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Abstract: In this paper, a novel approach to the problem of estimating the heavy–tail
exponent α > 0 of a distribution is proposed. It is based on the fact that block–maxima
of size m of the independent and identically distributed data scale at a rate of m1/α.
This scaling rate can be captured well by the max–spectrum plot of the data that leads
to regression based estimators. Consistency and asymptotic normality of these estimators
is established under mild conditions on the behavior of the tail of the distribution. The
results are obtained by establishing bounds on the rate of convergence of moment–type
functionals of heavy–tailed maxima. Such bounds often yield exact rates of convergence
and are of independent interest. Practical issues on the automatic selection of tuning
parameters for the estimators and corresponding confidence intervals are also addressed.
Extensive numerical simulations show that the proposed method proves competitive for
both small and large sample sizes and for a large range of tail exponents. The method is
shown to be more robust than the classical Hill plot and is illustrated on two data sets of
insurance claims and natural gas field sizes.
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1. Introduction

Heavy–tailed distributions arise in many diverse scientific areas: insurance claims, high–speed

network traffic, hydrology, the topological structure of the World Wide Web and of social

networks, linguistics, just to name a few (see e.g. Adler et al. (1998), McNeil (1997), Resnick

(1997b), Faloutsos et al. (1999), Adamic and Huberman (2000, 2002), Zipf (1932, 1949), Tso-

nis et al. (1997)). Highly optimized physical systems also exhibit heavy–tailed behavior, as
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discussed in Carlson and Doyle (1999).

A real valued random variable X with cumulative distribution function (c.d.f.) F (x) =

P{X ≤ x}, x ∈ R is said to have (right) heavy tail if,

P{X > x} = 1 − F (x) = L(x)x−α, as x→ ∞ (1.1)

for some α > 0, where L(x) > 0 is a slowly varying function. The tail exponent α > 0

controls the rate of decay of F and hence characterizes its tail behavior. The problem of

estimating the tail exponent has attracted a lot of attention in the literature since it poses

numerous theoretical, as well as, practical challenges (de Haan et al. (2000) and de Sousa

and Michailidis (2004)). Most approaches focus on the scaling behavior of the largest order

statistics X(1;N) ≥ X(2;N) ≥ · · · ≥ X(N ;N) obtained from an independent and identically

distributed (i.i.d.) sample X(1), . . . , X(N) from F . Typical examples include Hill’s estimator

(1975), its numerous variations (Kratz and Resnick (1996), Resnick and Stǎricǎ (1997)), and

the kernel–based estimators of Csörgő et al. (1985) (see also Feuerverger and Hall (1999)). For

example, the Hill estimator, which is one of the most widely used estimators in practice, can

be written as

α̂H(k) =
(1

k

k∑

i=1

i(lnX(i;N) − lnX(i+ 1;N))
)−1

=:
(1

k

k∑

i=1

Yi

)−1
, (1.2)

where Yi := i(lnX(i;N) − lnX(i + 1;N)). As shown in Weissman (1978), assumption (1.1)

implies that for all fixed k’s, the vector {Yi}k
i=1 converges in distribution to a vector of inde-

pendent exponentially distributed variables with mean 1/α. Therefore, when both N and k

are large, the statistic α̂H(k) in (1.2) behaves like the sample mean of a sample of independent

exponential variables. This suggests that the estimator α̂H(k) is consistent (Mason (1982)),

and under some additional conditions on the tail behavior of F , asymptotically normal (Hall

(1982)). In practice, one relies on plotting α̂H(k) as a function of the order statistics k (Hill

plot) and then selecting an appropriate value for k (see example in Figure 1). In the case of the

Pareto distribution (F (x) = 1− (x/σ0)
−α, x ≥ σ0, σ0 > 0), the Hill estimator is also a condi-

tional maximum likelihood estimator. However, when deviations from this ideal case occur, it

imsart ver. 2006/03/07 file: max-spectrum-1-corrected.tex date: March 28, 2007



Stoev et al. /Estimating heavy–tail exponents through max self–similarity 3

exhibits substantial bias and the resulting plot can be misleading (see examples and discussion

in de Haan et al. (2000) and de Sousa and Michailidis (2004) and references therein). These

shortcomings were addressed in a series of papers that introduced modifications of the original

Hill estimator and the resulting Hill plot. The kernel–type estimators introduced by Csörgő

et al. (1985) extend the Hill estimator, by introducing non–uniform weights in (1.2) (see also

Groeneboom et al. (2003)). Namely, given a non–negative and non–increasing kernel function

K(x), x > 0, one considers

α̂K,λ,N :=
( 1

N

N∑

i=1

K(i/λN)Yi

)−1
∫ 1/λ

0
K(x)dx, (1.3)

for some λ > 0. The Hill estimator can be recovered as a special choice of the function K.

Observe also that the threshold parameter k in (1.2) is no longer present. The choice of the

kernel function and the bandwidth parameter λ > 0, however, remain an important and difficult

problem for the kernel estimators, similar to the choice of k for the Hill estimator. One practical

disadvantage of kernel–type estimators is that no analogue of the Hill plot exists. Therefore,

one cannot readily judge how reliable the resulting numerical estimates are.

Other important and popular estimators include the Pickands estimator (see, Pickands

(1975) and Dekkers and de Haan (1989)) and de Haan’s moment type estimator (see Dekkers

et al. (1989)). Resnick and Stǎricǎ (1997) introduced a modified and smoothed version of the

Hill plot and showed that it performs better in practice when the data depart from the Pareto

model (see also de Haan et al. (2000)). The consistency of estimators based on this alternative

Hill plot is also established for dependent data (see, Resnick and Stǎricǎ (1995)).

In this study, we propose a novel method for estimating the tail index α. It relies on the

concept of max self-similarity. We focus on the case when the slowly varying function in

(1.1) is asymptotically constant and consider block–wise maxima of i.i.d. random variables

X(1), X(2), . . . with c.d.f. F . Block–maxima of block sizes m, scale at a rate of m1/α, as

m → ∞. Therefore, we can obtain an estimate of α, by focusing on a sequence of growing,

dyadic block sizes m = 2j , 1 ≤ j ≤ log2N, j ∈ N, and estimating the mean of logarithms of

block–maxima (log–block–maxima). This is achieved by examining the max–spectrum plot of
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the data, defined as means of log–block–maxima as a function of the logarithm of the block–

size. The slope of the max–spectrum plot for large block–sizes yields an estimate of 1/α (see

Figure 1 below).

When the X(i)’s come from a Fréchet distribution, then their block–maxima have the same

Fréchet distribution, rescaled by m1/α, where m denotes the block size. Thus, in practice, the

max–spectrum plot is essentially linear (Figure 2). One can view i.i.d. Fréchet sequences as

max self–similar with self–similarity parameter 1/α (Definition 2.1). Due to this exact max

self–similarity property, our estimation framework works best for Fréchet data. On the other

hand, the Hill–type estimators work best for Pareto data. This also shows the fundamental

difference between the two approaches. In many important applications the Hill plot is rather

volatile. The max spectrum turns out to be more robust to outliers in the data or to deviations

from its corresponding ideal Fréchet model than the Hill plot. In Section 5.3, we examine two

data sets: (i) 2, 167 insurance claims due to fire losses in Denmark and (ii) volumes of natural

gas reserves in 406 Oil rich provinces. In both cases, the max self–similarity estimators yield

values consistent with previous detailed studies of these data sets (see McNeil (1997) and de

Sousa and Michailidis (2004), respectively). These values depart from values that one obtains

directly from the Hill plots. In fact, in case (ii), due to the peculiar discrete nature of the data

set the Hill plot has a saw tooth shape and it is particularly hard to interpret, whereas the

max spectrum plot appears to yield a reliable estimate.

The remainder of the paper is structured as follows. In Section 2, we introduce the max–

spectrum plot and the self–similarity estimators of the heavy–tail exponent α and establish

their basic properties in the ideal Fréchet setting. Some useful results on rates for moment–type

functionals of heavy–tailed maxima are presented in Section 3. These results are used to prove

the consistency and asymptotic normality of the max self–similarity estimators in Section 4. In

Section 5, the performance of the new estimators is examined through a simulation study. The

max self–similarity estimators are then shown to work well in the context of two challenging

real data examples where the classical Hill plot is rather volatile and is hard to interpret.
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2. Max self–similarity and tail exponent estimators

In this section, we introduce some notation and recall some basic definitions used in the re-

mainder of the paper. We then introduce estimators of the heavy–tail exponents based on max

self–similarity and discuss their basic properties in the ideal Fréchet case.

2.1. Definition and basic properties

We focus on the case where the slowly varying function L in (1.1) is trivial, that is, when

P{X > x} = 1 − F (x) ∼ σα
0 x

−α, as x→ ∞, (2.1)

with σ0 > 0 and where ∼ means that the ratio of the left–hand side (l.h.s.) to the right–hand

side (r.h.s.) in (2.1) tends to 1, as x → ∞. For simplicity, we further assume that the X(i)’s

are almost surely positive (F (0) = 0). We address the general case where the X(i)’s can take

negative values in Section 4 (see, Proposition 4.3).

We begin with some useful definitions: for an i.i.d. sample X(i), i ∈ N := {1, 2, . . .} from F ,

consider the sequence of block–maxima

Xm(k) := max
1≤i≤m

X(m(k − 1) + i) ≡
m∨

i=1

X(m(k − 1) + i), k = 1, 2, . . . ,

with m ∈ N, where Xm(k) is the greatest observation in the k−th block. The Fisher–Tippett–

Gnedenko Theorem (see e.g. Proposition 0.3 in Resnick (1987)) then implies that, as m→ ∞,

m−1/αXm(k) converges in distribution to a random variable Z with an α−Fréchet distribution.

More precisely,

P{Z ≤ x} = exp{−σα
0 x

−α}, x > 0, (2.2)

where σ0 > 0, called the scale coefficient of Z, is as in (2.1). In fact, as m→ ∞, we have

{ 1

m1/α
Xm(k)

}
k∈N

d−→
{
Z(k)

}
k∈N

, (2.3)

where the Z(k)’s are independent copies of Z and where
d→ denotes convergence of the finite–

dimensional distributions. Thus, for large values of m, the normalized block–maxima behave
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like a sequence of i.i.d. α−Fréchet variables. In fact, when the X(k)’s are α−Fréchet, (2.3)

holds with equality for all m ∈ N (see Relation (7.3) in the Appendix). The sequence of i.i.d.

α−Fréchet X(k)’s is thus max self–similar in the sense of the following definition.

Definition 2.1 A sequence of random variables X = {X(k)}k∈N (defined on the same prob-

ability space) is said to be max self–similar with self–similarity parameter H > 0, if for any

m > 0, m ∈ N,
{ m∨

i=1

X(m(k − 1) + i)
}

k∈N

d
=
{
mHX(k)

}
k∈N

, (2.4)

where =d denotes equality of the finite–dimensional distributions.

