̂−1
n,1(a)). Now, consider

V2,m := lim inf
N

sup
µ∈M0

N2/3[Eµ θm − µ−1(a)]2

= m2/3 lim inf
n→∞

sup
µ∈M0

n2/3[Eµ µ̂−1
n,1(a)− µ−1(a)]2 =: m2/3 Ṽ2.

Note that, Em ≥ V2,m = m2/3 Ṽ2. We will show below that Ṽ2 > 0; thus c0 in the statement

of the theorem can be chosen to be Ṽ2. To this end, consider the monotone regression model
under a sequence of local alternatives µn which eventually lie in M0. Let Y = µn(X) + ε where
everything is as before but µ0 changes to µn which is defined as

µn(x) = µ0(x) + n−1/3B (n1/3(x− θ0))

and B is a non-zero function continuously differentiable on R, vanishing outside (−1, 1), such
that µn is monotone for each n and lies eventually in the class M0

3. Note that µn and µ0

can differ on (θ0 − n−1/3, θ0 + n−1/3) only, and that µ′n(x) = µ′0(x) + B′(n1/3(x − θ0)) for
x ∈ [θ0 − n−1/3, θ0 + n−1/3] and µ′n(x) = µ′0(x) otherwise. It is clear that this can be arranged
for infinitely many B’s.

The above sequence of local alternatives was considered in [1] in a more general setting, namely
that of monotone response models, where (in a somewhat unfortunate collision of notation) X
denotes response and Z the covariate. We invoke the results of that paper using the (Y,X)
notation of this paper and ask the reader to bear this in mind. Using our current notation for
the problem in [1], X follows density pX(x) = 1I(0,1)(x) and Y | X = x ∼ p(y, ψ(x)), ψ being
a monotone function and p(y, θ) a regular parametric model. The monotone regression model
with homoscedastic normal errors under current consideration is a special case of this setting
with p(y, θ) being the N(θ, v2) density, the ψn’s in that paper defining the local alternatives are
the monotone functions µn, ψ0 = µ0, c = 1 and An(x) = B(n1/3(x − x0)) for all n. Invoking
Theorems 1 and 2 of [1] with the appropriate changes, we conclude that under µn,

Xn(h) := n1/3(µ̂n(θ0 + hn−1/3)− µ0(θ0))
d→ gc,d,D(h),

3There is nothing special about (−1, 1) as far as constructing the B is concerned. Any (−c, c), for c > 0 can
be made to work.
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DIVIDE AND CONQUER IN NON-STANDARD PROBLEMS 17

where c = v, d = µ′0(x0)/2, D is a shift function given by4:

D(t) =

(∫ t∧1

0
B(u)du

)
1I(0,∞)(t)−

(∫ 0

t∨−1
B(u)du

)
1I(−∞,0)(t),

and gc,d,D is the right-derivative process of the greatest convex minorant (GCM) of Xc,d,D(t) :=
cW (t) + dt2 + D(t) with W being a two-sided Brownian motion. Now, by essentially the same
calculation as on Page 422 of [5],

P (n1/3[µ̂−1
n (a+λn−1/3)−µ−1

0 (a)] ≤ x) = P (n1/3(µ̂n(θ0+xn−1/3)−µ0(θ0)) ≥ λ)→ P (gc,d,D(x) ≥ λ) .

Setting λ = 0, we get:

P (n1/3[µ̂−1
n (a)− µ−1

0 (a)] ≤ x) = P (n1/3(µ̂n(θ0 + xn−1/3)− µ0(θ0)) ≥ 0)→ P (gc,d,D(x) ≥ 0) .

Next, by the switching relationship5,

P (gc,d,D(x) ≥ 0) = P (arg min
h
Xc,d,D(h) ≤ x) ,

and it follows that:
n1/3(µ̂−1

n (a)− µ−1
0 (a))

d→ arg min
h

Xc,d,D(h) .

Choosing B such that B(0) = 0, we note that µ−1
n (a) = µ−1

0 (a) = θ0, and therefore, under the
sequence of local alternatives µn,

(7.1) n1/3(µ̂−1
n (a)− µ−1

n (a))
d→ arg min

h
Xc,d,D(h).

Since the µn’s eventually fall within the class M0, by Theorem 4.1 (adapted to nondecreasing
functions), we conclude that:

lim sup
n→∞

n2/3 Eµn
(
|µ̂−1
n (a)− µ−1

n (a)|2
)
≤ K2.

Thus the sequence {n1/3(µ̂−1
n (a) − µ−1

n (a))}n≥1 is uniformly integrable under the sequence (of
probability distributions corresponding to) {µn}n≥1 and in conjunction with (7.1) it follows that

lim
n→∞

n1/3[Eµn(µ̂−1
n (a)− µ−1

n (a))] = E(arg min
h
Xc,d,D(h)) .

[Claim C] (proved in Section 8.16 of the Supplement): For any non-negative function B that
satisfies the conditions imposed above, and is additionally symmetric about 0,

E(arg min
h
Xc,d,D(h)) 6= 0 .

It follows that for any such B,

[E(arg min
h
Xc,d,D(h))]2 ≤ Ṽ2,

4There is a typo in the drift term as stated on page 514 of [1]: there should be a negative sign before the
integral that defines D(h) for h < 0 on page 514.

5For the details, see Section 8.16 of the Supplementary Material.
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18 BANERJEE, M., DUROT, C. AND SEN, B.

and hence Ṽ2 > 0. This delivers the assertions of the theorem for fixed m.

