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In this paper we investigate the (in)-consistency of different boot-
strap methods for constructing confidence intervals in the class of

estimators that converge at rate n
1
3 . The Grenander estimator, the

nonparametric maximum likelihood estimator of an unknown non-
increasing density function f on [0,∞), is a prototypical example.
We focus on this example and explore different approaches to con-
structing bootstrap confidence intervals for f(t0), where t0 ∈ (0,∞) is
an interior point. We find that the bootstrap estimate, when generat-
ing bootstrap samples from the empirical distribution function Fn or
its least concave majorant F̃n, does not have any weak limit in prob-
ability. We provide a set of sufficient conditions for the consistency of
any bootstrap method in this example and show that bootstrapping
from a smoothed version of F̃n leads to strongly consistent estima-
tors. The m out of n bootstrap method is also shown to be consistent
while generating samples from Fn and F̃n.

1. Introduction. If X1, X2, . . . , Xn ∼ind f are a sample from a non-
increasing density f on [0,∞), then the Grenander estimator, the non-
parametric maximum likelihood estimator (NPMLE) f̃n of f [obtained by
maximizing the likelihood

∏n
i=1 f(Xi) over all non-increasing densities], may

be described as follows: Let Fn denote the empirical distribution function
(EDF) of the data, and F̃n its least concave majorant. Then the NPMLE
f̃n is the left hand derivative of F̃n. This result is due to Grenander (1956)
and is described in detail by Robertson, Wright and Dykstra (1988), pp.
326-328. Prakasa Rao (1969) obtained the asymptotic distribution of f̃n,
properly normalized: Let W be a two-sided standard Brownian motion on
R with W(0) = 0 and

C = arg max
s∈R

[W(s)− s2].
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2 B.SEN, M.BANERJEE AND M.WOODROOFE

If 0 < t0 < ∞ and f ′(t0) 6= 0, then

n
1
3

{
f̃n(t0)− f(t0)

}
⇒ 2

∣∣∣∣
1
2
f(t0)f ′(t0)

∣∣∣∣
1
3

C,(1.1)

where ⇒ denotes convergence in distribution. There are other estimators
that exhibit similar asymptotic properties; for example, Chernoff’s (1964)
estimator of the mode, the monotone regression estimator [Brunk (1970)],
Rousseeuw’s (1984) least median of squares estimator, and the estimator of
the shorth [Andrews et al. (1972) and Shorack and Wellner (1986)]. The
seminal paper by Kim and Pollard (1990) unifies n

1
3 -rate of convergence

problems in the more general M-estimation framework. Tables and a survey
of statistical problems in which the distribution of C arises are provided by
Groeneboom and Wellner (2001).

The presence of nuisance parameters in the limiting distribution (1.1)
complicates the construction of confidence intervals. Bootstrap intervals
avoid the problem of estimating nuisance parameters and are generally re-
liable in problems with

√
n convergence rates. See Bickel and Freedman

(1981), Singh (1981), Shao and Tu (1995) and its references. Our aim in
this paper is to study the consistency of bootstrap methods for the Grenan-
der estimator with the hope that the monotone density estimation problem
will shed light on the behavior of bootstrap methods in similar cube-root
convergence problems.

There has been considerable recent interest in this question. Kosorok
(2007) show that bootstrapping from the EDF Fn does not lead to a consis-
tent estimator of the distribution of n1/3{f̃n(t0)−f(t0)}. Lee and Pun (2006)
explore m out of n bootstrapping from the empirical distribution function
in similar non-standard problems and prove the consistency of the method.
Léger and MacGibbon (2006) describe conditions for a resampling procedure
to be consistent under cube root asymptotics and assert that these condi-
tions are generally not met while bootstrapping from the EDF. They also
propose a smoothed version of the bootstrap and show its consistency for
Chernoff’s estimator of the mode. Abrevaya and Huang (2005) show that
bootstrapping from the EDF leads to inconsistent estimators in the setup of
Kim and Pollard (1990) and propose corrections. Romano, Politis and Wolf
(1999) show that subsampling based confidence intervals are consistent in
this scenario.

Our work goes beyond that cited above as follows: We show that boot-
strapping from the NPMLE F̃n also leads to inconsistent estimators, a result
that we found more surprising, since F̃n has a density. Moreover, we find that
the bootstrap estimator, constructed from either the EDF or NPMLE, has no
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INCONSISTENCY OF BOOTSTRAP: THE GRENANDER ESTIMATOR 3

limit in probability. The finding is less than a mathematical proof, because
one step in the argument relies on simulation; but the simulations make our
point clearly. As described in Section 5 our findings are inconsistent with
some claims of Abrevaya and Huang (2005). Also, our way of tackling the
main issues differs from that of the existing literature: We consider condi-
tional distributions in more detail than Kosorok (2007), who deduced incon-
sistency from properties of unconditional distributions; we directly appeal
to the characterization of the estimators and use a continuous mapping prin-
ciple to deduce the limiting distributions instead of using the “switching”
argument [see Groeneboom (1985)] employed by Kosorok (2007) and Abre-
vaya and Huang (2005); and at a more technical level, we use the Hungarian
Representation Theorem whereas most of the other authors use empirical
process techniques similar to those described by van der Vaart and Wellner
(2000).

Section 2 contains a uniform version of (1.1) that is used later on to study
the consistency of different bootstrap methods and may be of independent
interest. The main results on inconsistency are presented in Section 3. Suffi-
cient conditions for the consistency of a bootstrap method are presented in
Section 4 and applied to show that bootstrapping from smoothed versions
of F̃n does produce consistent estimators. The m out of n bootstrapping
procedure is investigated, when generating bootstrap samples from Fn and
F̃n. It is shown that both the methods lead to consistent estimators under
mild conditions on m. In Section 5 we discuss our findings, especially the
non-convergence and its implications. Section A, the appendix, provides the
details of some arguments used in proving the main results.

2. Uniform Convergence. For the rest of the paper F denotes a dis-
tribution function with F (0) = 0 and a density f that is non-increasing on
[0,∞) and continuously differentiable near t0 ∈ (0,∞) with nonzero deriva-
tive f ′(t0) < 0. If g : I → R is a bounded function, write ‖g‖ := supx∈I |g(x)|.
Next, let Fn be distribution functions with Fn(0) = 0, that converge weakly
to F and, therefore,

(2.1) lim
n→∞ ‖Fn − F‖ = 0.

Let Xn,1, Xn,2, . . . , Xn,mn ∼ind Fn, where mn ≤ n is a non-decreasing se-
quence of integers for which mn →∞; let Fn,mn denote the EDF of Xn,1, Xn,2,
. . . , Xn,mn ; and let

∆n := m
1
3
n{f̃n,mn(t0)− fn(t0)}
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4 B.SEN, M.BANERJEE AND M.WOODROOFE

where f̃n,mn(t0) is the Grenander estimator computed from Xn,1, Xn,2, . . . ,
Xn,mn and fn(t0) is the density of Fn at t0 or a surrogate. Next, let Im =
[−t0m

1
3 ,∞) and

(2.2) Zn(h) := m
2
3
n

{
Fn,mn(t0 + m

− 1
3

n h)− Fn,mn(t0)− fn(t0)m
− 1

3
n h

}

for h ∈ Imn and observe that ∆n is the left hand derivative at 0 of the
least concave majorant of Zn. It is fairly easy to obtain the asymptotic
distribution of Zn. The asymptotic distribution of ∆n may then be obtained
from the Continuous Mapping Theorem. Stochastic processes are regarded
as random elements in D(R), the space of right continuous functions on R
with left limits, equipped with the projection σ-field and the topology of
uniform convergence on compacta. See Pollard (1984), Chapters IV and V
for background.