If the X(k)’s are i.i.d. but not Fréchet, then Relation (2.3) indicates that (2.4) holds asymp-

totically, as m → ∞, with H = 1/α. Thus, any sequence of i.i.d. heavy–tailed variables can

be regarded as asymptotically max self–similar with self–similarity parameter H = 1/α. This

feature suggests that an estimator of H and therefore α can be obtained by focusing on the

scaling of the block–maxima of growing block sizes. Crovella and Taqqu (1999) used a simi-

lar idea based on the scaling of block–wise sums to estimate a heavy–tail exponent α when

α ∈ (0, 2).

Given an i.i.d. sample X(1), . . . , X(N) from F , we consider

D(j, k) := max
1≤i≤2j

X(2j(k − 1) + i) =
2j∨

i=1

X(2j(k − 1) + i), k = 1, 2, . . . , Nj , (2.5)

for all j = 1, 2, . . . , [log2N ], where Nj := [N/2j ] and [x] denotes the largest integer not greater

than x ∈ R. By analogy to the discrete wavelet transform, we refer to the parameter j as the

scale and to k as the location parameter. We consider dyadic block–sizes for algorithmic and

computational convenience (for more details, see Stoev and Michailidis (2006)).

Observe that for any fixed j, the block–maxima D(j, k) are independent in k since they

involve maxima over non–overlapping blocks of the X(i)’s. Moreover, as argued above, when

the X(i)’s follow an α−Fréchet distribution,

{D(j, k)}k∈N

d
= {2j/αD(0, k)}k∈N = {2j/αX(k)}k∈N, (2.6)
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for any scale j ∈ N. Introduce the statistics

Yj :=
1

Nj

Nj∑

k=1

log2D(j, k), j = 1, 2, . . . , [log2(N)] (2.7)

and observe that by the Law of Large Numbers, the Yj ’s are consistent and unbiased estimators

of the expectations E log2D(j, 1), provided that these are finite. (Corollary 3.1 below establishes

that E| log2D(j, 1)| are finite under general conditions on the c.d.f. F (x).) In view of the

asymptotic max self–similarity (2.3) of X, relationship (2.6) holds approximately for large

scales j, and in fact,

EYj = E log2D(j, 1) ' j/α+ C, (2.8)

with C = C(σ0, α) = E log2 σ0Z, where Z is an α−Fréchet variable with unit coefficient as in

(2.2) above. Here ' means that the difference between the l.h.s. and the r.h.s. tends to zero.

In practice, one can look at the max–spectrum plot of the statistics Yj ’s versus j (see Figure

1 below). In view of (2.8) it is expected that for large j’s the slope coefficient of a linear fit

of the Yj ’s against j’s would yield an estimate of H = 1/α. Further, observe that the log–

linear scaling relation in (2.8) becomes more precise, the larger the scale j (block–size 2j) and

holds exactly for all scales j = 1, . . . , [log2(N)], when the X(k)’s come from an α−Fréchet

distribution (see (2.6)).

Thus, given a range of scales 1 ≤ j1 ≤ j ≤ j2 ≤ [log2(N)], we define the following regression–

based estimators of H = 1/α and α

Ĥw(j1, j2) :=

j2∑

j=j1

wjYj , and α̂w(j1, j2) := 1/Ĥw(j1, j2), (2.9)

where the weights wj are chosen so that

j2∑

j=j1

wj = 0 and

j2∑

j=j1

jwj = 1. (2.10)

It is easy to see that the linear estimators Ĥw in (2.9) with weights as in (2.10) are least squares

estimators in a linear regression model. In the rest of the paper, the estimators Ĥw and α̂w in

(2.9) are referred to as max self–similarity estimators.
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Remark (Computational complexity)

The proposed estimators exhibit a significant computational advantage over Hill–type or

kernel–based estimators. Given a sample of size N one can compute the max–spectrum Yj , 1 ≤

j ≤ [log2N ], with Yj as in (2.7) by using O(N) operations since O(N/2j) pair–wise maxima

and sums are computed, for j = 1, . . . , [log2N ], and therefore O
(∑[log2 N ]

j=1 [N/2j ]
)

= O(N)

operations are done. On the other hand, methods involving order statistics require sorting the

sample which results in O(N log2(N)) operations.

We now illustrate the nature of the max-spectrum plot and the resulting estimator using

an example of Internet topology data. The data describe the degree of connectivity between

autonomous systems (AS - networks under a single administrative authority) on the Internet

for the year 2002 and is provided by the National Laboratory for Applied Network Research.

The information has been used to characterize the topology of the Internet (see, e.g. Faloutsos

et al. (1999) and Chen et al. (2002)). The size of the data set is 13,579 and each observation

gives the number of connections of an AS to peer AS. The histogram of the data (in log-scale)

shows that the vast majority of the AS are connected to very few peer systems, but there are

a few AS that are directly connected to over 10% of their peer systems. The max–spectrum

indicates a value for the tail index of about 1.5. The Hill estimator for k = 80 (where the Hill

plot seems to stabilize) suggests a value of 1.43.

2.2. The ideal Fréchet case

We start by assuming that X(1), . . . , X(N) is an i.i.d. sample of α−Fréchet variables with

scale coefficient σ0 > 0 and study the behavior of Ĥw(j1, j2) in this setting.

Consider the regression problem

Yj = j/α+ C + εj , j1 ≤ j ≤ j2 (2.11)

where

C = C(σ0, α) = E log2(σ0Z) = log2(σ0) + E log2(Z) (2.12)
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Fig 1. Left panel: histogram (log–scale) of AS connectivities. Right panel: max–spectrum plot for the
AS connectivity data. The large vertical lines indicate the range of j’s where a linear fit was used to
estimate the heavy–tail index α. The shorter vertical lines are 95% confidence intervals for the EYj’s. The
reciprocal of the slope yields an estimate of α̂w(3, 13) = 1.4957. This range was selected automatically
with tunning level p = 0.1, discussed in Section 5.2.

for an α−Fréchet Z random variable with unit scale coefficient, and where 1 ≤ j1 ≤ j2 ≤

[log2N ]. In view of (2.6), we have that the errors εj have zero means. They are, however,

dependent in j due to the corresponding dependence of the Yj statistics in (2.7). Moreover,

the number of D(j, k)’s at a scale j in (2.7) is Nj = [N/2j ] and therefore, the variances of the

εj ’s grow exponentially in j. This implies that the minimal variance unbiased estimators of the

parameters of interest θ = (H,C)t that are linear in Yj are obtained through generalized least

squares (GLS). They are given by

θ̂Σ =

(
ĤΣ

ĈΣ

)
= (AtΣ−1A)−1AtΣ−1Y, (2.13)

where A = (a b) with at = (j1, . . . , j2) and bt = (1, . . . , 1), and Σ = (Cov(Yi, Yj))
j2
i,j=j1

is

the covariance matrix of the vector Y = {Yj}j2
j=j1

. An explicit expression of the matrix Σ =

Σα(j1, j2;N) is given next.

Proposition 2.1 Let Y = {Yj}j2
j=j1

be as in (2.7), where the underlying distribution of the

X(k)’s is α−Fréchet with scale coefficient σ0 > 0. Then, for all j1 ≤ i ≤ j ≤ j2,

EYj = j/α+ C(σ0, α),
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and

Cov(Yi, Yj) = Σα(j1, j2;N)ij =
2j−i

α2Ni
ψ(|i− j|), Ni = [N/2i], (2.14)

where

ψ(a) := Cov(log2(Z1), log2(Z1 ∨ (2a − 1)Z2)), a ≥ 0, (2.15)

and where Z1 and Z2 are independent 1−Fréchet variables with unit scale coefficients.

Proof: Let j1 ≤ i < j ≤ j2 and observe that Ni = 2j−iNj +R, where 0 ≤ R < 2j−i, R ∈ N.

In view of (2.7),

Cov(Yi, Yj) =
1

NiNj

Ni∑

k1=1

Nj∑

k2=1

Cov(log2D(i, k1), log2D(j, k2))

=
1

NiNj

Nj∑

k1=1

2j−i∑

`=1

Nj∑

k2=1

Cov(log2D(i, (k1 − 1)2j−i + `), log2D(j, k2))

+
1

NiNj

R∑

`=1

Nj∑

k2=1

Cov(log2D(i,Nj2
j−i + `), log2D(j, k2)), (2.16)

where the last relation follows from expressing the sum
∑Ni

k1=1 as a double sum
∑Nj

k1=1

∑2j−i

`=1

plus the remainder term
∑R

`=1

∑Nj

k2=1. Observe that in view of (2.5), we have that the terms

Cov(log2D(i, (k1 − 1)2j−i + `), log2D(j, k2)), 1 ≤ ` < 2j−i are non–zero only if k1 = k2 since

otherwise the terms D(i, (k1−1)2j−i + `) and log2D(j, k2) involve maxima of non–overlapping

sets of X(k)’s. Note moreover that

D(j, k2) = D(i, (k2 − 1)2j−i + 1) ∨ · · · ∨D(i, k22
j−i), (2.17)

where the D(i, k)’s are i.i.d. α−Fréchet variables with scale coefficient 2i/ασ0 (see (7.3) below).

Therefore, for all k = 1, . . . , Nj and ` = 1, . . . , 2j−i,

(D(i, (k − 1)2j−i + `), D(j, k))
d
= (2i/αZ ′, 2i/αZ ′ ∨ (2j/α − 2i/α)Z ′′),

where Z ′ and Z ′′ are independent α−Fréchet variables with scale coefficients σ0 > 0. Observe

that Z ′ = σ0Z
1/α
1 , where Z1 is 1−Fréchet with unit scale coefficient. Hence, for all k1 = k2 =
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1, . . . , Nj and ` = 1, . . . , 2j−i, we have

Cov(log2D(i, (k1 − 1)2j−i + `), log2D(j, k2))

= Cov
(

log2(2
i/ασ0Z

1/α
1 ), log2(2

i/ασ0Z
1/α
1 ∨ (2j/α − 2i/α)σ0Z2)

)

= Cov
(

log2(Z
1/α
1 ), log2(Z

1/α
1 ∨ (2(j−i)/α − 1)Z

1/α
2 )

)
=

1

α2
ψ(|i− j|). (2.18)

The last two relations follow from the facts that log2(2
i/ασ0Z

1/α
1 ) equals log2(2

i/ασ0) +

α−1 log2(Z1) and since Cov(ξ + a, η + b) = Cov(ξ, η), for any constants a and b and random

variables ξ and η with finite variance.

Note that the covariances in the remainder term in (2.16) vanish since D(i,Nj2
j−i + `), ` =

1, . . . , 2j−i are independent of X(i), i = 1, . . . , Nj2
j . Thus, by using Relation (2.18), we obtain

(2.14). ¤

Remarks

1. Observe that the covariance matrix Σ does not depend on the scale coefficient σ0, which

is due to the fact that the Yj ’s are obtained through a logarithmic transformation of the

X(k)’s.