When m = mn →∞, note that

lim inf
N→∞

sup
µ∈M0

Eµ
[
N2/3(θmn − µ−1(a))2

]
≥ lim inf

N→∞
sup
µ∈M0

N2/3[Eµ θmn − µ−1(a)]2

≥ lim inf
n→∞

m2/3
n sup

µ∈M0

n2/3[Eµ θmn − µ−1(a)]2

= lim inf
n→∞

m2/3
n sup

µ∈M0

n2/3[Eµ µ̂−1
n,1(a)− µ−1(a)]2 .

By our derivations above,

sup
µ∈M0

n2/3[Eµ µ̂−1
n,1(a)− µ−1(a)]2 ≥ 1

2
[E(arg min

h
Xc,d,D(h))]2 > 0

for all sufficiently large n. Hence, the liminf of the maximal normalized risk of µN is infinite.

7.4. Some Selected Proofs for Section 4.1.2. From (4.2) we have

(7.2) µ̂n(X(i)) = λ̂n(i/n) = λ̂n ◦ Fn(X(i)), i = 1, . . . , n,

where Fn is the empirical distribution function of X1, . . . , Xn. We will first study λ̂n and then
go back to µ̂n thanks to (7.2). Note that λ̂n(i/n) = µ̂n ◦ F−1

n (i/n) for all i ∈ {1, . . . , n}, where
F−1
n (a) is the smallest t ∈ [0, 1] that satisfies Fn(t) ≥ a, for all a ∈ R. Both functions λ̂n and
µ̂n ◦ F−1

n are piecewise constant, so λ̂n = µ̂n ◦ F−1
n on [0, 1] and λ̂n estimates

(7.3) λ := µ ◦ F−1.

Let µ−1 and g be the respective generalized inverses of µ and λ, which extend the usual inverses
to the whole real line in such a way that they remain constant on (−∞, 0] and on [1,∞). Letting
µ̂−1
n and Ûn be the respective generalized inverses of µ̂n and λ̂n, it follows from (7.2) that

(7.4) µ̂−1
n = F−1

n ◦ Ûn,

and it can be shown that

(7.5) Ûn(a) = argmax
u∈[0,1]

{Λn(u)− au}, for all a ∈ R

where argmax denotes the greatest location of maximum (which is achieved on the set {i/n, i =
0, . . . , n} since Λn is piecewise-linear). Part of the proofs below consist in first establish a result
for Ûn using the above characterization, and then go from Ûn to µ̂−1

n using (7.4). To this end,
we will use a precise bound for the uniform distance between F−1 and F−1

n , as well as a strong
approximation of the empirical quantile function, see Section 8.1 in the supplementary material.

We will repeatedly use the fact that because g′ = 1/λ′ ◦ g on (λ(1), λ(0)) where λ′ = µ′ ◦
F−1/f ◦ F−1 is bounded away from zero under (R1) and (R2), for all u, v ∈ R we have

(7.6) |g(u)− g(v)| ≤ 1

inft∈[0,1] |λ′(t)|
|u− v|.

Furthermore, we recall that Fubini’s theorem implies that for all random variables Z and r ≥ 1,

(7.7) E|Z|r =

∫ ∞
0

P(|Z|r > x)dx =

∫ ∞
0

P(|Z| > t)rtr−1dt.

We denote by PX and EX the conditional probability and expectation given (X1, . . . , Xn).
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7.4.1. Preliminaries. In this section, we provide exponential bounds, which are proved in the
supplementary material, for the tail probabilities of µ̂−1

n and Ûn. We begin with a generalization
to our setting of Theorem 11.3 in [15]. Also, the lemma is a stronger version of inequality (11)
in [11] where an assumption (A5) was postulated instead of the stronger assumption (R4).

Lemma 7.1. Assume (R4), X has a density function f , µ is nonincreasing and there exist
positive numbers A1, . . . , A4 such that (4.3) holds and A3 < f(t) < A4 for all t ∈ [0, 1]. Then,
there exist positive numbers K1 and K2 that depend only on A1, . . . , A4, α, where α is taken from
(R4), such that for all n, a ∈ R and x > 0, we have

(7.8) P
(
|µ̂−1
n (a)− µ−1(a)| > x

)
≤ K1 exp(−K2nx

3).

To prove Lemma 7.1, we first prove a similar bound for Ûn. The exponential bound for Ûn is
given in the following lemma. It will be used also in the proof of Theorem 4.1.

Lemma 7.2. Under the assumptions of Lemma 7.1, there exist positive numbers K1 and K2

that depend only on A1, . . . , A4 and α such that for all n, a ∈ R and x > 0, we have

(7.9) P
(
|Ûn(a)− g(a)| > x

)
≤ K1 exp(−K2nx

3).

To prove Theorem 4.1, we also need a sharper inequality for the cases when a 6∈ [λ(1), λ(0)].

Lemma 7.3. Assume (R4), X has a density function f , and µ is nonincreasing. Then, there
exist positive numbers K1 and K2 that depend only α, which is taken from (R4), such that

(7.10) PX
(
Ûn(a) ≥ x

)
≤ K1 exp(−K2(a− λ(0))2nx)

for all n, a > λ(0) and x>n−1, and

(7.11) PX
(

1− Ûn(a) ≥ x
)
≤ K1 exp(−K2(a− λ(1))2nx)

for all n, a < λ(1) and x>n−1.