2.1. Convergence of Zn. It is convenient to decompose Zn into the sum
of Zn,1 and Zn,2 where

Zn,1(h) := m
2
3
n

{
(Fn,mn − Fn)(t0 + m

− 1
3

n h)− (Fn,mn − Fn)(t0)
}

Zn,2(h) := m
2
3
n

{
Fn(t0 + m

− 1
3

n h)− Fn(t0)− fn(t0)m
− 1

3
n h

}
.

Observe that Zn,2 depends only on Fn and fn; only Zn,1 depends on Xn,1, · · · ,
Xn,mn . LetW1 be a standard two-sided Brownian motion on R withW1(0) =
0, and Z1(h) =W1[f(t0)h].

Proposition 2.1. If

(2.3) lim
n→∞m

1
3
n

∣∣∣∣Fn(t0 + m
− 1

3
n h)− Fn(t0)− f(t0)m

− 1
3

n h

∣∣∣∣ = 0

uniformly on compacts (in h), then Zn,1 ⇒ Z1; and if there is a continuous
function Z2 for which

(2.4) lim
n→∞Zn,2(h) = Z2(h)

uniformly on compact intervals, then Zn ⇒ Z := Z1 + Z2.

Proof. The Hungarian Embedding Theorem of Kómlos, Major and Tusnády
(1975) is used. We may suppose that Xn,i = F#

n (Ui), where F#
n (u) =

inf{x : Fn(x) ≥ u} and U1, U2, . . . are i.i.d. Uniform(0, 1) random vari-
ables. Let Un denote the EDF of U1 , . . . , Un, En(t) =

√
n[Un(t) − t], and
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INCONSISTENCY OF BOOTSTRAP: THE GRENANDER ESTIMATOR 5

Vn =
√

mn(Fn,mn − Fn). Then Vn = Emn ◦ Fn. By Hungarian Embed-
ding, we may also suppose that the probability space supports a sequence
of Brownian Bridges {B0

n}n≥1 for which

(2.5) sup
0≤t≤1

|En(t)− B0
n(t)| = O

[
log(n)√

n

]
a.s.

and a standard normal random variable η that is independent of {B0
n}n≥1.

Define a version Bn of Brownian motion by Bn(t) = B0
n(t)+ ηt, for t ∈ [0, 1].

Then

Zn,1(h) = m
1
6
n

{
Emn [Fn(t0 + m

− 1
3

n h)]− Emn [Fn(t0)]
}

= m
1
6
n

{
Bmn [Fn(t0 + m

− 1
3

n h)]− Bmn [Fn(t0)]
}

+ Rn(h)(2.6)

where |Rn(h)| ≤ 2m
1
6
n sup

0≤t≤1
|Emn(t)− B0

mn
(t)|

+ m
1
6
n |η||Fn(t0 + m

− 1
3

n h)− Fn(t0)| → 0

uniformly on compacta w.p.1 using (2.3) and (2.5). Let

Xn(h) := m
1
6
n{Bmn [Fn(t0 + m

− 1
3

n h)]− Bmn [Fn(t0)]}
and observe that Xn is a mean zero Gaussian process defined on Imn with
independent increments and covariance kernel

Kn(h1, h2) = m
1
3
n

∣∣∣∣Fn[t0 + sign{h1}m− 1
3

n (|h1| ∧ |h2|)]− Fn(t0)
∣∣∣∣1{h1h2 > 0}.

It now follows from Theorem V.19 in Pollard (1984) and (2.3) that Xn(h)
converges in distribution to W1[f(t0)h] in D([−c, c]) for every c > 0, estab-
lishing the first assertion of the Proposition. The second then follows from
Slutsky’s Theorem.

2.2. Convergence of ∆n. Unfortunately, ∆n is not quite a continuous
functional of Zn. If f : I → R, write f |J to denote the restriction of f
to J ⊆ I; and if I and J are intervals and f is bounded, write LJf for
the least concave majorant of the restriction. Thus, F̃n = L[0,∞)Fn in the
Introduction.

Lemma 2.2. Let I be a closed interval; let f : I → R be a bounded upper
semi-continuous function on I; and let a1, a2, b1, b2 ∈ I with b1 < a1 < a2 <
b2. If 2f [12(ai + bi)] > LIf(ai) + LIf(bi), i = 1, 2, then LIf(x) = L[b1,b2]f(x)
for a1 ≤ x ≤ a2.
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6 B.SEN, M.BANERJEE AND M.WOODROOFE

Proof. This follows from the proof of Lemma 5.1 and Lemma 5.2 of
Wang and Woodroofe (2007). In that lemma continuity was assumed, but
only upper semi-continuity was used in the (short) proof.

Recall Marshall’s Lemma: If I is an interval, f : I → R is bounded, and
g : I → R is concave, then ‖LIf−g‖ ≤ ‖f−g‖. See, for example, Robertson,
Wright, and Dykstra (1988), pp. 329, for a proof. Write F̃n,mn = L[0,∞)Fn,mn .

Lemma 2.3. If δ > 0 is so small that F is strictly concave on [t0 −
2δ, t0 +2δ] and (2.1) holds then F̃n,mn = L[t0−2δ,t0+2δ]Fn,mn on [t0−δ, t0 +δ]
for all large n w.p.1.

Proof. Since F is strictly concave on [t0 − 2δ, t0 + 2δ], 2F (t0 ± 3
2δ) >

F (t0 ± δ) + F (t0 ± 2δ). Then,

‖F̃n,mn − F‖ ≤ ‖Fn,mn − F‖
≤ ‖Fn,mn − Fn‖+ ‖Fn − F‖
≤ 1√

mn
‖Emn‖+ ‖Fn − F‖ → 0 w.p. 1

by Marshall’s Lemma, (2.1) and the Glivenko-Cantelli Theorem. Thus, 2Fn,mn

(t0± 3
2δ) > F̃n,mn(t0± δ)+ F̃n,mn(t0± 2δ), for all large n w.p.1, and Lemma

2.3 follows from Lemma 2.2.

Proposition 2.4. (i) Suppose that (2.1) and (2.3) hold and given γ > 0,
there are 0 < δ < 1 and C > 0 for which

(2.7)
∣∣∣∣Fn(t0 + h)− Fn(t0)− fn(t0)h− 1

2
f ′(t0)h2

∣∣∣∣ ≤ γh2 + Cm
− 2

3
n

and

(2.8) |Fn(t0 + h)− Fn(t0)| ≤ C(|h|+ m
− 1

3
n )

for |h| ≤ δ and for all large n. If J is a compact interval and ε > 0, then
there is a compact K ⊇ J , depending only on ε, J, C, γ, and δ, for which

(2.9) P
[
LImn

Zn = LKZn on J
] ≥ 1− ε

for all large n.
(ii) Let Y be an a.s. continuous stochastic process on R that is a.s. bounded

above. If lim|h|→∞Y(h)/|h| = −∞ a.e., then the compact K ⊇ J can be
chosen so that

(2.10) P [LRY = LKY on J ] ≥ 1− ε.
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INCONSISTENCY OF BOOTSTRAP: THE GRENANDER ESTIMATOR 7

Proof. For a fixed sequence (Fn ≡ F ) (2.9) would follow from the asser-
tion in Example 6.5 of Kim and Pollard (1990), and it is possible to adapt
their argument to a triangular array using (2.7) and (2.8) in place of Taylor
series expansion. A different proof is presented in the Appendix.

We will use the following easily verified fact. In its statement the metric
space X is to be endowed with the projection σ−field. See Pollard (1984),
page 70.

Lemma 2.5. Let {Xn,c}, {Yn}, {Wc} and Y be sets of random elements
taking values in a metric space (X ,d), n = 0, 1, . . ., and c ∈ R. If for any
δ > 0,

(i) limc→∞ lim supn→∞ P{d(Xn,c, Yn) > δ} = 0,
(ii) limc→∞ P{d(Wc, Y ) > δ} = 0,
(iii) Xn,c ⇒ Wc as n →∞ for every c ∈ R,

then Yn ⇒ Y as n →∞.