2. Observe that for all 1 ≤ j1 < j2 ≤ [log2N ] and α > 0, we have by (2.14) that

Σα(j1, j2;N) =
1

α2
Σ1(j1, j2;N),

where Σ1(j1, j2;N) corresponds to the covariance matrix of Y = {Yj}j2
j=j1

from a

1−Fréchet sample.

That is, the unknown parameter α appears only in the factor 1/α2 of the covariance

matrix and thus the GLS estimators ĤΣ and ĈΣ do not depend on α. Indeed, if one

multiplies Σ by a factor φ, the resulting estimates are not affected, since the formula

(2.13) involves the product of φ and its inverse.

This invariance property shows that the GLS estimators can be computed exactly, with-

out using plug–in approximations for the unknown parameter α involved in the matrix

Σ. Table 7.3 in the Appendix contains values of ψ(i) for i = 0, 1 . . . , 19, obtained through
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Monte Carlo simulations. This is sufficient to handle sample sizes of up to 220 = 1, 048, 576

observations.

3. Finally, Σα(j1, j2;N) is invertible, which follows from the fact that the joint distribution

of the Yj ’s has a density with respect to the Lebesgue measure.

In view of the above remarks, we have that

Corollary 2.1 The minimum variance unbiased estimators for H and C in the regression

model (2.11), linear in Yj, are given by (2.13). Moreover, the covariance matrix of θ̂Σ is

Σ
( bHΣ, bCΣ)

= (AtΣ−1
α (j1, j2;N)A)−1 =

1

α2
(AtΣ−1

1 (j1, j2;N)A)−1,

where Σ1(j1, j2;N) is the covariance matrix of the Yj statistics based on 1−Fréchet data.
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Max self−similarity H = 0.67069(0.0029822), α =1.491
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Fig 2. Displayed is an example the max–spectrum of an i.i.d. α−Fréchet sample of size N = 217 =
131, 072 with α = 1.5. Observe that the max–spectrum is perfectly linear in j. The vertical intervals
around every Yj point indicate 95% confidence intervals for the mean of Yj based on normal approxima-
tion. Observe that these confidence intervals grow with the scale j. GLS regression based on all scales
1 ≤ j ≤ 17 was used to obtain an estimate α̂ = 1.491. The estimated standard deviation of the slope
Ĥ = 0.67 is indicated in parentheses: σ̂H = 0.00298. This last estimate is based on the asymptotic
variance of Ĥ (see Proposition 4.2).

In Figure 2, the max–spectrum of a sample from a Fréchet distribution with N = 217

observations is shown. As expected, the max–spectrum is essentially linear in j and the slope
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yields a very good estimate of 1/α. The asymptotic properties of estimators based on the max–

spectrum of general heavy–tailed samples are established in Section 4. In practice, when the

sample is not Fréchet, the max–spectrum is linear in j only on a range of the largest scales j.

The problem of choosing the “best” range of scales to estimate α is very important in practice

and is briefly addressed in Section 5.2.

3. Rates for moment–type functionals of heavy–tailed maxima

In this section, we establish some results for moment–type functionals obtained from maxima of

heavy–tailed data. They prove useful in establishing the consistency and asymptotic normality

of the max self–similar estimators under general conditions, but are also of independent interest

since they yield exact rates of convergence in many cases.

Let X(1), X(2), . . . , be i.i.d. random variables with c.d.f.

F (x) = exp{−σα(x)x−α}, x > 0, (3.1)

where α > 0, and where the function σ(x) > 0 is such that

σ(x) −→ σ0 > 0, as x→ ∞.

Here, we let the function σ(x) take values in the extended half–line (0,∞], that is, σ(x) can

take the value ∞, in which case F (x) becomes e−∞ = 0 (see the Examples below). Such a

representation always exists if the c.d.f. F belongs to the normal domain of attraction of an

α−Fréchet distribution, that is, if

Mn :=
1

n1/α

∨

1≤i≤n

X(i)
d−→ Z, (3.2)

where G(x) := P{Z ≤ x} = exp{−σα
0 x

−α}, x > 0, for some σ0 > 0. For simplicity, we suppose

that the X(i)’s are positive, almost surely, that is F (0) = 0. The case when the X(i)’s can

take negative values is addressed in Section 4 below.

Our goal here is to establish bounds on the rate of convergence of Ef(Mn) to Ef(Z), as

n → ∞, for an absolutely continuous function f : (0,∞) → R. We do so under general

conditions on the asymptotic tail behavior of the c.d.f. F (x).
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In what follows, the next two conditions on the c.d.f. F (x) are needed:

Condition 3.1 For some β > 0 and C1 > 0,

|σα(x) − σα
0 | ≤ C1x

−β, for all sufficiently large x > 0. (3.3)

and

Condition 3.2 We have F (0) = 0 and for some C2 > 0,

σα(x) ≥ C2 min{1, xγ}, x > 0, for some γ ∈ (0, α). (3.4)

In the examples below, we show that the Conditions 3.1 and 3.2 hold in many cases of

practical interest. The second condition concerns the behavior of F (x) for small x, and ensures

that E(Xp1{X≤1}) <∞, for any p ∈ R. This condition always holds, for example, if the X(i)’s

are bounded away from zero, almost surely. The case of arbitrary X(i)’s which can possibly

take negative values is addressed in Section 4.

The following result provides an upper bound on |Ef(Mn) − Ef(Z)| under the above con-

ditions for general class of absolutely continuous functions f . Namely, we shall suppose that

f(x) = f(x0)+
∫ x
x0
f ′(u)du, x > 0, for some (any) x0 ∈ (0,∞), with f ′ being a locally integrable

function.

Theorem 3.1 Let f(x), x > 0 be an absolutely continuous function on all compact intervals

[a, b] ⊂ (0,∞). Let also Fn(x) := P{Mn ≤ x} and G(x) = P{Z ≤ x}, x ∈ R, be the c.d.f.’s of

the random variables Mn and Z in (3.2). Suppose that Conditions 3.1 and 3.2 hold.

(a) If for some m ∈ R and δ > 0,

xm|f(x)|+esssup
0<y≤x

ym|f ′(y)| → 0, x ↓ 0, and x−α|f(x)|+x1+δ esssup
y≥x

y−α|f ′(y)| → 0, x→ ∞,

(3.5)

then E|f(Z)| and E|f(Mn)|, n ∈ N are finite. Moreover,

Ef(Mn) − Ef(Z) =

∫ ∞

0
(G(x) − Fn(x))f ′(x)dx. (3.6)
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Here esssup denotes the essential supremum of a measurable function g, that is,

esssupy∈Ag(y) := inf
A0⊂A, |A\A0|=0

sup
y∈A0

g(y),

for any Borel set A, where |A| denotes the Lebesgue measure of the set A.

(b) If in addition to (3.5),
∫∞
1 x−(α+β)|f ′(x)|dx < ∞, then for any ε(n) → 0, such that

n1/αε(n) → ∞, as n→ ∞, we have

|Ef(Mn) − Ef(Z)| ≤ C1n
−β/α

(∫ ∞

0
x−(α+β)|f ′(x)|e−cx−α

dx
)

+2

∫ ε(n)

0
e−C2x−(α−γ) |f ′(x)|dx, (3.7)

for all sufficiently large n, where c ∈ (0, σα
0 ) can be chosen arbitrarily close to σα

0 . Moreover,

|Ef(Mn) − Ef(Z)| ≤ Cfn
−β/α, (3.8)

for all sufficiently large n with some Cf > 0.

Proof: We first prove part (a). Let f(x) = f(x0) +
∫ x
x0
f ′(u)du, x > 0, with x0 ∈ (0,∞),

where f ′(x), x ∈ (0,∞) is locally integrable, and where
∫ b
a = −

∫ a
b . Let now [a, b] ⊂

(0,∞), x0 ∈ (a, b) be an arbitrary interval and observe that
∫ b
a f(x)dFn(x) equals

∫ x0

a
f(x)dFn(x) +

∫ b

x0

f(x)d(Fn(x) − 1) = Fn(x0)f(x0) − Fn(a)f(a) −
∫ x0

a
Fn(x)f ′(x)dx

+(Fn(b) − 1)f(b) − (Fn(x0) − 1)f(x0) −
∫ b

x0

(Fn(x) − 1)f ′(x)dx (3.9)

= (Fn(b) − 1)f(b) − Fn(a)f(a) + f(x0)

−
∫ x0

a
Fn(x)f ′(x)dx+

∫ b

x0

(1 − Fn(x))f ′(x)dx. (3.10)

The equality in Relation (3.9) follows from Lemma 7.1.

In view of Relation (3.10), the monotone convergence theorem implies that E|f(Mn)| =
∫∞
0 |f(x)|dFn(x) is finite if

|(Fn(b) − 1)f(b)| + |Fn(a)f(a)| −→ 0, as a ↓ 0 and b→ ∞, (3.11)

and if ∫ x0

0
Fn(x)|f ′(x)|dx+

∫ ∞

x0

(1 − Fn(x))|f ′(x)|dx <∞. (3.12)
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Observe that by (3.1),

Fn(x) = F (n1/αx)n = exp{−σα(n1/αx)x−α}, x > 0.

Hence, in view of (3.3) we have

1 − Fn(x) ∼ σα
0 x

−α, as x→ ∞, (3.13)

since 1− e−u ∼ u, as u ↓ 0. Thus, the second convergence in (3.5), implies |(Fn(b)− 1)f(b)| →

0, b→ ∞. On the other hand, by (3.4), for n ≥ 1, n ∈ N,

σα(n1/αx) ≥ C2n
γ/αxγ ≥ C2x

γ , for all x ∈ (0, n−1/α), (3.14)

and hence

Fn(x) = exp{−σα(n1/αx)x−α} ≤ exp{−C2x
−(α−γ)}, for all x ∈ (0, n−1/α). (3.15)

Thus, since upe−u → 0, as u → ∞, for any p ∈ R, the first convergence in (3.5) implies that

Fn(a)f(a) → 0, as a→ ∞. We have thus shown that (3.11) holds. One can similarly show that

the integrals in (3.12) are finite by the using the conditions in (3.5) on f ′ and Relations (3.13)

and (3.14). Indeed, for almost all x > 0, we have

Fn(x)|f ′(x)| ≤ (sup0<y≤xFn(y)y−m)(esssup0<y≤xy
m|f ′(y)|) = O(x−|m| exp{−C2x

−(α−γ)}) → 0,

(3.16)

as x ↓ 0 and, for almost all x > 0,

(1 − Fn(x))|f ′(x)| ≤ (sup
y≥x

(1 − Fn(y))y−α)(esssupy≥xy
α|f ′(y)|) = O(x−(1+δ)), (3.17)

as x → ∞. We have thus shown that
∫∞
0 |f(x)|dFn(x) < ∞ for all n ∈ N. One can similarly

show that
∫∞
0 |f(x)|dG(x) <∞, by replacing Fn(x) with G(x), above, and using the fact that

G(x) = exp{−σα
0 x

−α}, x > 0 satisfies trivially Conditions 3.1 and 3.2.