7.4.2. Proof of Theorem 4.1. Integrating the inequality in Lemma 7.1 according to (7.7)
proves the first assertion. To prove the second one, we first prove a similar result for λ̂n.

Lemma 7.4. Under the assumptions of Lemma 7.1, for all p > 0 and A > 0, there exist
positive K1,K2 that depend only on A1, . . . , A4, α, p and A such that for all n and t ∈ [n−1/3A, 1−
n−1/3A],

(7.12) E
(
n1/3|λ̂n(t)− λ(t)|

)p
≤ Kp,A.

Proof. We denote y+ = max(y, 0) and y− = −min(y, 0) for all y ∈ R. To go from Ûn to λ̂n
we will make use of the following switch relation, that holds for all t ∈ (0, 1] and a ∈ R:

(7.13) λ̂n(t) ≥ a⇐⇒ t ≤ Ûn(a).
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With ax = λ(t) + x, it then follows from (7.7) and the switch relation (7.13) that

E
(

(λ̂n(t)− λ(t))+

)p
=

∫ ∞
0

P
(
λ̂n(t)− λ(t) ≥ x

)
pxp−1dx

=

∫ ∞
0

P
(
Ûn(ax) ≥ t

)
pxp−1dx

= I1 + I2(7.14)

where I1 denotes the integral over (0, λ(0) − λ(t)] while I2 denotes the integral over (λ(0) −
λ(t),∞). Consider I1. Since λ = µ ◦ F−1, it follows from the Taylor expansion that with c =
A3/A2, we have t− λ−1(ax) > cx for all x ∈ (0, λ(0)− λ(t)). Therefore, (7.9) implies that

P
(
Ûn(ax) ≥ t

)
≤ P

(
Ûn(ax)− λ−1(ax) > cx

)
≤ K1 exp(−K2c

3nx3)

for all x ∈ (0, λ(0)− λ(t)). Hence,

I1 ≤ K1

∫ λ(0)−λ(t)

0
exp(−K2c

3nx3)pxp−1dx ≤ K1n
−p/3

∫ ∞
0

exp(−K2c
3y3)pyp−1dy,

using the change of variable y = n1/3x. The integral on the right hand side depends only on c
and p, and is finite for all p > 0. Hence, with Cp/K1 greater than this integral we obtain

(7.15) I1 ≤ Cpn−p/3.

Now consider I2. We have ax > λ(0) for all x > λ(0)− λ(t) so it follows from (7.10) together
with (7.9) (where g(ax) = 0) that

I2 ≤ K1

∫ 2(λ(0)−λ(t))

λ(0)−λ(t)
exp(−K2nt

3)pxp−1dx+K1

∫ ∞
2(λ(0)−λ(t))

exp(−K2(ax − λ(0))2nt)pxp−1dx

≤ K1 exp(−K2nt
3)2p(λ(0)− λ(t))p +K1

∫ ∞
2(λ(0)−λ(t))

exp(−K2x
2nt/4)pxp−1dx,

since ax − λ(0) ≥ x/2 for all x ≥ 2(λ(0) − λ(t)). Since λ = µ ◦ F−1, we have |λ(t)− λ(0)| ≤
A2t/A3 for all t ∈ (0, 1] and therefore,

I2 ≤ K12p(A2/A3)p exp(−K2nt
3)tp +K1(nt)−p/2

∫ ∞
0

exp(−K2y
2/4)pyp−1dy

using the change of variable y = x
√
nt. The function t 7→ exp(−K2nt

3)tp achieves its maximum
on [0,∞) at the point (3K2n/p)

−1/3. This means that for all t ≥ 0 we have

exp(−K2nt
3)tp ≤ exp(−p/3) (3K2n/p)

−p/3 .

On the other hand, we have (nt)−p/2 ≤ A−p/2n−p/3 for all t ≥ n−1/3A, where A > 0 is fixed.
Combining this with the two preceding displays, we arrive at

I2 ≤ K12p(A2/A3)p exp(−p/3)

(
3K2n

p

)−p/3
+K1A

−p/2n−p/3
∫ ∞

0
exp(−K2y

2/4)pyp−1dy
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for all t ≥ n−1/3A, where the integral on the right hand side is finite. This means that there
exists Kp,A > 0 such that I2 ≤ Kp,An

−p/3/2 for all t ≥ n−1/3A. Combining this with (7.14) and
(7.15) and possibly enlarging Kp,A > 0, we obtain

E
(

(λ̂n(t)− λ(t))+

)p
≤ Kp,An

−p/3

for all t ≥ n−1/3A. It can be proved with similar arguments that the above inequality remains
valid with (·)+ replaced by (·)−, and Lemma 7.4 follows. �

It is known that Grenander type estimators are inconsistent at the boundaries. However, the
following lemma shows that such estimators remain bounded in the Lp-sense. The lemma, which
is proved in the supplementary material, will be useful to go from Lemma 7.4 to Theorem 4.1.

Lemma 7.5. Assume (R4) and µ is nonincreasing with |µ(t)| ≤ A5 for some A5 > 0 and all
t ∈ [0, 1]. Then, for all p > 0, there exists K1 > 0 that depends only on p,A5 and α, where α is
taken from (R4), such that E|λ̂n(0)|p ≤ K1 and E|λ̂n(1)|p ≤ K1, ∀n.