Corollary 2.6. If (2.9) and (2.10) hold, and Zn ⇒ Y, then LImn
Zn ⇒

LRY in D(R) and ∆n ⇒ (LRY)′(0).

Proof. It suffices to show that LImn
Zn|J ⇒ LRY|J in D(J), for ev-

ery compact interval J ⊆ R. Given J and ε > 0, there exists Kε, a com-
pact, Kε ⊇ J , such that (2.9) and (2.10) hold. This verifies (i) and (ii)
of Lemma 2.5 with c = 1/ε, Xn,c = LKεZn, Yn = LImn

Zn, Wc = LKεY,
Y = LRY and d(x, y) = supt∈J |x(t)− y(t)|. Clearly, LKεZn|J ⇒ LKεY|J in
D(J), by the Continuous Mapping Theorem, verifying condition (iii). Thus
LImn

Zn ⇒ LRY in D(R). Another application of the Continuous Mapping
Theorem [via the lemma on page 330 of Robertson, Wright and Dykstra
(1988)] in conjunction with (2.9), (2.10) and Lemma 2.5 then shows that
∆n = (LImn

Zn)′(0) ⇒ (LRY)′(0).

Corollary 2.7. If (2.1), (2.3), (2.4), (2.7) and (2.8) hold and
lim|h|→∞ Z(h)/|h| = −∞, then LImn

Zn ⇒ LRZ in D(R) and ∆n ⇒ (LRZ)′(0);
and if Z2(h) = f ′(t0)h2/2, then ∆n ⇒ 2|12f(t0)f ′(t0)| 13C, where C has Cher-
noff’s distribution.

Proof. The convergence follows directly from Proposition 2.4 and Corol-
lary 2.6. Note that if Z2(h) = f ′(t0)h2/2, then (2.9) and (2.10) hold and
Corollary 2.6 can be applied. That (LRZ)′(0) is distributed as 2|12f(t0)f ′(t0)| 13C
when Z2(h) = f ′(t0)h2/2 follows from elementary properties of Brownian
motion via the “switching” argument of Groeneboom (1985).
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8 B.SEN, M.BANERJEE AND M.WOODROOFE

2.3. Remarks on the Conditions. If Fn ≡ F and fn ≡ f , then clearly
(2.1), (2.3), (2.4), (2.7) and (2.8) all hold with Z2(h) = f ′(t0)h2/2 for some
0 < δ < 1 and C ≥ f(t0 − δ) by a Taylor expansion of F and the continuity
of f and f ′ around t0.

Corollary 2.8. If there is a δ > 0 for which Fn has a continuously
differentiable density fn on [t0 − δ, t0 + δ], and

lim
n→∞

[
‖Fn − F‖+ sup

|t−t0|<δ

(|fn(t)− f(t)|+ |f ′n(t)− f ′(t)|)
]

= 0(2.11)

then (2.1), (2.3), (2.4), (2.7) and (2.8) hold with Z2(h) = f ′(t0)h2/2, and
∆n ⇒ 2|12f(t0)f ′(t0)| 13C.

Proof. The result can be immediately derived from Taylor expansion of
Fn and the continuity of f and f ′ around t0. To illustrate the idea we show
that (2.7) holds. Let γ > 0 be given. Clearly,

∣∣∣∣Fn(t0 + h)− Fn(t0)− fn(t0)h− 1
2
h2f ′(t0)

∣∣∣∣

≤ 1
2
h2 sup

|s|≤|h|
|f ′n(t0 + s)− f ′(t0)|.(2.12)

Let δ > 0 be so small that |f ′(t)− f ′(t0)| ≤ γ for |t− t0| < δ, and let n0 be
so large that sup|t−t0|≤δ |f ′n(t)− f ′(t)| ≤ γ for n ≥ n0. Then the last line in
(2.12) is at most γh2 for |h| ≤ δ and n ≥ n0.

Another useful remark, used below, is that if limn→∞m
1
3
n‖Fmn −F‖ = 0,

then (2.1), (2.3) and (2.8) hold.
In the next three sections, we apply Proposition 2.1 and Corollary 2.6 to

bootstrap samples drawn from the EDF, its LCM, and smoothed versions
thereof. Thus, let X1, X2, · · · ∼ind F ; let Fn be the EDF of X1, · · · , Xn; and
let F̃n be its LCM. If Fn = Fn, then (2.1), (2.3) and (2.8) hold almost surely
by the above remark, since

(2.13) ‖Fn − F‖ = O




√
log log(n)

n


 a.s.

by the Law of the Iterated Logarithm for the EDF, which may be deduced
from Hungarian Embedding; and the same is true if Fn = F̃n since ‖F̃n −
F‖ ≤ ‖Fn − F‖, by Marshall’s Lemma.
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INCONSISTENCY OF BOOTSTRAP: THE GRENANDER ESTIMATOR 9

If mn = n and fn = f̃n, then (2.4) is not satisfied almost surely or in prob-
ability by either Fn or F̃n. For either choice (2.7) is satisfied in probability
if fn = f .

Proposition 2.9. Suppose that mn = n and that fn = f . If Fn is either
the EDF Fn or its LCM F̃n, then for any γ, ε > 0, there are C > 0 and
0 < δ < 1 for which (2.7) holds with probability at least 1− ε for all large n.

The proof is included in the Appendix.

3. Inconsistency and non-convergence of the bootstrap. We be-
gin with a brief discussion of the bootstrap.

3.1. Generalities. Now, suppose that X1, X2, . . . ∼ind F are defined on
a probability space (Ω,A,P ). Write Xn = (X1, . . . , Xn) and suppose that
the distribution function, Hn say, of the random variable Rn(Xn, F ) is of
interest. The bootstrap methodology can be broken into three simple steps:

i) Construct an estimator F̂n of F from Xn;
ii) let X∗

1 , . . . , X∗
mn

∼ind F̂n be conditionally i.i.d. given Xn;
iii) then let X∗

n = (X∗
1 , . . . , X∗

mn
) and estimate Hn by the conditional

distribution function of R∗
n = R(X∗

n, F̂n) given Xn; that is

H∗
n(x) = P ∗{R∗

n ≤ x},

where P ∗{·} is the conditional probability given the data Xn, or equiv-
alently, the entire sequence X = (X1, X2, . . .).

Choices of F̂n considered below are the EDF Fn, its least concave majorant
F̃n, and smoothed versions thereof.

Let d denote the Levy metric or any other metric metrizing weak con-
vergence of distribution functions. We say that H∗

n is weakly, respectively
strongly, consistent if d(Hn,H∗

n) P→ 0, respectively d(Hn,H∗
n) → 0 a.s. If Hn

has a weak limit H, then consistency requires H∗
n to converge weakly to H,

in probability; and if H is continuous, consistency requires

sup
x∈R

|H∗
n(x)−H(x)| P→ 0 as n →∞.

There is also the apparent possibility that H∗
n could converge to a ran-

dom limit; that is, that there is a G : Ω × R → [0, 1] for which G(ω, ·)
is a distribution function for each ω ∈ Ω, G(·, x) is measurable for each
x ∈ R, and d(G,H∗

n) P→ 0. This possibility is only apparent, however, if
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10 B.SEN, M.BANERJEE AND M.WOODROOFE

F̂n depends only on the order statistics. For if h is a bounded continuous
function on R, then any limit in probability of

∫
R h(x)H∗

n(ω; dx) must be
invariant under finite permutations of X1, X2, . . . up to equivalence, and
thus, must be almost surely constant by the Hewitt-Savage zero-one law
[Breiman (1968)]. Let Ḡ(x) =

∫
Ω G(ω; x)P (dω). Then Ḡ is a distribution

function and
∫
R h(x)G(ω; dx) =

∫
R h(x)Ḡ(dx) a.s. for each bounded contin-

uous h and therefore for any countable collection of bounded continuous h.
It follows that G(ω;x) = Ḡ(x) a.e. ω for all x by letting h approach indicator
functions.