Observe that (3.6) follows from the relations

∫ ∞

0
f(x)dFn(x) = f(x0) −

∫ x0

0
Fn(x)f ′(x)dx+

∫ ∞

x0

(1 − Fn(x))f ′(x)dx

imsart ver. 2006/03/07 file: max-spectrum-1-corrected.tex date: March 28, 2007



Stoev et al. /Estimating heavy–tail exponents through max self–similarity 17

and ∫ ∞

0
f(x)dG(x) = f(x0) −

∫ x0

0
G(x)f ′(x)dx+

∫ ∞

x0

(1 −G(x))f ′(x)dx.

We now turn to proving part (b). Let ε(n) ↓ 0 be such that n1/αε(n) → ∞, as n → ∞. By

(3.6), using the triangle inequality, we get

|Ef(Mn) − Ef(Z)| ≤
∫ ε(n)

0
G(x)|f ′(x)|dx+

∫ ε(n)

0
Fn(x)|f ′(x)|dx

+

∫ ∞

ε(n)
|Fn(x) −G(x)||f ′(x)|dx =: I1 + I2 + I3.

We first consider the integral I3. Since n1/αε(n) → ∞, n → ∞, in view of (3.3), for all

sufficiently large n, we have

|Fn(x) −G(x)| = |σα(n1/αx) − σα
0 |x−αe−θn(x)x−α

≤ C1n
−β/αx−(α+β)e−cx−α

, (3.18)

for all x ∈ (ε(n),∞), where c is an arbitrary constant in (0, σα
0 ), and where θn(x) is between

σα(n1/αx) and σα
0 . Indeed, the first relation in (3.18) follows by the mean value theorem applied

to the function g(u) = exp{−ux−α}, u > 0. The inequality in (3.18), follows from (3.3) since

n1/αε(n) → ∞ implies supx≥ε(n) σ
α(n1/αx) ≥ c, c ∈ (0, σα

0 ), for all sufficiently large n.

Therefore (3.18) implies

I3 ≤ C1n
−β/α

∫ ∞

ε(n)
x−(α+β)e−cx−α |f ′(x)|dx ≤ C1n

−β/α

∫ ∞

0
x−(α+β)|f ′(x)|e−cx−α

dx,

for all sufficiently large n. The last integral is finite. Indeed, by assumption
∫∞
1 x−(α+β)|f ′(x)|dx < ∞. The integral

∫ 1
0 x

−(α+β)|f ′(x)|e−cx−α
dx is finite since in view of

(3.5),

(esssup0≤y≤xy
m|f ′(y)|)x−(α+β+|m|)e−cx−α

= O
(
x−(α+β+|m|)e−cx−α

)
= O(xp), x ↓ 0, (3.19)

for any p > 0.

We now consider the integral I2. Observe that ε(n) > n−1/α, eventually, and hence

I2 ≤
∫ n−1/α

0
exp{−C2x

−(α−γ)}|f ′(x)|dx+

∫ ε(n)

n−1/α

Fn(x)|f ′(x)|dx, (3.20)
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by (3.15). Relation (3.4) implies that σα(n1/αx) ≥ C2, for all x ∈ (n−1/α, ε(n)), and hence

Fn(x) ≤ exp{−C2x
−α} ≤ exp{−C2x

−(α−γ)}, x ∈ (n−1/α, ε(n)). Therefore, the second integral

in (3.20) can be bounded above by
∫ ε(n)

n−1/α exp{−C2x
−(α−γ)}|f ′(x)|dx and hence

I2 ≤
∫ ε(n)

0
exp{−C2x

−(α−γ)}|f ′(x)|dx.

One can similarly bound I1. Indeed, Relation (3.4) implies that σα
0 ≥ C2, since σα(x) ∼

σα
0 , x → ∞. For all 0 < x < ε(n) < 1 and γ ∈ (0, α), we have x−α ≥ x−(α−γ), and hence we

obtain

I1 =

∫ ε(n)

0
exp{−σα

0 x
−α}|f ′(x)|dx ≤

∫ ε(n)

0
exp{−C2x

−(α−γ)}|f ′(x)|dx.

The last three bounds for I1, I2 and I3 imply (3.7).

Now, to prove (3.8), observe that, as in (3.19), since α−γ > 0, for almost all x > 0, we have

exp{−C2x
−(α−γ)}|f ′(x)| ≤ O

(
x−|m|e−C2x−(α−γ)

)
= O(xp), x ↓ 0, (3.21)

for any p > 0. Thus, the second integral in (3.7) is of order O(ε(n)p), for any p > 0 and by

setting ε(n) := n−δ, for some δ ∈ (0, 1/α), we obtain that (3.8) holds. This completes the proof

of the theorem. ¤

In the following examples we show that most heavy–tailed distributions of practical interest

satisfy the conditions of Theorem 3.1.

Examples:

• (Pareto laws) Let F (x) = 1 − (x/σ0)
−α, x ≥ σ0, and F (x) = 0, x < σ0, for some σ0 > 0

and α > 0. Then, Relation (3.1) holds with

σα(x) = ∞1(0,σ0](x) − xα ln(1 − (x/σ0)
−α)1(σ0,∞)(x),

that is, the function σ(x) equals ∞ for all x ∈ (0, σ0] to account for the fact that

F (x) = 0, x ∈ (0, σ0].

Observe that σα(x) satisfies Condition 3.1 with β = α. Indeed, since ln(1 − u) = −u +

u2/2 + O(u3), u→ 0, by setting u := (x/σ0)
−α, we obtain

|σα(x) − σα
0 | =

∣∣∣ ln(1 − (x/σ0)
−α)

x−α
+ σα

0

∣∣∣ = σα
0

∣∣∣ ln(1 − u)

u
+ 1

∣∣∣ ≤ σα
0 u = σ2α

0 x−α, (3.22)
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for all sufficiently large x.

One has, moreover, that

σα(x) − σα
0 ∼ σ2α

0

2
x−α, as x→ ∞. (3.23)

(see Proposition 3.1, below).

Condition 3.2 also holds. Indeed, σ(x) = ∞ ≥ xγ , for all x ∈ (0, σ0] and γ ∈ (0, α).

To prove (3.4), it remains to show that σα(x) ≥ C2 > 0, for all x > 0. As shown in

(3.22) above σα(x) → σα
0 , x→ ∞, where σ0 > 0. On the other hand σα(x) is a positive,

continuous function over all compact intervals of (σ0,∞) and σ(x) → ∞, as x → σ0.

This shows that σα(x) is bounded below by a positive constant.

• (Products of Fréchet laws) Let F (x) = Gα0(x/σ0)Gα1(x/σ1), where σ0, σ1 > 0 and

0 < α0 < α1, and where Gα(x) = exp{−x−α}, x > 0 denotes the c.d.f. of a standard

α−Fréchet variable. Observe that the function F (x) is the c.d.f. of max{σ0Z0, σ1Z1},

where Z0 and Z1 are independent standard α0− and α1−Fréchet random variables, re-

spectively. Therefore, (3.1) holds with α = α0 and

σα(x) = σα
0 + σα

1 x
−(α1−α0), x > 0. (3.24)

Conditions 3.1 and 3.2 are readily satisfied where β = α1 − α0 > 0.

• (Mixtures of Pareto laws) Let

F (x) = p(1 − (x/σ0)
−α0)1{x≥σ0} + (1 − p)(1 − (x/σ1)

−α1)1{x≥σ1}, 0 < α0 < α1,

where p ∈ (0, 1) and σ0, σ1 > 0.

Then, (3.1) holds with α ≡ α0, and σα(x) = ∞1(0,σ∗](x) − xα ln(F (x))1(σ∗,∞)(x), where

σ∗ := min{σ0, σ1} > 0.

As in the case of Pareto laws, one can show that Condition 3.1 holds with β =

min{α0, α1 − α0} and, σ0 replaced by pσ0. In fact,

σα(x) − pσα
0 ∼ C0x

−β , as x→ ∞, (3.25)
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where

C0 =





σα1
1 (1 − p) , if α1 − α0 < α0

σα1
1 (1 − p) + p2σ2α0

0 /2 , if α1 − α0 = α0

p2σ2α0
0 /2 , if α1 − α0 > α0

One can also show that Condition 3.2 holds as in the case of Pareto laws.

• Absolute values of α−stable (0 < α < 2) and t−distributed random variables Xi’s, for

example, also satisfy Condition 3.1. They do not satisfy Condition 3.2, however, since

E(|X1|−11{|X|≤1}) is infinite. In Proposition 4.3 below, we address the general case where

Condition 3.2 fails and in fact the case where the Xi’s can take negative values.

The following result shows that the rate n−β/α in (3.8) is optimal, if so is the inequality in

(3.3).

Proposition 3.1 Assume that F is as in (3.1) and satisfies Conditions 3.1 and 3.2 above, and

let f be as in Theorem 3.1 (b). Suppose, in addition, that σα(x) − σα
0 ∼ C1x

−β, as x → ∞,

for some C1 6= 0. Then

n−β/α(Ef(Mn) − Ef(Z)) −→ C1

∫ ∞

0
x−(α+β)f ′(x)e−σα

0 x−α
dx, as n→ ∞. (3.26)

Proof: Let as in Theorem 3.1, ε(n) → 0 be such that n1/αε(n) → ∞, as n → ∞. The

triangle inequality applied to Relation (3.6) implies

∣∣∣Ef(Mn)−Ef(Z)−
∫ ∞

ε(n)
(G(x)−Fn(x))f ′(x)dx

∣∣∣ ≤
∫ ε(n)

0
G(x)|f ′(x)|dx+

∫ ε(n)

0
Fn(x)|f ′(x)|dx.

(3.27)

As in the proof of Theorem 3.1 one can show that the integrals in the right–hand side of the

last expression are of order o(n−β/α), as n→ ∞, if ε(n) := n−δ, δ ∈ (0, 1/α) (see (3.21)).

To establish (3.26) we will now examine the order of the integral in the left–hand side of

(3.27). Observe that

σα(n1/αx) − σα
0

n−β/α
−→ C1x

−β, (3.28)

as n → ∞, for all x > 0. Hence (as in Theorem 3.1), in view of (3.1) and (3.28), the mean
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value theorem implies

nβ/α(G(x) − Fn(x))f ′(x) −→ C1x
−(α+β)f ′(x)e−σα

0 x−α
,

as n→ ∞, for any x ∈ (ε(n),∞) and hence for any x > 0 (ε(n) → 0, n→ ∞). As in the proof

of Theorem 3.1, one can show that the left–hand side of the last expression is bounded above

in absolute value by an integrable function. Therefore, the dominated convergence theorem

implies that nβ/α
∫∞
0 (G(x) − Fn(x))f ′(x)dx converges to the integral in (3.26), as n → ∞. ¤

The next result, which follows directly from Theorem 3.1 is used in Section 4.