We are now in a position to prove the second assertion in Theorem 4.1. Since µ̂n is constant
on all intervals (X(i), X(i+1)] for i ∈ {1, . . . , n−1} and also on [0, X(1)], and Fn is constant on all
intervals [X(i), X(i+1)) for i ∈ {1, . . . , n − 1} and also on [0, X(1)), it follows from (7.2) that for

all t 6∈ {X(1), . . . , X(n)} we have µ̂n(t) = λ̂n(Fn(t) + n−1). But X has a continuous distribution
so for a fixed t, we indeed have t 6∈ {X(1), . . . , X(n)} a.s.. Hence, for all p ≥ 1 we have

E ((µ̂n(t)− µ(t))+)p = E
((

λ̂n(Fn(t) + n−1)− λ(F (t))
)

+

)p
.

Using monotonicity of λ̂n, this means that

E ((µ̂n(t)− µ(t))+)p ≤ E
((

λ̂n(F (t)− n−1/2 log n)− λ(F (t))
)

+

)p
+E

((
λ̂n(0)− λ(1)

)p
+

1IFn(t)+n−1≤F (t)−n−1/2 logn

)
.(7.16)

It follows from the Hölder inequality that

E
((

λ̂n(0)− λ(1)
)p

+
1IFn(t)+n−1≤F (t)−n−1/2 logn

)
≤ E1/2

((
λ̂n(0)− λ(1)

)2p
)
P1/2

(
Fn(t) + n−1 ≤ F (t)− n−1/2 log n

)
≤ E1/2

((
λ̂n(0)− λ(1)

)2p
)
P1/2

(
sup
t∈[0,1]

|Fn(t)− F (t)| > n−1/2 log n

)
.

Combining this with Lemma 7.5 together with Corollary 1 in [22] yields

E
((

λ̂n(0)− λ(1)
)p

+
1IFn(t)+n−1≤F (t)−n−1/2 logn

)
≤ O(1)

(
2 exp(−2(log n)2)

)1/2
uniformly for all µ’s satisfying the assumptions of the lemma. Hence, there exists Cp such that

(7.17) E
((

λ̂n(0)− λ(1)
)p

+
1IFn(t)+n−1≤F (t)−n−1/2 logn

)
≤ Cpn−p/3
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for all t ∈ [0, 1]. Now, consider the first term on the right hand side of (7.16). It follows from
the convexity of the function x 7→ xp that (x + y)p ≤ 2p−1(xp + yp) for all positive numbers x
and y. Therefore, with t ≥ n−1/3 and xn = F (t)− n−1/2 log n we have

E
((

λ̂n(xn)− λ(F (t))
)

+

)p
≤ 2p−1E

(
|λ̂n(xn)− λ(xn))|p

)
+ 2p−1|λ(xn)− λ(F (t)))|p

≤ 2p−1E
(
|λ̂n(xn)− λ(xn))|p

)
+ 2p−1(A2/A3)pn−p/2(log n)p

since thanks to (4.3),

|λ(t)− λ(x)| ≤ A2|t− x]/A3 for all t 6= x ∈ [0, 1].

Let A ≤ A3/2. For large n, we have xn ∈ [n−1/3A, 1 − n−1/3A] for all t ∈ [n−1/3, 1 − n−1/3].
Hence, the previous display combined with Lemma 7.4 ensures that there exists Cp such that

E
((

λ̂n(xn)− λ(F (t))
)

+

)p
≤ Cpn−p/3

for all t ∈ [n−1/3, 1− n−1/3] and n sufficiently large. Together with (7.17) and (7.16), this yields

E ((µ̂n(t)− µ(t))+)p ≤ 2Cpn
−p/3

for all t ∈ [n−1/3, 1−n−1/3] and n sufficiently large. Possibly enlarging Cp, the previous inequality
remains true for all n. To see this, suppose that the above display holds for all n ≥ nmin. Now,

E((µ̂n(t)− µ(t))+)p ≤ 2p−1E(|µ̂n(0)|p ∨ |µ̂n(1)|p) + 2p−1|µ(0)|p ∨ |µ(1)|p .

by monotonicity of both µ and µ̂n, and using convexity of x 7→ xp. Hence, for n < nmin,

np/3E((µ̂n(t)− µ(t))+)p ≤ (2pK1 + 2pA5)n
p/3
min ,

where K1 and A5 are taken from Lemma 7.5. The negative part E ((µ̂n(t)− µ(t))−)pcan be
handled similarly, which completes the proof of Theorem 4.1. �

7.4.3. Proof of Theorem 4.2. Theorem 4.2 follows from Lemma 7.6 combined to Theorem
7.7 below since µ(1) = λ(1) and µ(0) = λ(0). Theorem 7.7 provides a precise bound for the bias
of Ûn whereas Lemma 7.6 makes the connection between the biases of µ̂−1

n and Ûn. The lemma
is proved in the supplementary material, using that µ−1 = F−1 ◦ g and µ̂−1

n = F−1
n ◦ Ûn.

Lemma 7.6. Assume (R1), (R5), (R4). Let µ−1, g be the generalized inverses of µ, λ. Then,

E
(
µ̂−1
n (a)− µ−1(a)

)
=

1

f ◦ F−1(g(a))
E
(
Ûn(a)− g(a)

)
+ o(n−1/2)

where the small-o term is uniform in a ∈ R.