Now let

∆n = n
1
3

{
f̃n(t0)− f(t0)

}
and ∆∗

n = m
1
3
n

{
f̃∗n,mn

(t0)− f̂n(t0)
}

where f̂n(t0) is an estimate of f(t0), for example f̃n(t0), and f̃∗n,mn
(t0) is the

Grenander estimator computed from the bootstrap sample X∗
1 , . . . , X∗

mn
.

Then weak (strong) consistency of the bootstrap means

sup
x∈R

|P ∗[∆∗
n ≤ x]− P [∆n ≤ x]| → 0(3.1)

in probability (almost surely), since the limiting distribution (1.1) of ∆n is
continuous.

3.2. Bootstrapping from the NPMLE F̃n. Consider now the case in which
mn = n, F̂n = F̃n, and f̂n(t0) = f̃n(t0). Let

Z∗n(h) := n
2
3

{
F∗n(t0 + n−

1
3 h)− F∗n(t0)− f̃n(t0)n−

1
3 h

}

for h ∈ In = [−n
1
3 t0,∞), where F∗n is the EDF of the bootstrap sample

X∗
1 , . . . , X∗

n ∼ F̃n. Then Z∗n = Z∗n,1 + Zn,2, where

Z∗n,1(h) = n
2
3

{
(F∗n − F̃n)(t0 + n−

1
3 h)− (F∗n − F̃n)(t0)

}
,

Zn,2(h) = n
2
3

{
F̃n(t0 + hn−

1
3 )− F̃n(t0)− f̃n(t0)n−

1
3 h

}
.

Further, let W1 and W2 be two independent two-sided standard Brownian
motions on R with W1(0) =W2(0) = 0,

Z1(h) =W1[f(t0)h],

Z0
2(h) = W2[f(t0)h] +

1
2
f ′(t0)h2,

Z2(h) = LRZ0
2(h)− LRZ0

2(0)− (LRZ0
2)
′(0)h,

Z = Z1 + Z2.
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INCONSISTENCY OF BOOTSTRAP: THE GRENANDER ESTIMATOR 11

Then ∆∗
n equals the left derivative at h = 0 of the LCM of Z∗n. It is first shown

that Z∗n converges in distribution to Z but the conditional distributions of
Z∗n do not have a limit. The following two lemmas are needed.

Lemma 3.1. Let Wn and W ∗
n be random vectors in Rl and Rk respec-

tively; let Q and Q∗ denote distributions on the Borel sets of Rl and Rk; and
let Fn be sigma-fields for which Wn is Fn-measurable. If the distribution
of Wn converges to Q and the conditional distribution of W ∗

n given Fn con-
verges in probability to Q∗, then the joint distribution of (Wn,W ∗

n) converges
to the product measure Q×Q∗.

Proof. The above lemma can be proved easily using characteristic func-
tions. Kosorok (2007) includes a detailed proof.

The next lemma uses a special case of the Convergence of Types Theo-
rem [Loève (1963), page 203]: Let V, W, Vn be random variables and bn be
constants; if V has a non-degenerate distribution, Vn ⇒ V as n → ∞, and
Vn + bn ⇒ W , then b = limn→∞ bn exists and W has the same distribution
as V + b.

Lemma 3.2. Let X∗
n be a bootstrap sample generated from the data Xn.

Let Yn := ψn(Xn) and Zn := φn(Xn,X∗
n) where ψn : Rn → R and φn :

R2n → R are measurable functions; and let Kn and Ln be the conditional
distribution functions of Yn +Zn and Zn given Xn, respectively. If there are
distribution functions K and L for which L is non-degenerate, d(Kn,K) P→ 0
and d(Ln, L) P→ 0 then there is a random variable Y for which Yn

P→ Y .

Proof. If {nk} is any subsequence then there exists a further subse-
quence {nkl

} for which d(Knkl
,K)→0 a.s. and d(Lnkl

, L)→0 a.s. Then Y :=
liml→∞ Ynkl

exists a.s. by the Convergence of Types Theorem, applied con-
ditionally given X := (X1, X2 , · · · ) with bl = Ynkl

. Note that Y does not
depend on the sub-sequence nkl

, since two such sub-sequences can be joined
to form another sub-sequence using which we can argue the uniqueness.

Theorem 3.1. i) The conditional distribution of Z∗n,1 given X =
(X1, X2 , · · · ) converges a.s. to the distribution of Z1.

ii) The unconditional distribution of Zn,2 converges to that of Z2 and the
unconditional distributions of (Z∗n,1,Zn,2), and Z∗n converge to those of
(Z1,Z2) and Z.

iii) The unconditional distribution of ∆∗
n converges to that of (LRZ)′(0),

and (3.1) fails.

imsart-aos ver. 2007/04/13 file: btrevmw2ndRev.tex date: February 21, 2009



12 B.SEN, M.BANERJEE AND M.WOODROOFE

iv) Conditional on X, the distribution of Z∗n does not have a weak limit
in probability.

v) If the conditional distribution function of ∆∗
n converges in probability,

then (LRZ)′(0) and Z2 must be independent.

Proof. i): The conditional convergence of Z∗n,1 follows from Proposi-
tion 2.1 with mn = n, Fn = F̃n, Fn,mn = F∗n, applied conditionally given X.
It is only necessary to show that (2.3) holds a.s., and this follows from the
Law of the Iterated Logarithm for Fn and Marshall’s Lemma, as explained
in Sub-section 2.3. The unconditional limiting distribution of Z∗n,1 must also
be that of Z1.

ii): Let

Z0
n,2(h) = n

2
3 [Fn(t0 + n−

1
3 h)− Fn(t0)− f(t0)n−

1
3 h)],

and observe that

Zn,2(h) = LInZ0
n,2(h)−

[
LInZ0

n,2(0) + (LInZ0
n,2)

′(0)h
]
.

The unconditional convergence of Z0
n,2 and LInZ0

n,2 follow from Corollary
2.7 applied with Fn ≡ F , as explained in Sub-section 2.3. The convergence
in distribution of Zn,2 now follows from the Continuous Mapping Theorem,
using Lemma 2.5 and arguments similar to those in the proof of Corollary
2.6.

It remains to show that Z∗n,1 and Z0
n,2 are asymptotically independent, i.e.,

the joint limit distribution of Z∗n,1 and Z0
n,2 is the product of their marginal

limit distributions. For this it suffices to show that (Z∗n,1(t1), . . . ,Z∗n,1(tk))
and (Z0

n,2(s1), . . . ,Z0
n,2(sl)) are asymptotically independent, for all choices

−∞ < t1 < . . . < tk < ∞ and −∞ < s1 < . . . < sl < ∞. This is an easy
consequence of Lemma 3.1 applied with W ∗

n = (Z∗n,1(t1), . . . ,Z∗n,1(tk)) and
Wn = (Z0

n,2(s1), . . . ,Z0
n,2(sl)), and Fn = σ(X1, X2, · · · , Xn).

iii): We will appeal to Corollary 2.6 to find the unconditional distribution
of ∆∗

n. We already know that Z∗n converges in distribution to Z. That (2.10)
holds for the limit Z can be directly verified from the definition of the process.
We only have to show that (2.9) holds unconditionally with Zn = Z∗n.

Let ε > 0 and γ > 0 be given. By Proposition 2.9, there exists δ > 0 and
C > 0 such that P (An) ≥ 1− ε for all n > N0, where

An :=
{∣∣∣∣F̃n(t0 + h) + F̃n(t0)− f(t0)h− 1

2
f ′(t0)h2

∣∣∣∣ ≤ γh2 + Cn−
2
3 , ∀|h| ≤ δ

}
.