Corollary 3.1 Assume that F is as in (3.1) and satisfies Conditions 3.1 and 3.2 above. Then

E| ln(Mn)|p <∞ for all n ∈ N and p > 0. Moreover, for any p > 0 and k ∈ N, we have

∣∣∣E| ln(Mn)|p − E| ln(Z)|p
∣∣∣ = O(n−β/α) and

∣∣∣E ln(Mn)k − E ln(Z)k
∣∣∣ = O(n−β/α),

as n→ ∞, where Mn and Z are as in Theorem 3.1.

In Section 4, one encounters covariance functionals of maxima over blocks of heavy–tailed

variables, that is, bivariate moment–type functionals arise. The following result establishes

rates of convergence for such functionals in the special case of logarithms.

Corollary 3.2 Suppose that F is as in (3.1) and satisfies Conditions 3.1 and 3.2. Let

X(1), . . . , X(n) and Y (1), . . . , Y (m), n,m ∈ N be i.i.d. random variables with c.d.f. F (x).

Consider the normalized maxima

MX
n :=

1

n1/α

∨

1≤i≤n

X(i) and MY
m :=

1

m1/α

∨

1≤i≤m

Y (i), n,m ∈ N.

Then, for any a > 0, as n, m→ ∞, we have that

E ln(MX
n ) ln(MX

n ∨ aMY
m) − E ln(ZX) ln(ZX ∨ aZY ) = O(n−β/α +m−β/α), (3.29)

where ZX and ZY are independent α−Fréchet random variables with scale coefficients σ0.
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Corollary 3.2 was stated in generality which allows us to have different number of X(i)’s

and Y (i)’s (n and m, respectively) in the maxima MX
n and MY

m . This flexibility is needed for

the proof of Proposition 4.1 below.

Proof of Corollary 3.1: Let f(x) = | ln(x)|p, p > 0, x > 0. Observe that f(x) =
∫ x
1 f

′(u)du, where f ′(x) = p| ln(x)|p−1/x for x ≥ 1 and f ′(x) = −p| ln(x)|p−1/x, for 0 < x ≤ 1.

One can verify that the conditions in (3.5) are fulfilled and therefore, Theorem 3.1 implies the

result. The argument in the case when f(x) = (ln(x))k, k ∈ N is similar. ¤

Proof of Corollary 3.2: By Corollary 3.1, the expected values in (3.29) exist since

E| ln(MX
n )|p < ∞, ∀p > 0 and since a ∨ b ≤ a + b for any a, b ≥ 0. Observe that by in-

dependence and Fubini’s theorem,

E ln(MX
n ) ln(MX

n ∨ aMY
m) =

∫ ∞

0

(∫ ∞

0
f(x, y)dFn(x)

)
dFm(y),

and

E ln(ZX) ln(ZX ∨ aZY ) =

∫ ∞

0

(∫ ∞

0
f(x, y)dG(x)

)
dG(y),

where f(x, y) = ln(x) ln(x ∨ ay), x, y, a > 0, Fn(x) := F (n1/αx)n is the c.d.f. of MX
n (and

MY
n ), and where G(x) = exp{−σα

0 x
−α}, x > 0. Now, by adding and subtracting the term

∫∞
0 (
∫∞
0 f(x, y)dG(x))dFm(y), applying Fubini’s theorem and then the triangle inequality, we

obtain that the left–hand side of (3.29) is bounded above in absolute value by

∫ ∞

0

∣∣∣
∫ ∞

0
f(x, y)dFn(x) −

∫ ∞

0
f(x, y)dG(x)

∣∣∣dFm(y)

+

∫ ∞

0

∣∣∣
∫ ∞

0
f(x, y)dFm(y) −

∫ ∞

0
f(x, y)dG(y)

∣∣∣dG(x) =: I1 + I2.

Focus next on the term I1. Let g(y) :=
∫∞
0 f(x, y)(dG(x) − dFn(x)), y > 0. Observe that for

each y > 0, y 6= x/a, f(x, y) is differentiable in x since

f(x, y) =





ln(x) ln(ay) , 0 < x < ay

ln(x)2 , ay ≤ x

In fact,

|f ′x(x, y)| ≤ 2| ln(x)|/x+ | ln(ay)|/x, x > 0, y > 0.
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Thus, Theorem 3.1 (b), applied to the inner integral g(y) in I1 implies

|g(y)| ≤ n−β/α(C ′ + C ′′| ln(y)|), (3.30)

for all sufficiently large n, where the constants C ′ > 0 and C ′′ > 0 do not depend on y (This

follows from Relation (3.7) by taking ε(n) := n−δ, δ ∈ (0, 1/α) and observing that the second

integral therein is negligible with respect to the term (1 + | ln(y)|)n−β/α.)

Note now that the function | ln(y)| satisfies the assumptions of Theorem 3.1 (b) and hence
∫∞
0 | ln(y)|dFm(y) →

∫∞
0 | ln(y)|dG(y), as m → ∞. Therefore, the inequality (3.30) implies

that I1 = O(n−β/α), as n→ ∞. One can similarly show that I2 = O(m−β/α), m→ ∞. ¤

4. Asymptotic properties of the max self–similarity estimators

We establish here the consistency and asymptotic normality of the estimators defined in (2.9),

above. In fact, we prove joint asymptotic normality of the max self–similarity estimators of the

tail exponent α and the scale coefficient σ0. These results rely on the behavior of moment–type

functionals of heavy–tailed maxima established in Section 3.

The general case where the X(i)’s may be 0 or even take negative values is addressed at the

end of this section.

Let the Yj ’s be defined as in (2.7), where now N denotes the sample size of available X(i)’s,

1 ≤ j ≤ [log2N ] and where Nj := [N/2j ]. As noted above, the larger the scales j, the

more precise the asymptotic relation (2.8). Therefore, to obtain consistent estimates for the

parameter H = 1/α one should focus on a range of scales which grows as the sample size

increases. We therefore fix a range j1 ≤ j ≤ j2, j1, j2 ∈ N and focus on the vectors

Yr := {Yj+r}j2
j=j1

,

with r ∈ N, j2 + r ≤ [log2N ] where the parameter r = r(N) grows with the sample size.

The following result shows that the mean and the covariance matrix of the vector Yr are

asymptotically equivalent to the mean and and the covariance matrix in the case where the

X(i)’s are α−Fréchet (see Proposition 2.1).
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Proposition 4.1 Suppose that the c.d.f. F has the representation (3.1) and satisfies Condi-

tions 3.1 and 3.2, above.

Then,
∣∣∣EYj+r − µr(j)

∣∣∣ = O
(
1/2rβ/α

)
, as r → ∞, (4.1)

and for any fixed j1 ≤ i ≤ j ≤ j2, i, j ∈ N, we have

∣∣∣Nj2+rCov(Yi+r, Yj+r) − α−2Σ1(i, j)
∣∣∣ = O

(
1/2rβ/α

)
+ O

(
2r/N

)
, as r → ∞. (4.2)

Here

µr(j) := (j + r)/α+ C(σ0, α) and Σ1(i, j) = 2j−j2ψ(|i− j|), (4.3)

where the function ψ is defined in (2.15) and where C(σ0, α) is as in (2.12).

Proof: Observe that by (2.7), we have EYj+r = E log2(D(j + r, 1)) = E log2

(∨2j+r

i=1 X(i)
)
.

Therefore,

EYj+r − (j + r)/α− E log2(σ0Z) = E log2

( 1

2(j+r)/α

2j+r∨

i=1

X(i)
)
− E log2(σ0Z)

= E log2(Mn) − E log2(σ0Z), (4.4)

where Mn := n−1/α
∨n

i=1X(i) and where n := 2(j+r). Corollary 3.1 implies that the right–

hand side of (4.4) is of order O(n−β/α) = O(2−(j+r)β/α) = O(2−rβ/α), as r → ∞, which in

turn implies (4.1).

We now focus on proving (4.2). Let i < j and recall that Nj+r = [N/2j+r], and Ni+r =

[N/2i+r]. We also have that

D(j + r, k) =
2j−i∨

r=1

D(i+ r, 2j−i(k − 1) + i), for all k = 1, . . . , Nj+r. (4.5)

Note that 2j−iNj+r ≤ Ni+r and therefore as in the proof of Proposition 2.1 above, we get

Cov(Yj+r, Yi+r) =
1

Nj+rNi+r

Nj+r∑

k1=1

Ni+r∑

k2=1

Cov(log2D(j + r, k1), log2D(i+ r, k2))

=
1

Nj+rNi+r

Nj+r∑

k1=1

2j−i∑

`=1

Cov
(

log2D(j + r, k1), log2D(i+ r, 2j−i(k1 − 1) + `)
)
.
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The second sum in the last expression involves only terms D(i + r, 2j−i(k1 − 1) + `), for ` =

1, . . . , 2j−i since in view of (4.5), the independence of the D(i+ r, k)’s implies that Cov(D(j +

r, k1), D(i+ r, k2)) = 0, for all k2 outside the range 2j−i(k1 − 1) + `, ` = 1, . . . , 2j−i.

Now, by using the stationarity of the D(i+ r, k)’s and Relation (4.5) again, we obtain from

the last relation that

Cov(Yj+r, Yi+r) =
2j−i

Ni+r
Cov

(
log2

( 2j−i∨

`=1

D(i+ r, `)
)
, log2D(i+ r, 1)

)

=
2j−i

Ni+r
Cov

(
log2

(
M ′

n ∨ (2j−i − 1)1/αM ′′
m

)
, log2(M

′
n)
)
, (4.6)

where n := 2i+r and m := (2j−i − 1)n with M ′
n := n−1/αD(i+ r, 1) = n−1/α

∨n
`=1X(`), and

M ′′
m := m−1/α

2j−i∨

`=2

D(i+ r, `) = m−1/α
n+m∨

`=n+1

X(`)
d
= M ′

m.

Observe that the normalized maxima M ′
n and M ′′

m are independent since they involve maxima

of disjoint sets of X(r)’s. Thus, by combining the results of Corollaries 3.1 and 3.2, we obtain

that

Cov
(

log2(M
′
n ∨ (2j−i − 1)1/αM ′′

m), log2(M
′
n)
)
− α−2ψ(|i− j|) = O

(
1/2rβ/α

)
, r → ∞, (4.7)

where ψ is as in (2.15). Now, note that Ni+r = 2j2−iNj2+r + q, where q < 2j2−i, q ∈ N. This

follows from the facts that Ni+r = [N/2i+r], i = j1, . . . , j2 and i ≤ j2. Thus

Nj2+r

Ni+r
− 2i−j2 = O(1/Nr) = O(2r/N). (4.8)

Now, by applying Relations (4.7) and (4.8), to (4.6), we obtain (4.2). This completes the proof

of the proposition. ¤

The following theorem is the main result of the section. It establishes the uniform convergence

of the vector Yr to a normal vector and provides bounds on its rate of convergence. The

asymptotic normality of the estimators defined in (2.13) is then an immediate consequence of

this result (see Corollary 4.1 below).
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Theorem 4.1 Suppose that the c.d.f. F has the representation (3.1) and satisfies Conditions

3.1 and 3.2, above. Let θ = {θj}j2
j=j1

∈ R
m\{0}, m = j2−j1+1 be an arbitrary fixed, non–zero

vector and consider the linear combination (θ, Yr) :=
∑j2

j=j1
θjYj+r.