Theorem 7.7. Assume (R1), (R5), (R3), (R4), v2 has a bounded second derivative on [0, 1]
and (4.4) holds for some C > 0 and s > 1/2. For an arbitrary constant K > 0 we then have

E(Ûn(a))− g(a) = o(n−1/2)+O(n−(2s+3)/9(log n)25/2)

uniformly in a ∈ Jn := [λ(1) +Kn−1/6 log n, λ(0)−Kn−1/6 log n].
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Proof. We first localize. For a given a we define

(7.18)
ˆ̂
Un(a) = argmax

|u−g(b)|≤Tnn−1/3, u∈[0,1]

{Λn(u)− au}

with Tn = nε and b a random variable such that b = a + Op(n
−1/2). Here, ε > 0 is arbitrarily

small. The variable b will be chosen in a convenient way later. Note that
ˆ̂
Un(a) is defined in

a similar way as Ûn(a), see (7.5), but with the location of the maximum taken on a shrinking
neighborhood of g(b) instead of being taken over the whole interval [0, 1]. Although it may seem
more natural to consider b = a, we will see that this choice is not the better one to derive
precise bounds on the bias of Ûn(a). For notational convenience, we do not make it explicit in

the notation that
ˆ̂
Un(a) depends on b. The following lemma makes the connection between the

bias of Ûn(a) and that of the localized version; it is proved in the supplementary file.

Lemma 7.8. Assume (R1), (R2) and (R4). Let a ∈ R and b a random variable such that

(7.19) P(|a− b| > x) ≤ K1 exp(−K2nx
2)

for all x > 0 where K1,K2 depend only on f, µ, σ. Then, E|Ûn(a)− ˆ̂
Un(a)| = o(n−1/2) uniformly.

In the sequel, we use the notation

(7.20) L(t) =

∫ t

0
v2 ◦ F−1(u) du for t ∈ [0, 1]

and the same notation Jn as in Theorem 7.7. We use L to normalize
ˆ̂
Un(a) in the following

lemma, which is proved in the supplementary file. Thanks to the normalization with L,
ˆ̂
Un(a)

can be approached by the location of the maximum of a drifted Brownian motion, see (7.27).

Lemma 7.9. Assume (R1), (R5), (R3), (R4). Let a ∈ Jn and b as in (7.19) for all x > 0,
where K1,K2 depend only on f , µ and v. Assume, furthermore, that E(b) = a + o(n−1/2) and
that v2 and µ have a continuous first derivative on [0, 1]. Uniformly in a ∈ Jn, we then have

E(
ˆ̂
Un(a)− g(a)) = E

(
L(

ˆ̂
Un(a))− L(g(b))

L′(g(a))

)
+ o(n−1/2)

With Bn and L taken from (8.5) and (7.20) respectively, let

(7.21) φn(t) =
L′′(t)√
nL′(t)

Bn(t)

Moreover, let An be the event that all inequalities in (7.22) and (7.23) below hold true :

(7.22) sup
u∈[0,1]

|Bn(u)| ≤ log n, sup
|u−v|≤Tnn−1/3

√
logn

|Bn(u)−Bn(v)| ≤
√
Tnn

−1/6 log n,

(7.23) sup
u∈[0,1]

∣∣∣∣F−1
n (u)− F−1(u)− 1√

nf(F−1(u))
Bn(u)

∣∣∣∣ ≤ nδ−1,

imsart-aos ver. 2013/03/06 file: D&C_Revision_AoS_May19.tex date: May 22, 2017



24 BANERJEE, M., DUROT, C. AND SEN, B.

where δ ∈ (0, 1/3) can be chosen as small as we wish. We will prove below that P(An) → 1 as
n→∞, see (7.33). The following lemma is proved in the supplement. Here and in the sequel,

(7.24) Λ(t) =

∫ t

0
λ(u)du.

Lemma 7.10. Let q > 0, a ∈ Jn and

(7.25) b = a− Bn(g(a))√
n

λ′(g(a)).

Under the assumptions of Theorem 7.7, on An, conditionally on (X1, . . . , Xn), the variable

(7.26) n1/3(L(
ˆ̂
Un(a))− L(g(b)))

has the same distribution as

(7.27) argmax
u∈In(b)

{Dn(b, u) +Wg(b)(u) +Rn(a, b, u)},

where for all t ∈ [0, 1],

(7.28) Wt(u) =
n1/6√

1 + φn(t)

[
Wn

(
Ln(t) + n−1/3u(1 + φn(t)

)
−Wn(Ln(t))

]
, u ∈ R,

with Wn being a standard Brownian motion under PX ,

In(b) =
[
n1/3

(
L(g(b)− n−1/3Tn)− L(g(b))

)
, n1/3

(
L(g(b) + n−1/3Tn)− L(g(b))

)]
,

Dn(b, u) = n2/3
(

Λ ◦ L−1(L(g(b)) + n−1/3u)− Λ(g(b))− bL−1(L(g(b)) + n−1/3u) + bg(b)
)
,

and with Tn = nε for some sufficiently small ε > 0,

(7.29) PX
(

sup
u∈In(b)

|Rn(a, b, u)| > x

)
≤ Kqx

−qn1−q/3

for all x > 0, where Kq > 0 does not depend on n.

It follows from Lemma 7.10 that conditionally on (X1, . . . , Xn), on An the variable in (7.26)
has the same expectation as the variable defined in (7.27). The following lemma, which is proved
in the supplementary file, shows that Rn is negligible in (7.27) in the sense that this expectation,
up to a negligible remainder term, is equal to the expectation of the variable

Vn(b) = argmax
|u|≤(L′(g(b)))4/3 logn

{Dn(b, u) +Wg(b)(u)}.