We can also assume that |F (t0 + h) + F (t0)− f(t0)h− (1/2)f ′(t0)h2| ≤ γh2

for |h| ≤ δ. Let Y∗n(h) = n
2
3 [F∗n(t0 + n−

1
3 h) − F∗n(t0) − f(t0)n−

1
3 h], so that
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INCONSISTENCY OF BOOTSTRAP: THE GRENANDER ESTIMATOR 13

Z∗n(h) = Y∗n(h)−∆nh for all h ∈ In, and

LKZ∗n = LKY∗n −∆nh

for all h ∈ K for any interval K ⊆ In.
Let Gn = F̃n1An + F1Ac

n
and let P∞

Gn
denote the probability when gen-

erating the bootstrap samples from Gn. Then Gn satisfies (2.1), (2.3), (2.7)
and (2.8) a.s. with mn = n, Fn = Gn, Fn,mn = F∗n1An + Fn1Ac

n
and fn = f .

Let J be a compact interval. By Proposition 2.4, applied conditionally, there
exists a compact interval K (not depending on ω, by the remark near the
end of the proof of Proposition 2.4) such that K ⊇ J and

P∞
Gn

[LInY∗n = LKY∗n on J ](ω) ≥ 1− ε

for n ≥ N(ω) for a.e. ω. As N(·) is bounded in probability, there exists
N1 > 0 such that P (B) ≥ 1−ε, where B := {ω : N(ω) ≤ N1}. By increasing
N1 if necessary, let us also suppose that N1 ≥ N0. Then,

P [LImn
Z∗n = LKZ∗n on J ] = P [LImn

Y∗n = LKY∗n on J ]

≥
∫

An

P ∗[LImn
Y∗n = LKY∗n on J ](ω) dP (ω)

=
∫

An

P∞
Gn

[LImn
Y∗n = LKY∗n on J ](ω) dP (ω)

≥
∫

An∩B
P∞

Gn
[LImn

Y∗n = LKY∗n on J ](ω) dP (ω)

≥
∫

An∩B
(1− ε) dP (ω) ≥ 1− 3ε, for all n ≥ N1

as P (An∩B) ≥ 1− 2ε for n ≥ N1. Thus, (2.9) holds and Corollary 2.6 gives
∆∗

n ⇒ (LRZ)′(0).
If (3.1) holds in probability, then the unconditional limit distribution of

∆∗
n would be that of 2|12f(t0)f ′(t0)| 13C, which is different from the distribu-

tion of (LRZ)′(0), giving rise to a contradiction.
iv): We use the method of contradiction. Let Zn := Z∗n,1(h0) and Yn :=

Zn,2(h0) for some fixed h0 > 0 (say h0 = 1) and suppose that the conditional
distribution function of Zn + Yn = Z∗n(h0) converges in probability to the
distribution function G. By Proposition 2.1, the conditional distribution of
Zn converges in probability to a normal distribution, which is obviously
non-degenerate. Thus the assumptions of Lemma 3.2 are satisfied and we
conclude that Yn

P→ Y , for some random variable Y . It then follows from
the Hewitt-Savage zero-one law that Y is a constant, say Y = c0 w.p.1. The
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Fig 1. Scatter plot of 10000 random draws of ((LRZ)′(0), LRZ0
2)
′(0)) when f(t0) = 1 and

f ′(t0) = −2.

contradiction arises since Yn converges in distribution to Z2(h0) which is not
a constant a.s.

v): We can show that the (unconditional) joint distribution of (∆∗
n,Z0

n,2)
converges to that of ((LRZ)′(0),Z0

2). But ∆∗
n and Z0

n,2 are asymptotically in-
dependent by Lemma 3.1 applied to Wn = (Z0

n,2(t1),Z0
n,2(t2), . . . ,Z0

n,2(tl)),
where ti ∈ R, W ∗

n = ∆∗
n and Fn = σ(X1, X2, . . . , Xn). Therefore, (LRZ)′(0)

and Z0
2 are independent. The proposition follows directly since Z2 is a mea-

surable function of Z0
2.

If the conditional distribution of ∆∗
n converges in probability, as a conse-

quence of v) of Theorem 3.1, (LRZ)′(0) and (LRZ0
2)
′(0) must also be indepen-

dent. Figure 1 shows the scatter plot of (LRZ)′(0) and (LRZ0
2)
′(0) obtained

from a simulation study with 10000 samples, f(t0) = 1 and f ′(t0) = −2.
The correlation coefficient obtained −0.2999 is highly significant (p-value <
0.0001). Thus, when combined with simulations, v) of Theorem 3.1 strongly
suggests that the conditional distribution of ∆∗

n does not converge in prob-
ability.

3.3. Bootstrapping from the EDF. A similar, slightly simpler pattern
arises if the bootstrap sample is drawn from F̂n = Fn. Define Z∗n as be-
fore, and let Z∗n,1(h) = n

2
3 {(F∗n − Fn)(t0 + n−

1
3 h) − (F∗n − Fn)(t0)} and

Zn,2(h) = n
2
3 {Fn(t0 +hn−

1
3 )−Fn(t0)− f̃n(t0)n−

1
3 h}. Then Z∗n = Z∗n,1 +Zn,2.

Recall the definition of the processes W1, W2, Z1, Z0
2 in Section 3.2. Define

Z2(h) = Z0
2(h)− (LRZ0

2)
′(0)h.
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INCONSISTENCY OF BOOTSTRAP: THE GRENANDER ESTIMATOR 15

Theorem 3.2. i) The conditional distribution of Z∗n,1 given X =
(X1, X2 , . . .) converges a.s. to the distribution of Z1.

ii) The unconditional distribution of Zn,2 converges to that of Z2 and the
unconditional distributions of (Z∗n,1,Zn,2), and Z∗n converge to those of
(Z1,Z2) and Z.

iii) The unconditional distribution of ∆∗
n converges to that of (LRZ)′(0),

and (3.1) fails.
iv) Conditional on X, the distribution of Z∗n does not have a weak limit

in probability.
v) If the conditional distribution function of ∆∗

n converges in probability,
then (LRZ)′(0) and Z2 must be independent.

Remark. The proof of this theorem runs along similar lines to that of
Theorem 3.1. We briefly highlight the differences.

i): The conditional convergence of Z∗n,1 follows from Proposition 2.1 with
mn = n, Fn = Fn, Fn,mn = F∗n, applied conditionally given X. It is only
necessary to show that (2.3) is satisfied almost surely, and this follows from
the Law of the Iterated Logarithm for Fn, as explained in sub-section 2.3.
Then the unconditional limiting distribution of Z∗n,1 must also be that of Z1.

ii): The proof is similar to that of ii) of Theorem 3.1, except that now
Zn,2(h) = Z0

n,2(h)− (LInZ0
n,2)

′(0)h.
The proofs of iii) - v) are very similar to that of iii) - v) of Theorem 3.1.

4. Consistent bootstrap methods. The main reason for the incon-
sistency of bootstrap methods discussed in the previous section is the lack of
smoothness of the distribution function from which the bootstrap samples
are generated. The EDF Fn does not have a density, and F̃n does not have a
differentiable density, whereas F is assumed to have a nonzero differentiable
density at t0. At a more technical level, the lack of smoothness manifests
itself through the failure of (2.4).

The results from Section 2 may be directly applied to derive sufficient
conditions on the smoothness of the distribution from which the bootstrap
samples are generated. Let X1, X2, . . . ∼ind F ; let F̂n be an estimate of F
computed from X1, . . . , Xn; and let f̂n be the density of F̂n or a surrogate,
as in Section 3.