Then,

sup
x∈R

∣∣∣P{
√
Nj2+r

(
(θ, Yr)−(θ, µr)

)
≤ x}−Φ(x/σθ)

∣∣∣ ≤ Cθ

(√
N/2r(1/2+β/α) +r2r/2/

√
N
)
, (4.9)

where Φ stands for the standard Normal c.d.f. and where Cθ > 0 does not depend on N .

Here Nj = [N/2j ] denotes the number of coefficients D(j, k) available on scale j, (θ, µr) :=
∑j2

j=j1
θjµr(j) and

σ2
θ = α−2(θ,Σ1θ) := α−2

j2∑

i,j=j1

θiΣ1(i, j)θj > 0. (4.10)

Proof: Since Ni = [N/2i], i = 1, . . . , [log2N ], for all j = j1, . . . , j2, and r ∈ N, r ≤

[log2N ] − j2, we have Nj+r = 2j2−jNj2+r + qj , where 0 ≤ qj < 2j2−j , qj ∈ N. Thus, for all

j = j1, . . . , j2,

Yj+r =
1

Nj+r

Nj2+r∑

k=1

2j2−j∑

i=1

log2D(j + r, 2j2−j(k − 1) + i) +
1

Nj+r

qj∑

i=1

log2D(j + r, 2j2−jNj2+r + i)

=:
1

Nj2+r

Nj2+r∑

k=1

yj+r(k) +Rj , (4.11)

where yj+r(k) := Nj2+rN
−1
j+r

∑2j2−j

i=1 log2D(j + r, 2j2−j(k − 1) + i).

Therefore,

(θ, Yr) =
1

Nj2+r

Nj2+r∑

k=1

ξr(k) + (θ,R), (4.12)

where ξr(k) := (θ, yr(k)), k = 1, . . . , Nj2+r, with yr(k) = {yj+r(k)}j2
j=j1

and R = {Rj}j2
j=j1

.

Observe that the random vectors yr(k), k = 1, . . . , Nj2+r are i.i.d. and independent from the

remainder term (θ,R). Indeed, this follows from the fact that the X(i)’s are i.i.d. and because

for any j = j1, . . . , j2, the random variable yj+r(k) depends only on the X(i)’s with indices

2j2+r(k − 1) + 1 ≤ i ≤ 2j2+rk, k = 1, . . . , Nj2+r, and Rj depends on the X(i)’s with indices

2j2+rNj2+r + 1 ≤ i ≤ N .
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Thus, to prove (4.9), we proceed in two steps. First, we apply the Central Limit Theorem to

the first term on the right–hand side (r.h.s.) of (4.12). Then, we will argue that the remainder

term therein can be neglected.

Step 1. Note that the ξr(k)’s are i.i.d. but their distributions depend on N and hence the

ordinary C.L.T. does not apply. The Berry–Esseen bound, however, (see e.g. Theorem V.2.4

in Petrov (1995)) implies that

sup
x∈R

∣∣∣QN,r(x) − Φ(x)
∣∣∣ ≤ A

E|ξr(1) − Eξr(1)|3
σ3

ξr

1√
Nj2+r

, (4.13)

where

QN,r(x) := P

{ 1

σξr

√
Nj2+r

Nj2+r∑

k=1

(ξr(k) − Eξr(k)) ≤ x
}
,

Φ(x) denotes the standard Normal c.d.f., and where A > 0 is an absolute constant. This is so,

provided that the variance σ2
ξr

:= Var(ξr(1)) and the third moment E|ξr(1)|3 of the ξr(k)’s are

finite.

Observe first that, by (4.12) and by the independence of the ξr(k)’s from R,

σ2
ξr

= Nj2+r

(
Var(θ, Yr) − Var(θ,R)

)
= σ2

θ + O(1/2rβ/α) + O(2r/N), (4.14)

where σθ is as in (4.10). Indeed, this follows from Proposition 4.1 above, provided that Var(θ,R)

is negligible. In view of (4.11), however, since 0 ≤ qj < 2j ≤ 2j2 , j = j1, . . . , j2,

Nj2+rVar(θ,R) ≤ m22j2

Nj2+r

j2∑

j=j1

Var(log2D(j + r, 1))

=
m22j2

Nj2+r

j2∑

j=j1

Var(log2(2
−(j+r)/αD(j + r, 1))), (4.15)

where m = j2 − j1 + 1. In the last relation, we used the inequality Var(η1 + · · · + ηm) ≤

m2(Var(η1) + · · · + Var(ηm)), m ∈ N and the fact that

Var(log2D(j + r, 1)) = Var(log2(2
−(j+r)/αD(j + r, 1))).

In view of (2.5), however, by Corollary 3.1 below, the variances on the r.h.s. of (4.15) are

bounded, as r → ∞. This implies that Nj2+rVar(θ,R) = O(2r/N), which completes the proof

of (4.14).
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We now focus on bounding the term E|ξr(1) − Eξr(1)|3 in (4.13). The inequality

∣∣∣
m∑

i=1

xi

∣∣∣
p
≤ m0∨(p−1)

m∑

i=1

|xi|p, m ∈ N, valid for all p, xi ∈ R, i = 1, . . . ,m, (4.16)

implies

E|ξr(1) − Eξr(1)|3 ≤ m2
j2∑

j=j1

|θj |3E|yj+r(1) − Eyj+r(1)|3

≤ m2
j2∑

j=j1

|θj |3E
∣∣∣ 1

2j2−j

2j2−j∑

i=1

log2D(j + r, i) − E log2D(j + r, 1)
∣∣∣
3

≤ m2
j2∑

j=j1

|θj |3
2j2−j

2j2−j∑

i=1

E| log2D(j + r, i) − E log2D(j + r, 1)|3

= m2
j2∑

j=j1

|θj |3E| log2D(j + r, 1) − E log2D(j + r, 1)|3, (4.17)

where m = j2 − j1 + 1 and where the last bound follows from the Jensen’s inequality. As in

(4.15) above, we have that log2D(j + r, 1) − E log2D(j + r, 1) equals

log2(2
−(j+r)/αD(j + r, 1)) − E log2(2

−(j+r)/αD(j + r, 1)),

Therefore, by using inequality (4.16), we get that the r.h.s. of (4.15) is bounded above by

4m2
j2∑

j=j1

|θj |3
(
E| log2(2

−(j+r)/αD(j + r, 1))|3 + (E| log2(2
−(j+r)/αD(j + r, 1)|)3

)
.

The last term is bounded, as r → ∞, in view of (2.5) and Corollary 3.1.

We have thus far shown that (4.13) holds with the r.h.s. being of order O(1/
√
Nr), uniformly

in r, that is,

sup
x∈R

∣∣∣QN,r(x) − Φ(x)
∣∣∣ ≤ Cθ/

√
Nr = O

(
2r/2/

√
N
)
. (4.18)

We will now use this fact to prove (4.9).

Step 2. By (4.12), the probability in (4.9) equals

EQN,r

(
x/σξr −

√
Nj2+r((θ,R) + Eξr(1) − (θ, µr))/σξr

)
=: EQN,r

(
x/σξr − ∆N,r

)
. (4.19)
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Indeed, this follows from the independence of the ξr(k)’s and the remainder term R.

Now, by applying the triangle inequality, we obtain that the l.h.s. of (4.9) is bounded above

by:

sup
x∈R

E

∣∣∣QN,r(x/σξr − ∆N,r) − Φ(x/σξr − ∆N,r)
∣∣∣+ sup

x∈R

E

∣∣∣Φ(x/σξr − ∆N,r) − Φ(x/σξr)
∣∣∣

+ sup
x∈R

|Φ(x/σξr) − Φ(x/σθ)| =: A1 +A2 +A3. (4.20)

In view of (4.18), we have that

A1 ≤ sup
x∈R

|QN,r(x) − Φ(x)| = O
(
2r/2/

√
N
)
, (4.21)

as N → ∞ and N/2r → ∞.

Now, focus on the term A2 in (4.20). By using the mean value theorem, for any a < b, a, b ∈

R, we have that |Φ(a) − Φ(b)| ≤ |a− b|/
√

2π. Therefore (see (4.19)),

A2 ≤ 1√
2π

E|∆N,r| ≤
√
Nj2+r√
2πσξr

(
E|(θ,R)| + E|ξr(1) − (θ, µr)|

)
. (4.22)

As argued above, in view of (4.11), we obtain by the triangle inequality, that

E|(θ,R)| ≤ const

Nj2+r

j2∑

j=j1

E| log2D(j + r, 1)|

≤ const

Nj2+r

j2∑

j=j1

E| log2(2
−(j+r)/αD(j + r, 1))| + const

r

Nj2+r
= O(r/Nr). (4.23)

The last relation follows by adding and subtracting the term (j + r)/α, and by applying

Corollary 3.1 to the terms E| log2(2
−(j+r)/αD(j + r, 1))|.

By (4.11), Eξr(1) = E(θ, Yr) − E(θ,R) and thus by applying the triangle inequality, Propo-

sition 4.1 and Relation (4.23), to the second term in the r.h.s. of (4.22), we obtain

A2 ≤ const
√
Nr

(
r/Nr + 1/2rβ/α

)
= O

(
r2r/2/

√
N
)

+ O
(√

N/2r(1/2+β/α)
)
. (4.24)

Here, we also used the fact that σξr → σθ, σθ > 0, as r → ∞ (see (4.14) above).

Consider now the term A3 in (4.20). As above, by using the mean value theorem, we obtain

A3 ≤ const |1/σθ − 1/σξr | = const
|σθ − σξr |
σθσξr

= O(1/2rβ/α) + O(2r/N), (4.25)
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as r → ∞ and N/2r → ∞, where the last inequality follows form Relation (4.14) above and

the fact that σ2
θ − σ2

ξr
= (σθ − σξr)(σθ + σξr).

Now, by combining the bounds in Relations (4.20), (4.21), (4.24) and (4.25), we obtain (4.9).

This completes the proof of the theorem. ¤

Let now the scales j1 ≤ j2 be fixed and let r = r(N) ∈ N, r + j2 ≤ [log2N ]. Theorem

4.1 shows that one can obtain consistent and asymptotically normal estimators of H and

C = C(σ0, α), as in the ideal Fréchet case (2.13). Indeed, let A = (a b) be as in (2.13) and

define θ̂Σ1 = (ĤΣ1 , ĈΣ1) as in (2.13) and α−2Σ1 being the asymptotic covariance matrix in

Proposition 4.1.

By using (2.13), one can show that

Ĥ := ĤΣ1 =

j2∑

j=j1

wjYj+r and Ĉ := ĈΣ1 =

j2∑

j=j1

vjYj+r − rĤΣ1 , (4.26)

where the wj ’s and the vj ’s are fixed weights such that

j2∑

j=j1

jwj =

j2∑

j=j1

vj = 1 and

j2∑

j=j1

wj =

j2∑

j=j1

jvj = 0. (4.27)

The following result establishes the asymptotic normality of these estimators.