Lemma 7.11. Let a ∈ Jn and let b be given by (7.25). Under the assumptions of Theorem
7.7, with Tn = nε for some sufficiently small ε > 0, there exists K > 0 such that on An, we have∣∣∣EX (n1/3(L(

ˆ̂
Un(a))− L(g(b)))

)
− EX(Vn(b))

∣∣∣ ≤ Kn−1/6L′(g(b))(log n)−1.
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The following lemma is proved in the supplementary file.

Lemma 7.12. Assume (R1), (R5), (R3). Assume, furthermore, that v2 has a bounded second
derivative on [0, 1] and (4.4) holds for some C > 0 and s > 1/2. Let a ∈ Jn and b be given by
(7.25). With Tn = nε for some small enough ε > 0, there exists K > 0 such that on An, we have∣∣EX(Vn(b))

∣∣ ≤ Kn−2s/9L′(g(b))(log n)25/2.

We are now in a position to prove Theorem 7.7. Let a ∈ Jn and let
ˆ̂
Un(a)) be defined by

(7.18) where b is taken from (7.25). Since λ′ is bounded, there exists K > 0 such that

P(|a− b| > x) ≤ P

(
sup
u∈[0,1]

|Bn(u)| > Kx
√
n

)
for all x > 0.

Then, with the representation Bn(u) = W (u)− uW (1) in distribution of processes, where W is
a standard Brownian motion, we conclude from the triangle inequality that

P(|a− b| > x) ≤ P

(
sup
u∈[0,1]

|W (u)| > Kx
√
n/2

)
= 2P

(
sup
u∈[0,1]

W (u) > Kx
√
n/2

)
.

For the last equality, we used symmetry of W . Then, it follows from [24, Proposition 1.8] that
(7.19) holds for all x > 0, where K1 = 2 and K2 depends only on λ. By lemma 7.8, we then have

E(Ûn(a)− g(a)) = E(
ˆ̂
Un(a)− g(a)) + o(n−1/2)

where the small-o term is uniform in a ∈ Jn. Since Bn is a centered process, we have E(b) = a,
so Lemma 7.9 combined with the preceding display ensures that

(7.30) E(Ûn(a)− g(a)) = E

(
L(

ˆ̂
Un(a))− L(g(b))

L′(g(a))

)
+ o(n−1/2)

uniformly in a ∈ Jn. Now, conditionally on (X1, . . . , Xn), on An we have∣∣∣EX (n1/3(L(
ˆ̂
Un(a))− L(g(b)))

)
− EX(Vn(b))

∣∣∣ ≤ K3n
−1/6L′(g(b))(log n)−1

and ∣∣EX(Vn(b))
∣∣ ≤ K3n

−2s/9L′(g(b))(log n)25/2.

Here, we use Lemma 7.11 and Lemma 7.12 with An being the event that all inequalities in (7.22)
and (7.23) hold true. It then follows from the triangle inequality that

E
(∣∣∣EX (n1/3(L(

ˆ̂
Un(a))− L(g(b)))

)∣∣∣ 1IAn) ≤ K3E(L′(g(b)))βn

where βn = n−2s/9(log n)25/2 + n−1/6(log n)−1. But L′ ◦ g is a Lipschitz function, so we have

E
∣∣L′(g(b))− L′(g(a))

∣∣ ≤ K4E|b− a| ≤ K5n
−1/2,

using (8.28) together with the Jensen inequality for the last inequality. Using (8.24) and the two
previous displays yields

(7.31) E
(∣∣∣EX (n1/3(L(

ˆ̂
Un(a))− L(g(b)))

)∣∣∣ 1IAn) ≤ 2K3L
′(g(a))βn
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for n sufficiently large. On the other hand, denoting by Ān the complementary of An, it follows
from the Hölder inequality together with the Jensen inequality that

E
(∣∣∣EX (n1/3(L(

ˆ̂
Un(a))− L(g(b)))

)∣∣∣ 1IĀn)
≤ E1/2

(
n1/3(L(

ˆ̂
Un(a))− L(g(b)))

)2

P1/2(Ān).
(7.32)

Then, we derive from (8.26) and (8.28) that the expectation on the right-hand side is finite.
Now, consider P(Ān) on the right-hand side. It follows from the Markov inequality together
with Lemma 8.2 that for all r ≥ 1 we have

P

(
sup
u∈[0,1]

∣∣∣∣F−1
n (u)− F−1(u)− Bn(u)√

nf(F−1(u))

∣∣∣∣ > nδ−1

)
≤ K6 (log n)r n−rδ

≤ K6

(
n−1/6L′(g(a))(log n)−1

)2

for large n, provided that r > 2/(3δ). The Brownian motion satisfies the assumption (A2) with
τ = 1 of Lemma 5.1 in [12] (see the proof of Corollary 3.1 in that paper), so we conclude that

(7.33) P1/2(Ān) ≤ K7n
−1/6L′(g(a))(log n)−1

for n sufficiently large. Hence, (7.32) yields

E
(∣∣∣EX (n1/3(L(

ˆ̂
Un(a))− L(g(b)))

)∣∣∣ 1IĀn) ≤ K8n
−1/6L′(g(a))(log n)−1.

Together with (7.31), this yields

E
(∣∣∣EX (n1/3(L(

ˆ̂
Un(a))− L(g(b)))

)∣∣∣) ≤ K9L
′(g(a))βn.

Hence, with the Jensen inequality we arrive at

E

(
n1/3(L(

ˆ̂
Un(a))− L(g(b)))

L′(g(a))

)
= O(βn).