Theorem 4.1. If (2.1), (2.3), (2.4), (2.7) and (2.8) hold a.s. with Fn =
F̂n and fn = f̂n, then the bootstrap estimate is strongly consistent, i.e., (3.1)
holds w.p.1. In particular, the bootstrap estimate is strongly consistent if
there is a δ > 0 for which F̂n has a continuously differentiable density f̂n on
[t0 − δ, t0 + δ], and (2.11) holds a.s. with Fn = F̂n and fn = f̂n.
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16 B.SEN, M.BANERJEE AND M.WOODROOFE

Proof. That ∆∗
n converges weakly to the distribution on the right side

of (1.1) a.s. follows from Corollary 2.7 applied conditionally given X with
Fn = F̂n and fn = f̂n. The second assertion follows similarly from Corollary
2.8.

4.1. Smoothing F̃n. We show that generating bootstrap samples from a
suitably smoothed version of F̃n leads to a consistent bootstrap procedure.
To avoid boundary effects and ensure that the smoothed version has a de-
creasing density on (0,∞), we use a logarithmic transformation. Let K be
a twice continuously differentiable symmetric density for which

(4.1)
∫ ∞

−∞
[K(z) + |K ′(z)|+ |K ′′(z)|]eη|z|dz < ∞

for some η > 0. Let

Kh(x, u) =
1
hx

K

[
1
h

log(
u

x
)
]
, and

f̌n(x) =
∫ ∞

0
Kh(x, u)f̃n(u)du =

∫ ∞

0
Kh(1, u)f̃n(xu)du.(4.2)

Thus, eyf̌n(ey) =
∫∞
−∞ h−1K[h−1(y − z)]f̃n(ez)ezdz. Integrating and using

capital letters to denote distribution functions,

F̌n(ey) =
∫ y

−∞
f̌n(es)esds

=
∫ y

−∞

∫ ∞

−∞
1
h

K

(
s− v

h

)
f̃n(ev)evdvds

=
∫ ∞

−∞
K(z)F̃n(ey−hz)dz.

Alternatively, integrating (4.2) by parts yields

f̌n(x) = −
∫ ∞

0

∂

∂u
Kh(x, u)F̃n(u)du.

The proof of (3.1) requires showing that F̌n and its derivatives are sufficiently
close to those of F , and it is convenient to separate the estimation error
F̌n − F into sampling and approximation error. Thus, let

(4.3) F̄h(ey) =
∫ ∞

−∞
K(z)F (ey−hz)dz.

We denote the first and second derivatives of F̄h by f̄h and f̄ ′h respectively.
Recall that F is assumed to have a non-increasing density on (0,∞) that is
continuously differentiable near t0.
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Lemma 4.1. limh→0 ‖F̄h − F‖ = 0, and there is a δ > 0 for which

(4.4) lim
h→0

sup
|x−t0|≤δ

[|f̄h(x)− f(x)|+ |f̄ ′h(x)− f ′(x)|] = 0.

Proof. First observe that

F̄h(ey)− F (ey) =
∫ ∞

−∞
K(z)[F (ey−hz)− F (ey)]dz

by (4.3). That limh→0 F̄h(x) = F (x) for all x ≥ 0 follows easily from the
Dominated Convergence Theorem, and uniform convergence then follows
from Polya’s Theorem. This establishes the first assertion of the lemma.
Next consider (4.4). Given t0 > 0, let y0 = log(t0) and let δ > 0 be so small
that eyf(ey) is continuously differentiable (in y) on [y0 − 2δ, y0 + 2δ]. Then,

f̄h(x)− f(x) =
∫ ∞

−∞
K(z)[f(xehz)− f(x)]ehzdz

+ f(x)
∫ ∞

−∞
(ehz − 1)K(z)dz

and thus

sup
|x−t0|≤δ

|f̄h(x)− f(x)| ≤
∫ ∞

−∞
sup

|x−t0|≤δ
|f(xehz)− f(x)|ehzK(z)dz + O(h2)

for any 0 < δ < t0. For sufficiently small δ, the integrand approach zero
as h → 0; and it is bounded by sup|x−t0|≤δ(e−hz/x + f(x))ehzK(z), since
f(x) ≤ 1/x for all x > 0. So the right side approaches zero as h → 0 by the
Dominated Convergence Theorem. That sup|x−t0|≤δ |f̄ ′h(x)−f ′(x)| → 0 may
be established similarly.

Theorem 4.2. Let K be a twice continuously differentiable, symmetric
density for which (4.1) holds. If

h = hn → 0 and h2
n

√
n

log log(n)
→∞,

then the bootstrap estimator is strongly consistent; that is, (3.1) holds a.s.

Proof. By Theorem 4.1, it suffices to show that (2.11) holds a.s. with
F̂n = F̌n and f̂n = f̌n; and this would follow from

‖F̌n − F̄h‖+ sup
|x−t0|≤δ

[|f̌n(x)− f̄h(x)|+ |f̌ ′n(x)− f̄ ′h(x)|] → 0 a.s.
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18 B.SEN, M.BANERJEE AND M.WOODROOFE

for some δ > 0 and Lemma 4.1. Clearly, using (4.3),

(4.5) F̌n(ey)− F̄h(ey) =
1
h

∫ ∞

−∞
[F̃n(et)− F (et)]K

(
y − t

h

)
dt

for all y, so that

‖F̌n − F̄h‖ ≤ ‖F̃n − F‖ ≤ ‖Fn − F‖ = O

[√
log log(n)/n

]
a.s.

by Marshall’s Lemma and the Law of the Iterated Logarithm. Differentiating
(4.5) gives

f̌n(ey)− f̄h(ey) =
e−y

h2

∫ ∞

−∞
[F̃n(et)− F (et)]K ′

(
y − t

h

)
dt.

Differentiating (4.5) again and then taking absolute values and considering
0 < h ≤ 1, we get

sup
|x−t0|≤δ

{|f̌n(x)− f̄h(x)|+ |f̌ ′n(x)− f̄ ′h(x)|}

≤ M

h3
sup

|x−t0|≤δ

∫ ∞

−∞
|F̃n(et)− F (et)|

[∣∣∣∣K ′
(

log x− t

h

)∣∣∣∣ +
∣∣∣∣K ′′

(
log x− t

h

)∣∣∣∣
]
dt

≤ M

h2
‖Fn − F‖

∫ ∞

−∞
[|K ′(z)|+ |K ′′(z)|]dz → 0 a.s.

for a constant M > 0, as h2
n

√
n/ log log(n) → ∞, where Marshall’s Lemma

and the Law of Iterated Logarithm have been used again.

4.2. m out of n Bootstrap. In Section 3 we showed that the two most
intuitive methods of bootstrapping are inconsistent. In this section we show
that the corresponding m out of n bootstrap procedures are weakly consis-
tent.

Theorem 4.3. If F̂n = Fn, f̂n = f̃n, and mn = o(n) then the bootstrap
procedure is weakly consistent, i.e., (3.1) holds in probability.

Proof. Conditions (2.1), (2.3) and (2.8) hold a.s. from (2.13), as ex-
plained in Sub-section 2.3. To verify (2.7), let γ > 0 be given. From the
proof of Proposition 2.4 [also see Kim and Pollard (1990), pp 218] there ex-
ists δ > 0 such that |Fn(t0+h)−Fn(t0)−F (t0+h)−F (t0)| ≤ γh2+Cnn−2/3,
for |h| ≤ δ, where Cn’s are random variables of order OP (1). We can also
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assume that |F (t0 + h) + F (t0) − f(t0)h − (1/2)f ′(t0)h2| ≤ (1/2)γh2 for
|h| ≤ δ. Then, using the inequality 2|ab| ≤ γa2 + b2/γ,

∣∣∣∣Fn(t0 + h)− Fn(t0)− hf̃n(t0)− 1
2
h2f ′(t0)

∣∣∣∣

≤
∣∣∣∣Fn(t0 + h)− Fn(t0)− hf(t0)− 1

2
h2f ′(t0)

∣∣∣∣ + |h|
∣∣∣f̃n(t0)− f(t0)

∣∣∣

≤
{

γh2 + Cnn−
2
3 +

1
2
γh2

}
+

{
1
2
γh2 +

1
2γ

∣∣∣f̃n(t0)− f(t0)
∣∣∣
2
}

≤ 2γh2 + Cnn−
2
3 + OP (n−2/3) ≤ 2γh2 + oP (m

− 2
3

n ).(4.6)

For (2.4), write

m
2
3
n{Fn(t0 + m

− 1
3

n h) − Fn(t0)−m
− 1

3
n f̃n(t0)h}

= m
2
3
n

{
(Fn − F )(t0 + m

− 1
3

n h)− (Fn − F )(t0)
}

+ m
1
3
n [f(t0)− f̃n(t0)]h +

1
2
f ′(t0)h2 + o(1)

P→ 1
2
f ′(t0)h2(4.7)

uniformly on compacts using Hungarian Embedding to bound the second
line and (1.1) (and a two term Taylor expansion) in the third.