Proposition 4.2 Assume the conditions of Theorem 4.1 hold. If r = r(N) ∈ N is such that

r2r/2/
√
N +

√
N/2r(1/2+β/α) → 0, as N → ∞, then for the estimators defined in (4.26), we

have

√
Nj2+r(Ĥ −H)

d−→ N (0, H2cw) and
√
Nj2+r/r(Ĉ − C)

d−→ N (0, H2cw), (4.28)

as N → ∞, where cw =
∑j2

i,j=j1
wiwjΣ1(i, j) and where C = C(σ0, α) is as in (2.12).

Moreover,

lim
N→∞

Nj2+rVar(Ĥ) = lim
N→∞

r−1Nj2+rVar(Ĉ) = H2cw.

Proof: The first convergence in (4.28) follows directly from Theorem 4.1 by setting θj :=

wj , j = j1, . . . , j2. Indeed, since µr(j) = (j + r)/α+ C, Relation (4.27) implies that

(θ, µr) =

j2∑

j=j1

wj((j + r)/α+ C) = 1/α ≡ H.
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Thus, for Ĥ = (θ, Yr) =
∑j2

j=j1
wjYj+r, by Relation (4.9), we obtain that

sup
x∈R

|P{
√
Nj2+r(Ĥ −H) ≤ x} − Φ(x/σw)| −→ 0,

as N → ∞. This implies the asymptotic normality of Ĥ in (4.28), where in view of (4.10)

σ2
w = H2(w,Σ1w) = H2

∑j2
i,j=j1

wiwjΣ1(i, j).

We now focus on the estimator Ĉ. By setting θj := vj , j = j1, . . . , j2, we get by using (4.27)

that

(θ, µr) =

j2∑

j=j1

((j + r)/α+ C)vj = r/α+ C.

On the other hand, in view of (4.26),

(θ, Yr) =

j2∑

j=j1

vjYj+r = Ĉ + rĤ

and thus

Ĉ − C = (θ, Yr) − (θ, µr) − r(Ĥ −H). (4.29)

We have already shown that the term (Ĥ−H) above is asymptotically normal and by Theorem

4.1 the term (θ, Yr)− (θ, µr) in (4.29) is also asymptotically normal. Since r = r(N) → ∞, the

second term in the r.h.s. of (4.29) dominates in the limit. This implies that second convergence

in (4.28).

To complete the proof, observe that by Proposition 4.1, Nj2+rVar(Ĥ) → σ2
w = H2cw, as

N → ∞. We now consider the variance of Ĉ − C in (4.29), and apply the inequality

Var(ξ) − 2(Var(ξ)Var(η))1/2 + Var(η) ≤ Var(ξ − η) ≤ Var(ξ) + 2(Var(ξ)Var(η))1/2 + Var(η)

with ξ := (θ, Yr)− (θ, µr) and η := r(Ĥ −H). Since Var(η) dominates Var(ξ), in the limit, we

obtain that r−1Nj2+rVar(Ĉ) → σ2
w = H2cw, as N → ∞. ¤

Corollary 4.1 Assume the conditions of Theorem 4.1 hold. Define the estimators

α̂ := 1/Ĥ and σ̂0 := 2
bC−(E log2 Z)/bα,

where Z is a 1−Fréchet random variable with unit scale coefficient. Then with r = r(N) as in

Proposition 4.2, we have

√
Nj2+r(α̂−α)

d−→ N (0, α2cw) and
√
Nj2+r/r(σ̂0 − σ0)

d−→ N (0, (ln 2)2σ2
0α

−2cw). (4.30)
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This result follows from Proposition 4.2 by an application of the Delta-method.

Most heavy–tailed distributions used in applications satisfy Condition 3.1, but some do not

satisfy Condition 3.2. Indeed, (3.4) implies that E|X|p1{X≤1} < ∞, for all p ∈ R, which is

rather stringent. Nevertheless, the results of Proposition 4.2 and Corollary 4.1 continue to

hold even if Condition 3.2 is not satisfied and even if the X(i)’s can take negative values. This

is so, because block–maxima become strictly positive as the block–size grows. We make this

more precise in Proposition 4.3 below.

Now, for convenience, introduce a special value ∗ and suppose that our statistics take values

in the extended real line R
∗ := R ∪ {∗}. If a statistic is not well–defined (because it involves

log2 x for x ≤ 0, for example), we assign to it the special value ∗. The set {∗} ⊂ R
∗ is considered

as both closed and open in the topology of R
∗ and the topology of R ⊂ R

∗ is the same as that

of the real line. Therefore, the statistics Yj in (2.7) and the estimators Ĥ and Ĉ in (4.26),

become proper random variables which can sometimes take the value ∗ if some of the X(i)’s

are negative.

The following result shows that, asymptotically, the estimators Ĥ and Ĉ become real–valued

with probability one, provided that ln(N)/2r(N) → 0, as N → ∞.

Proposition 4.3 Suppose that the c.d.f. F has the representation (3.1) and satisfies Condition

3.1, where F (0) is not necessarily zero. Let also r = r(N) ∈ N, Ĥ and Ĉ be as in (4.26). If

ln(N)/2r(N) −→ 0, N → ∞, then

P({Ĥ = ∗}) + P({Ĉ = ∗}) −→ 0, as N → ∞. (4.31)

If in addition r2r/2/
√
N +

√
N/2r(1/2+β/α) → 0, as N → ∞, then the convergences (4.28) and

(4.30) continue to hold.

Proof: Let X(i), i ∈ N be i.i.d. with c.d.f. F and let x0 > 0 be arbitrary. Define the

truncated variables X̃(i) := X(i)1{X(i)>x0} + x01{X(i)≤x0}, i ∈ N and observe that they are

i.i.d. with c.d.f. F̃ (x) := F (x), x ≥ x0 and F̃ (x) = 0, x < x0. Thus, F̃ (x) has a representation
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as in (3.1) with the function σα(x) replaced by

σ̃α(x) = ∞1(−∞,x0)(x) + σα(x)1[x0,∞)(x),

where σα(x) is the function involved in the corresponding representation of F (x).

Consider the statistics D̃(j, k) and Ỹj defined as in (2.5) and (2.7) with X(i)’s replaced

by X̃(i)’s. Let also H̃ and C̃ be the corresponding statistics defined as in (4.26) with Yj ’s

replaced by Ỹj ’s. Observe that F̃ satisfies Condition 3.1 and also trivially Condition 3.2 since

x0 > 0 and σ̃α(x) = ∞ for all x ∈ (0, x0). Therefore, the results of Proposition 4.2 apply to the

statistics H̃ and C̃. We will now show that the statistics Ĥ and Ĉ, which may not be always

real–valued random variables (i.e. can take the special value ∗) coincide with the statistics H̃

and C̃, eventually.

Let 1 ≤ j0 ≤ log2N, j ∈ N. Observe that the event

Cj0 := {D̃(j0, k) = D(j0, k), k = 1, . . . , Nj0}

implies the events Cj = {D̃(j, k) = D(j, k), k = 1, . . . , Nj}, for all j0 ≤ j ≤ log2N and

in particular the events {Ỹj = Yj}, j ≥ j0. Thus, the statistics H̃ and Ĥ (and C̃ and Ĉ,

respectively) coincide on the event Cj1+r. Thus, to complete the proof of the proposition, it is

sufficient to show that P(Cj1+r) → 1, as N → ∞.

Let j0 := j1 + r and observe that by independence,

P(Cj0) = P{D̃(j0, 1) = D(j0, 1)}Nj0 =
(
1 − F (x0)

2j0
)Nj0

.

In view of Condition 3.1, p0 := F (x0) < 1 and hence

ln P(Cj0) = Nj0 ln(1 − p2j

0 ) = − N

2j0
p2j0

0 (1 + o(1)), as j0 → ∞.

Since p0 < 1, the first convergence in (4.31) implies that Np2j1+r(N)

0 → 0, as N → ∞, and

hence P(Cj1+r(N)) → 1, as N → ∞. We have thus shown that (4.28) holds. Relation (4.30)

follows from (4.28) by using the Delta–method. ¤

Remarks:
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1. Observe that in view of (2.13), ĤΣ1 = ĤφΣ1 and ĈΣ1 = ĈφΣ1 , for any φ > 0. That is,

one can compute, in practice, the generalized least squares estimators Ĥ and Ĉ without

having to use a plug–in estimator for α in (4.2) (see also the Remarks in Section 2.2).

2. The constants cw appearing in Proposition 4.2 and Corollary 4.1 are given in Table 7.4

below. We now comment on the optimal rate in these asymptotic results.

Proposition 4.1 indicates that the bias of the estimator Ĥ in (4.28) is of order O(1/2rβ/α).

On the other hand, the standard error of Ĥ is of order O(2r/N). By balancing these

orders, we obtain that

2r = 2r(N) ∝ Nα/(2β+α)

yields the optimal order of the mean squared error (m.s.e.) E(Ĥ−H)2, and a correspond-

ing rate of convergence

2r/2/
√
N = O(1/Nβ/(2α+β))

to the limit distribution of Ĥ in (4.28).

Hall (1982) (see Theorem 2 therein) obtained the same optimal order of convergence for

the Hill–type estimators under the following semi–parametric assumptions on the tail of

F :

1 − F (x) = c1x
−α(1 + c2x

−β + o(x−β)), as x→ ∞, α, β > 0. (4.32)

A Taylor expansion shows that this tail behavior corresponds to Condition 3.1 above in

the case when 0 < β ≤ α. Note that in Hall (1982) the parameter r corresponds to N/2r

in our case.

Observe that Theorems 1 and 2 in Hall (1982) involve also asymptotic normality re-

sults for the scale parameter c1 in (4.32). These results are similar to those about Ĉ in

Proposition 4.2. Note in particular the presence of the logarithmic in N factor r = r(N).

3. The optimal rate in the previous remark may not be improved, in general. Indeed, by

Proposition 3.1 the rate of the bias is exact if σα(x)−σα
0 ∼ c1x

−β, x→ ∞, c1 6= 0. This

is typically the case in practice (see the Examples above). Relation (4.2) also implies that

the order of the variance of Ĥ is precisely O(1/
√
Nr), and cannot be improved.
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Furthermore, the rate in the Berry–Esseen bound may not be improved, in general (see

e.g. Ch. V.2 in Petrov (1995)). Thus, the result of Theorem 4.1 is optimal in our setting.

4. Consider the case of optimal m.s.e. of Ĥ, that is, 2r ∝ Nα/(2β+α). Observe that the r.h.s.

in (4.9) is up to the logarithmic in N factor of r(N) of the same order as the root–m.s.e.

(E(Ĥ − H)2)1/2. This indicates that the precision (in terms of coverage probability) of

the confidence intervals for H based on the asymptotic distribution for Ĥ will be of order

at least O(1/Nβ′/(2α+β)) for any β′ ∈ (0, β).