Combining this with (7.30) completes the proof of Theorem 7.7. �

7.4.4. Proof of Theorem 4.3. The following lemma is proved in the supplementary file.

Lemma 7.13. Assume (R1), (R2), (R4). With K > 0 arbitrary, there exists positive K1,K2

with

(7.34) P
(
|µ̂n(t)− µ(t)| > n−1/3 log n

)
≤ K1 exp(−K2(log n)3)

for all t ∈ [Kn−1/6 log n, 1−Kn−1/6 log n], and

E (µ̂n(t)− µ(t)) = E
[
(µ̂n(t)− µ(t)) 1I|µ̂n(t)−µ(t)|≤n−1/3 logn

]
+ o(n−1/2)

where the small-o term is uniform in t ∈ [Kn−1/6 log n, 1−Kn−1/6 log n].
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We turn to the proof of Theorem 4.3. Distinguishing the positive and negative parts of µ̂n(t)−
µ(t), we derive from (7.7) together with Lemma 7.13 that E (µ̂n(t)− µ(t)) = I1 − I2 + o(n−1/2)
where

I1 =

∫ n−1/3 logn

0
P (µ̂n(t)− µ(t) ≥ x) dx and I2 =

∫ n−1/3 logn

0
P (µ(t)− µ̂n(t) > x) dx.

Consider I1. Since µ̂−1
n = F−1

n ◦ Ûn, it follows from the switch relation and (8.1) that

I1 =

∫ n−1/3 logn

0
P
(
µ̂−1
n (x+ µ(t)) ≥ t

)
dx

=

∫ n−1/3 logn

0
P
(
F−1 ◦ Ûn(x+ µ(t)) ≥ t−O

(
n−1/2 log n

))
dx+ o(n−1/2)

=

∫ n−1/3 logn

0
P
(
Ûn(x+ µ(t)) ≥ F (t)−O(n−1/2 log n)

)
dx+ o(n−1/2),

where the small o-term is uniform in t ∈ [c1, c2]. We have g ◦ µ = F and g′ ◦ µ = (λ′ ◦F )−1 so it
follows from the Taylor expansion that

g(x+ µ(t)) = F (t)− x

|λ′ ◦ F (t)|
+O(x1+s)

for all t ∈ [c1, c2] and x ∈ [0, n−1/3 log n], where s is taken from (4.4) and c1, c2 are as in the
statement of the theorem. Since x1+s ≤ n−1/2 log n for all x ≤ n−1/3 log n for large n, we conclude
that

I1 =

∫ n−1/3 logn

0
P
(
Ûn(ax)− g(ax) >

x

|λ′ ◦ F (t)|
−O(n−1/2 log n)

)
dx+ o(n−1/2),

uniformly, where we set ax = µ(t) + x. But it follows from (7.5) together with (7.18) that

P
(

ˆ̂
Un(ax) 6= Ûn(ax)

)
≤ P

(
|Ûn(ax)− g(bx)| > Tnn

−1/3
)

(7.35)

for all x > 0, where we recall that Tn = nε for some arbitrarily small ε > 0, and bx satisfies
(7.19) with a replaced by ax. Together with Lemma 7.2, this yields

I1 =

∫ n−1/3 logn

0
P
(

ˆ̂
Un(ax)− g(ax) >

x

|λ′ ◦ F (t)|
−O(n−1/2 log n)

)
dx+ o(n−1/2),

uniformly in t. Using again (7.35) and Lemma 7.2, we then derive from (8.25) in the supplemen-
tary file that

I1 =

∫ n−1/3 logn

0
P

(
L(

ˆ̂
Un(ax))− L(g(bx))

L′(g(ax))
>

x

|λ′ ◦ F (t)|
−O(n−1/2 log n)

)
dx+ o(n−1/2),

where bx is given by (7.25) with a replaced by ax and Bn being taken from Lemma 8.2. Since
L′ ◦ g = v2 ◦ µ−1, we have

P(L′(g(bx)) ≤ c0γ) ≤ P(µ−1(bx) ≤ γ) + P(1− µ−1(bx) ≤ γ)
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for all γ > 0 and x ∈ (0, n−1/3 log n), where c0 is taken from (R3). Consider the first proba-
bility on the right-hand side. Assume that γ > 0 is chosen small enough so that c1 > γ. By
monotonicity of µ and the definition of bx, there exists a positive constant K1 such that for
x ∈ (0, n−1/3 log n] we have

P(µ−1(bx) ≤ γ) ≤ P
(
µ(t) + x− Bn(g(xa))√

n
λ′(g(ax) ≥ µ(γ)

)
≤ P

(
|Bn(g(xa))| ≥ K1

√
n(c1 − γ)

)
≤ 4 exp(−K2

1n(c1 − γ)2/2).