Given any subsequence {nk} ⊂ N, there exists a further subsequence
{nkl

} such that (4.6) and (4.7) hold a.s. and Theorem 4.1 is applicable. Thus
(3.1) holds for the subsequence {nkl

}, thereby showing that (3.1) holds in
probability.

Next consider bootstrapping from F̃n. We will assume slightly stronger
conditions on F , namely, conditions (a)-(d) mentioned in Theorem 7.2.3 of
Robertson, Wright and Dykstra (1988):

(a) α1(F ) = inf{x : F (x) = 1} < ∞,
(b) F is twice continuously differentiable on (0, α1(F )),

(c) γ(F ) =
sup0<x<α1(F ) |f ′(x)|
inf0<x<α1(F ) f2(x)

< ∞,

(d) β(F ) = inf0<x<α1(F ) |−f ′(x)
f2(x)

| > 0.

Theorem 4.4. Suppose that (a)-(d) hold. If F̂n = F̃n, f̂n = f̃n, and
mn = o[n(log n)−

3
2 ] then (3.1) holds in probability.
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Proof. Conditions (2.1), (2.3) and (2.8) again follow from (2.13), as
explained in Sub-section 2.3. The verification of (2.7) is similar to the argu-
ment in the proof of Theorem 4.3. We show that (2.4) holds. Adding and

subtracting m
2
3
n [Fn(t0 + m

− 1
3

n h) − Fn(t0)] from Zn,2(h) and using (4.7) and
the result of Kiefer and Wolfowitz (1976)

sup
|h|≤c

∣∣∣∣Zn,2(h)− 1
2
f ′(t0)h2

∣∣∣∣ ≤ 2m
2
3
n‖F̃n − Fn‖+ oP (1)

≤ 2m
2
3
n‖F̃n − Fn‖+ oP (1)

= OP [m
2
3
nn−

2
3 log(n)] + oP (1)

for any c > 0 from which (2.4) follows easily.

5. Discussion. We have shown that bootstrap estimators are incon-
sistent when bootstrap samples are drawn from either the EDF Fn or its
least concave majorant F̃n but consistent when the bootstrap samples are
drawn from a smoothed version of F̃n or an m out of n bootstrap is used.
We have also derived necessary conditions for the bootstrap estimator to
have a conditional weak limit, when bootstrapping from either Fn or F̃n and
presented compelling numerical evidence that these conditions are not sat-
isfied. While these results have been obtained for the Grenander estimator,
our results and findings have broader implications for the (in)-consistency
of the bootstrap methods in problems with an n

1
3 convergence rate.

To illustrate the broader implications, we contrast our finding with those
of Abrevaya and Huang (2005), who considered a more general framework,
as in Kim and Pollard (1990). For simplicity, we use the same notation as
in Abrevaya and Huang (2005). Let Wn := rn(θn − θ0) and Ŵn := rn(θ̂n −
θn) be the sample and bootstrap statistics of interest. In our case rn =
n

1
3 , θ0 = f(t0), θn = f̃n(t0) and θ̂n = f̃∗n(t0). When specialized to the

Grenander estimator, Theorem 2 of Abrevaya and Huang (2005) would imply
[by calculations similar to those in their Theorem 5 for the NPMLE in a
binary choice model] that

Ŵn ⇒ arg max Ẑ(t)− arg maxZ(t)

conditional on the original sample, in P∞-probability, where Z(t) = W (t)−
ct2 and Ẑ(t) = W (t)+ Ŵ (t)− ct2, W and Ŵ are two independent two sided
Brownian motions on R with W (0) = Ŵ (0) = 0 and c is a positive constant
depending on F . We also know that Wn ⇒ arg maxZ(t) unconditionally. By
v) of Theorem 3.1, this would force the independence of arg maxZ(t) and
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arg max Ẑ(t)− arg maxZ(t); but, there is overwhelming numerical evidence
that these random variables are correlated.

APPENDIX A: APPENDIX SECTION

Lemma A.1. Let Ψ : R → R be a function such that Ψ(h) ≤ M for all
h ∈ R, for some M > 0, and

lim
|h|→∞

Ψ(h)
|h| = −∞.(A.1)

Then for any b > 0, there exists c0 > b such that for any c ≥ c0, LRΨ(h) =
L[−c,c]Ψ(h) for all |h| ≤ b.

Proof. Note that for any c > 0, LRΨ(h) ≥ L[−c,c]Ψ(h) for all h ∈ [−c, c].
Given b > 0, consider c > b and Φc(h) = L[−c,c]Ψ(h) for h ∈ [−b, b], and

let Φc be the linear extension of L[−c,c]Ψ
∣∣∣[−b,b] outside [−b, b]. We will show

that there exists c0 > b + 1 such that Φc0 ≥ Ψ. Then Φc0 will be a concave
function everywhere greater than Ψ, and thus Φc0 ≥ LRΨ. Hence, LRΨ(h) ≤
Φc0(h) = L[−c0,c0]Ψ(h) for h ∈ [−b, b], yielding the desired result.

For any c > b + 1, Φc(h) = Φc(b) − Φ′c(b) + Φ′c(b)(h − b + 1) for h ≥ b.
Using the min-max formula

Φ′c(b) = min
−c≤s≤b

max
b≤t≤c

Ψ(t)−Ψ(s)
t− s

≥ min
−c≤s≤b

Ψ(b + 1)−Ψ(s)
(b + 1)− s

≥ Ψ(b + 1)−M =: B0 ≤ 0.

Thus,

Φc(h) = Φc(b)− Φ′c(b) + Φ′c(b)(h− b + 1)
≥ {Ψ(b)− Φ′c(b)}+ Φ′c(b)(h− b + 1)
≥ Ψ(b) + (h− b)B0

for h ≥ b+1. Observe that B0 does not depend on c. Combining this with a
similar calculation for h < −(b+1), there are K0 ≥ 0 and K1 ≥ 0, depending
only on b, for which Φc(h) ≥ K0 −K1|h| for |h| ≥ b + 1. From (A.1), there
is c0 > b + 1 for which Ψ(h) ≤ K0 − K1|h| for all |h| ≥ c0 in which case
Ψ(h) ≤ Φc0(h) for all h. It follows that LRΨ ≤ Φc0(h) for |h| ≤ b.

Lemma A.2. Let B be a standard Brownian motion. If a, b, c > 0, a3b =
1, then

(A.2) P

[
sup
t∈R

|B(t)|
a + bt2

> c

]
= P

[
sup
s∈R

|B(s)|
1 + s2

> c

]
.
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Proof. This follows directly from rescaling properties of Brownian mo-
tion by letting t = a2s.

Proof of Proposition 2.4. Let J = [a1, a2] and ε > 0 be as in the
statement of the proposition; let γ = |f ′(t0)|/16; and recall Equations (2.5)
and (2.6) from the proof of Proposition 2.1. Then there exists 0 < δ < 1,
C ≥ 1, and n0 ≥ 1 for which (2.7) and (2.8) hold for all n ≥ n0. Let

I∗mn
:= [−δm

1
3
n , δm

1
3
n ]. By making δ smaller, if necessary, and using Lemma

2.3, LImn
Zn(h) = LI∗mn

Zn(h) for |h| ≤ δm
1
3
n/2 for all but a finite number of

n w.p.1. By increasing the values of C and n0, if necessary, we may suppose
that the right side of (A.2) (with c = C) is less than ε/3, that P [|η| > C] +

P [sup0≤t≤1 m
1
6
n |Emn(t) − B0

mn
(t)| > C] ≤ ε/3, and that LImn

Zn = LI∗mn
Zn

on [−1
2δm

1
3
n , 1

2δm
1
3
n ] with probability at least 1− ε/3 for all n ≥ n0. We can

also assume that α := 8C3/γ > 1. Then, using Lemma A.2 with a = αm
− 1

6
n

and b = a−3, the following relations hold simultaneously with probability at
least 1− ε for n ≥ n0:

|Bmn [Fn(t0) + s]− Bmn [Fn(t0)]| ≤ C(αm
− 1

6
n + α−3√mns2), for all s

LImn
Zn = LI∗mn

Zn on [−δ

2
m

1
3
n ,

δ

2
m

1
3
n ],

|η| ≤ C, and sup
0≤t≤1

m
1
6
n |Emn(t)− B0

mn
(t)| ≤ C.

Let Bn be the event that these four conditions hold. Then P (Bn) ≥ 1 − ε
for n ≥ n0, and from (2.6), Bn implies

|Zn,1(h)| ≤ C

{
α + α−3m

2
3
n [Fn(t0 + m

− 1
3

n h)− Fn(t0)]2
}

+ 2C

+Cm
1
6
n |Fn(t0 + m

− 1
3

n h)− Fn(t0)|
≤ 4C

{
α + α−1m

2
3
n [Fn(t0 + m

− 1
3

n h)− Fn(t0)]2
}

(A.3)

using the inequalities |Fn(t0 + m
− 1

3
n h)− Fn(t0)| ≤ αm

− 1
6

n + α−1m
1
6
n [Fn(t0 +

m
− 1

3
n h)− Fn(t0)]2 and α > 1. For sufficiently large n, using (2.8), we have

|Zn,1(h)| ≤ 4C[α + α−1C2m
2
3
n (m

− 1
3

n |h|+ m
− 1

3
n )2]

≤ 4C[α + 2α−1C2(h2 + 1)]
= γh2 + C(A.4)
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for |h| ≤ δm
1
3
n with C = 4Cα + 8C3α−1. Also, we can show that |Zn,2(h) −

f ′(t0)h2/2| ≤ γh2 + C for all |h| ≤ δm
1
3
n by (2.7). Let b2 > a2 be such that

−5γ(a2 + b2)2 + 6γ(a2
2 + b2

2)− 8C > 0.
Recalling that γ = −f ′(t0)/16, Bn implies

−10γh2 − 2C ≤ Zn(h) = Zn,1(h) + Zn,2(h) ≤ −6γh2 + 2C

for |h| ≤ δm
1
3
n and sufficiently large n. Since the right side is concave, Bn also

implies LI∗mn
Zn(h) ≤ −6γh2 + 2C for |h| ≤ δm

1
3
n . Therefore, for sufficiently

large n, using the upper bound on LI∗mn
Zn, the lower bound on Zn obtained

above, and LImn
Zn(h) = LI∗mn

Zn(h) for |h| ≤ δm
1
3
n/2 on Bn, and [a2, b2] ⊂

I∗mn
, we have

2Zn

(
a2 + b2

2

)
− [

LImn
Zn(a2) + LImn

Zn(b2)
]

≥ −5γ(a2 + b2)2 + 6γ(a2
2 + b2

2)− 8C > 0

with probability at least 1−ε. Thus, Bn implies 2Zn[12(a2+b2)] > LImn
Zn(a2)+

LImn
Zn(b2) with probability at least 1− ε. Similarly, Bn implies that there

is a b1 < a1 for which 2Zn[12(a1 + b1)] > LImn
Zn(a1) + LImn

Zn(b1) with
probability at least 1− ε. Relation (2.9) then follows from Lemma 2.2. It is
worth noting as a remark that b1, b2 do not depend on the sequence Fn.

Next consider (2.10). Given a compact J = [−b, b], let c0(ω) be the small-
est positive integer such that for any c ≥ c0, LRZ(h) = L[−c,c]Z(h) for
h ∈ J . That c0 exists and is finite w.p.1 follows from Lemma A.1. Defining
Wc := L[−c,c]Z and Y = LRZ, the event {Wc 6= Y on J} ⊂ {co > c}. Now
given any ε > 0, there exist c such that P [co ≤ c] > 1− ε. Therefore,

P [LRZ = L[−c,c]Z on J ] ≥ P [co ≤ c] > 1− ε.

Proof of Proposition 2.9. First consider Fn. Let 0 < γ < |f ′(t0)|/2
be given. There is a 0 < δ < 1

2 t0 such that
∣∣∣∣F (t0 + h)− F (t0)− f(t0)h− 1

2
f ′(t0)h2

∣∣∣∣ ≤
1
2
γh2(A.5)

for |h| ≤ 2δ. From the proof of Proposition 2.4, using arguments similar to
deriving (A.3) and (A.4), we can show that

|(Fn − F )(t0 + h)− (Fn − F )(t0)| < 1
2
γh2 + Cn−

2
3
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for |h| ≤ 2δ with probability at least 1− ε for sufficiently large n. Therefore,
by adding and subtracting F (t0 + h)− F (t0) and using (A.5),

∣∣∣∣Fn(t0 + h)− Fn(t0)− f(t0)h− 1
2
f ′(t0)h2

∣∣∣∣ ≤ γh2 + Cn−
2
3(A.6)

for |h| ≤ 2δ with probability at least 1− ε for large n.
Next, consider F̃n. Let Bn denote the event that (A.6) holds. Then, P (Bn)

is eventually larger than 1− ε and on Bn, we have

Fn(t0 + h)− Fn(t0)− f(t0)h ≤
{

γ − 1
2
|f ′(t0)|

}
h2 + Cn−

2
3 ,

for |h| ≤ 2δ. Let En be the event that F̃n(h) = L[t0−2δ,t0+2δ]Fn(h) for h ∈
[t0 − δ, t0 + δ]. Then by Lemma 2.3, P (En) ≥ 1− ε, for all sufficiently large
n. Taking concave majorants on either side of the above display for |h| ≤ 2δ
and noting that the right side of the display is already concave, we have:
F̃n(t0 + h) − Fn(t0) − f(t0)h ≤

{
γ − 1

2 |f ′(t0)|
}

h2 + Cn−
2
3 , for |h| ≤ δ on

Bn ∩ En. Setting h = 0 shows that on En ∩ Bn, F̃n(t0) − Fn(t0) ≤ Cn−
2
3 .

Now, as Fn(t0) ≤ F̃n(t0), it is also the case that on En ∩Bn, for |h| ≤ δ,

(A.7) F̃n(t0 + h)− F̃n(t0)− f(t0)h ≤
{

γ − 1
2
|f ′(t0)|

}
h2 + Cn−

2
3 ,

Furthermore on En ∩Bn,

F̃n(t0 + h)− F̃n(t0)− f(t0)h− 1
2
f ′(t0)h2

≥ Fn(t0 + h)− {Fn(t0) + Cn−
2
3 } − f(t0)h− 1

2
f ′(t0)h2

≥ −γh2 − 2Cn−
2
3 .(A.8)

Therefore, combining (A.7) and (A.8),
∣∣∣∣F̃n(t0 + h)− F̃n(t0)− f(t0)h− 1

2
f ′(t0)h2

∣∣∣∣ ≤ γh2 + 2Cn−
2
3

for |h| ≤ δ with probability at least 1− 2ε for large n.
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