It can be proved likewise that P(1 − µ−1(bx) ≤ γ) ≤ 4 exp(−K2
1n(1 − c2 − γ)2/2) provided

γ > 0 is chosen sufficiently small so that c2 + γ < 1. Hence, we can restrict attention to the
event {L′(g(bx)) > c0γ}, which mean that L′(g(bx) cannot go to zero. Then, using (8.39) with
δ = n1/3γn for some γn ∈ (n−1/2 log n, n−1/3 log n) to be chosen later, we have

I1 =

∫ n−1/3 logn

0
EPX

(
n−1/3Vn(bx)

L′(g(ax))
>

x

|λ′ ◦ F (t)|
−O(γn)

)
dx+ o(n−1/2)

+ O
(
n−1/3(log n)2n(3−q)/(3(q+1))(n1/3γn)−3q/(2(q+1))

)
where q can be chosen arbitrarily large. For arbitrary φ > 0 we can choose q large enough so
that

I1 =

∫ n−1/3 logn

0
EPX

(
n−1/3Vn(bx)

L′(g(ax))
>

x

|λ′ ◦ F (t)|
−O(γn)

)
dx+ o(n−1/2)

+ O(n−7/6+φγ−3/2−φ
n )

=

∫ n−1/3 logn

0
EPX

(
n−1/3Vn(bx) >

xv2(t)

|λ′ ◦ F (t)|
−O(γn)

)
dx+ o(n−1/2)

+ O(n−7/6+φγ−3/2−φ
n ).

Now, using (8.42) in the supplementary file with s = 1 and δ = n1/3γn proves that I1 is equal to∫ n−1/3 logn

0
EPX

(
n−1/3V (bx) >

xv2(t)

|λ′ ◦ F (t)|
−O(γn)

)
dx+ o(n−1/2) + O(n−7/6+φγ−3/2−φ

n ).

Recall that g ◦ µ = F . Let Z(t) = argmaxu∈R{−d(F (t))u2 + W (u)}, where d = |λ′|/(2(L′)2)
and W is a standard Brownian motion. Under PX , Z(t) has the same law as the location of the
maximum of u 7→ −d(F (t))u2 +Wg(bx)(u) on R. On the event {supt∈[0,1] |Bn(t)| ≤ log n},

V (bx) = argmax
|u|≤(L′(g(bx)))4/3 logn

{−d(F (t))u2 +Wg(bx)(u) +Rn(u, x, t)}

where
sup

|u|≤(L′(g(bx)))4/3 logn

|Rn(u, x, t)| = O(n−s/3(log n)2+s)

uniformly in t ∈ [c1, c2] and x ∈ (0, n−1/3 log n). It then follows from Proposition 1 in [10] (see
also the comments just above this proposition) that there are versions of Z(t) and V (bx), and
constants K1,K2,K3 > 0, such that on {supt∈[0,1] |Bn(t)| ≤ log n} and for large n, we have

PX
(
|V (bx)− Z(t)| > n1/3γn

)
≤ PX

(
2 sup
|u|≤(L′(g(bx)))4/3 logn

|Rn(u, x, t)| > x(n1/3γn)3/2

)
+K1x log n+ 2PX (|Z(t)| > K2 log n)
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where x = K3(n1/3γn)−3/2n−s/3(log n)2+s. With large K3, the probability on the right hand side
is equal to zero. Hence, there exists K4 > 0 such that on {supt∈[0,1] |Bn(t)| ≤ log n} we have

PX
(
|V (bx)− Z(t)| > n1/3γn

)
≤ K4(n1/3γn)−3/2n−s/3(log n)3+s + 2PX (|Z(t)| > K2 log n)

≤ K4(n1/3γn)−3/2n−s/3(log n)3+s + 4 exp(−K5(log n)3)

for some K5 > 0. For the last inequality, we used [10, Theorem 4]. The second term on the right
hand side is negligible as compared to the first one, so there exists K6 > 0 such that

PX
(
|V (bx)− Z(t)| > n1/3γn

)
≤ K6(n1/3γn)−3/2n−s/3(log n)3+s.

Since s = 1, we obtain that I1 is equal to∫ n−1/3 logn

0
P
(
n−1/3Z(t) >

xv2(t)

|λ′ ◦ F (t)|
−O(γn)

)
dx+ o(n−1/2) +O(n−7/6+φγ−3/2−φ

n ).(7.36)

Consider the integral on the right-hand side. There exists K > 0 such that the integral on the
right hand side of (7.36) is bounded from above by∫ n−1/3 logn

0
P
(
n−1/3Z(t) >

(x−Kγn)v2(t)

|λ′ ◦ F (t)|

)
dx

≤
∫ n−1/3 logn

0
P
(
n−1/3Z(t) >

yv2(t)

|λ′ ◦ F (t)|

)
dy +O(γn)

using the change of variable y = x−Kγn. Similarly, the integral in (7.36) is bounded below by∫ n−1/3 logn

0
P
(
n−1/3Z(t) >

yv2(t)

|λ′ ◦ F (t)|

)
dy +O(γn)

and therefore,

I1 =

∫ n−1/3 logn

0
P
(
n−1/3Z(t) >

xv2(t)

|λ′ ◦ F (t)|

)
dx+O(γn) +O(n−7/6+φγ−3/2−φ

n ).

Choose γn that approximately realize the best trade-of between the two big-O-terms, that is

such that γn = n−7/6γ
−3/2
n . Then γn = n−7/15, we conclude that for arbitrarily small φ > 0,

I1 =

∫ n−1/3 logn

0
P
(
n−1/3Z(t) >

xv2(t)

|λ′ ◦ F (t)|

)
dx+O(n−14/30+φ).

With similar arguments, we obtain that for arbitrarily small φ > 0,

I2 =

∫ n−1/3 logn

0
P
(
n−1/3Z(t) < − xv2(t)

|λ′ ◦ F (t)|

)
dx+O(n−7/15+φ).

But Z(t) has the same distribution as −Z(t) for all t so the two preceding displays yield that
I1 − I2 = O(n−7/15+φ). This completes the proof of Theorem 4.3. �
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