5. Even though the estimators α̂ and σ̂0 in Corollary 4.1 are asymptotically normal, it is not

a good idea to use their asymptotic distributions to construct confidence intervals for α

and σ0. Indeed, for simplicity consider the ideal Fréchet case. In this case, the estimator

Ĥ is unbiased and hence the estimator α̂ = 1/Ĥ is biased. Moreover, since the variance

of the random variable 1/X, where X has Normal distribution is infinite, we expect that

Var(α̂) does not converge to the asymptotic variance of α̂ in (4.28). In our experience, the

distribution of α̂ tends to be skewed in practice. Therefore, one can get better confidence

interval estimates for α by using inversion from the corresponding confidence intervals for

H. For example, ((Ĥ+zpĤ
√
cw/

√
Nj2+r)

−1, (Ĥ−zpĤ
√
cw/

√
Nj2+r)

−1) is an asymptot-

ically correct 100(1−p)% confidence interval for α, where zp := Φ−1(1−p/2), p ∈ (0, 1).

As indicated in the previous remark the error in the coverage probability of this interval

is of order O(1/Nβ′/(2α+β)) for any β′ ∈ (0, β), if m.s.e.–optimal r’s are chosen.

5. Performance evaluation and data analysis

5.1. Typical models: small and large sample properties

We study the performance of the max self–similarity estimators when the data are heavy–tailed

but deviate from the ideal Fréchet case. Specifically, given a sample of size N = 2n, n ∈ N,

the GLS estimators Ĥ = Ĥ(j1, j2) and α̂ = α̂(j1, j2) = 1/Ĥ are computed for a range of scales

j1 ≤ j ≤ j2. We choose here j2 = n as the maximal available scale and focus on optimal j1’s

imsart ver. 2006/03/07 file: max-spectrum-1-corrected.tex date: March 28, 2007



Stoev et al. /Estimating heavy–tail exponents through max self–similarity 36

in the sense of mean squared error. Namely, we let

jopt
1 := Argmin

j1, 1≤j1≤j2

E(Ĥ(j1, j2) −H)2, (5.1)

where the last expectation is computed from samples of independent realizations of the esti-

mators Ĥ.
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α
Boxplots: max self−similarity and Hill for Pareto data, α = 5

5M 5H 8M 8H 10M 10H 13M 13H 17M 17H
0.05

0.1

0.15

α

Boxplots: max self−similarity and Hill for Pareto data, α = 0.1

Fig 3. Boxplots of 1, 000 independent realizations of max self–similarity and Hill estimators for different
sample sizes from Pareto distributions with α = 5 (top panel) and α = 0.1 (bottom panel) are shown. The
labels nM and nH correspond to sample size 2n of max self–similarity and Hill estimators, respectively.
The Hill estimators were computed by using (1.2) with k = 2n−1, and the max self–similarity estimators
are based on a range of scales j1 ≤ j ≤ j2 = n, where j1 was chosen to minimize the mean squared
error.

We first compare the max self–similarity estimators to the classical Hill estimator over Pareto

data with unit scale, i.e. with c.d.f. F (x) = 1 − x−α, x ≥ 1. In this case, the Hill estimator

corresponds to the maximum likelihood estimator. Figure 3 indicates that, as expected, the

Hill estimator outperforms the max self–similarity estimator. However, as seen from the box–

plots, the max self–similarity estimator works relatively well for small, moderate and large

samples and essentially keeps up with the Hill estimators. In fact, as the sample size grows the

max self–similarity estimator improves almost at the same rate as the Hill estimator. Here the
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max self–similarity estimator was computed by using the range of scales jopt
1 ≤ j ≤ j2, where

j2 = log2N and jopt
1 is as in (5.1).
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Boxplots: max self−similarity and Hill for Frechet data, α = 5
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Fig 4. Boxplots of 1, 000 independent realizations of max self–similarity and Hill estimators for different
sample sizes from Fréchet distributions with α = 5 (top panel) and α = 0.1 (bottom panel) are shown.
The labels nM and nH correspond to sample size 2n of max self–similarity and Hill estimators, re-
spectively. The Hill estimator were computed by using an optimal value for k in (1.2), which yields the
smallest mean squared error. The max self–similarity estimators were computed from the entire range
of scales j.

In Figure 4, we compare the performance of the max self–similarity and the Hill estimators

for Fréchet data. The parameter k in (1.2) of the Hill estimator was chosen to minimize the

mean squared error of the statistics 1/α̂H(k), by analogy with (5.1). Now, the entire range of

scales j1 = 1 ≤ j2 = log2N was used to compute the max self–similarity estimators. Observe

that as compared to the case of Pareto data (see Figure 3), now the roles of the two estimators

are reversed. As expected, the max self–similarity estimator works best in the Fréchet setting

and dominates the Hill estimator. In fact, the method of choosing the parameter k here is

unusually favorable to the Hill estimator since it is not based on examining and determining

a range where the Hill plot is constant. It is well known that in practice, the Hill plot is quite
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volatile and the resulting choice of k based on this plot would yield far more biased estimators

than the ones shown in Figure 4.

We now examine the max self–similarity estimators in more detail when the data are drawn

from a stable and a t−distribution. Tables 7.1 and 7.2 below, indicate that the estimators

Ĥopt := Ĥ(jopt
1 , j2) work well in practice for a variety of sample sizes and parameter values.

Their performance is particularly good in the stable context. The performance in the case of

t−distributions is comparable with the stable cases when the heavy–tail exponent α is not

large. Notice that α corresponds to the degrees of freedom of the t−distribution and therefore

as α grows, the t−distribution gets closer to the Normal distribution. Although it it still heavy

tailed, most of the body of the distribution is not and therefore the quality of the tail estimators

deteriorates.

Table 7.1 indicates that the max self-similarity estimator outperforms the Hill estimator for

stable distributions with α ≤ 1 and that the two estimators are comparable for 1 < α < 2.

The Hill estimator is slightly better than or comparable to the max self-similarity one for the

t-distributions with low α’s and slightly worse or comparable for moderate and large α’s (Table

7.2).

The MSE–optimal choice of the parameter k is unrealistically favorable to the Hill estimator.

In practice, these choices of k typically do not correspond to constant regions in the Hill plot.

On the other hand the MSE-optimal values of j1 usually correspond to the knee in the max–

spectrum plot, which can be identified in practice (either visually or automatically). These

observations suggest that in reality the max self–similarity estimators are more reliable and

accurate than estimators based on the Hill plot.

5.2. On the selection of the scales j1 and j2

In the ideal case of α-Frechet data, the max–spectrum plot of Yj is almost perfectly linear

in j (see Figure 2). However, most real data sets deviate from the ideal case and thus the

max–spectrum becomes linear only over a range of relatively large scales j. The selection of an
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Fig 5. Mixtures of α−Fréchet (10%) and Exponential of mean 5 (90%) were simulated. The heavy–
tail exponent is α = 1 and the sample sizes are N = 217 = 131, 072. Left panel: max–spectrum of a
typical sample. Right panel: 1, 000 independent replications of the GLS max self–similarity estimators
were obtained, where automatic selection for the parameter j1 was used with p = 0.01 and b = 4. The
top–right graph shows a histogram of the resulting selections of j1. The bottom–right graph shows the
root–mean squared error of the estimators Ĥ = 1/α̂. The top–left and top–right plots shows histograms
of the α̂ estimates obtained by using automatically selected j1’s and with j1 = jopt

1 = 10, respectively.

appropriate range of scales j1 ≤ j ≤ j2, where the max self–similarity estimators are computed,

becomes an important practical problem. Because of (2.8), one can always choose j2 = [log2N ]

to be the largest available scale and the scale j1 can be chosen by visual inspection, a strategy

that work fairly well in practice. Nevertheless, we also propose an automatic procedure for

choosing the scale j1, which turns out to also work well in practice. It relies on the following

simplifying assumptions:

Assumption 1. The vector Yj , j = 1, . . . , j2 follows a multivariate Normal distribution.

Assumption 2. The covariance matrix Σα(1, j2;N) = α−1Σ1(1, j2;N) of the vector Y =

{Yj}j2
j=1 is given by (2.14).

These assumptions are valid asymptotically, provided that Nj2 → ∞ (Theorem 4.1 and

Proposition 4.1). Since the Nj ’s grow exponentially fast as j decreases, choosing j2 as the

largest available scale [log2N ] is not critical in practice. Let now Ĥ(j1, j2) denote the GLS

estimate of H = 1/α, computed over the range of scales j1 ≤ j ≤ j2 as in (2.13) (see also

(4.26)).
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Algorithm

Tunning parameters:

Pick a relatively small significance threshold p ∈ (0, 1) (e.g. p = 0.1 or 0.01) and an

integer b called back–start parameter (e.g. b = 3 or 4 for moderate sample sizes). Set

j2 := [log2N ] and j1 := max{1, j2 − b}.
Step 1. If j1 = 1 then stop, else calculate Ĥnew = Ĥ(j1 − 1, j2) and Ĥold = Ĥ(j1, j2).

Step 2. Let wnew and wold be vectors of weights as in (4.26), such that Ĥnew = (wnew, Y ) and

Ĥold = (wold, Y ), where Y = {Yj}j2
j=1 ∈ R

j2 and where the vectors wnew, wold ∈ R
j2

are appropriately padded with zeros. Consider the quantity:

S1 :=
(
(wnew − wold),Σ1(1, j2;N)(wnew − wold)

)1/2

Now, consider the approximate (1 − p)−level confidence interval for E(Ĥnew − Ĥold):

(
Ĥnew − Ĥold − zp/2ĤoldS1, Ĥnew − Ĥold + zp/2ĤoldS1

)
,

where zp/2 = Φ−1(1− p/2) is a (1− p/2)−th quantile of the standard Normal distribu-

tion.

Step 3. If zero is contained in the confidence interval computed in Step 2, then set j1 := j1 − 1

and go to Step 1 otherwise stop and report the selected j1 and α̂ := 1/Ĥold.

The choice of tunning parameters p and b and the validity of the above simplifying assump-

tions is addressed in Stoev and Michailidis (2006). In Figure 5, we briefly demonstrate the

performance of the above automatic selection procedure for a mixture of an Exponential and

an α−Fréchet distributions. Samples of size N = 217 = 131, 072 were generated and a level

p = 0.01 and back–start parameter b = 4 employed. The left panel indicates the presence

of a “knee” in the max–spectrum plot in one such mixture sample. The automatic selection

procedure identified well the location of the knee by selecting j1 = 9 and the resulting estimate

α̂ = 0.97 is rather close to the nominal value of α = 1. In the right panel, we demonstrate

the performance of the automatic selection procedure by using 1, 000 independent replications
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of the mixture samples. The histogram of the automatic choices for j1 (left panel) indicates

that most of the times values close to the MSE–optimal one jopt
1 = 10 were chosen. The his-

togram of the resulting estimates of the heavy–tail exponent (top–right graph in the left panel)

is similar to the histogram corresponding to the MSE–optimal choice of j1 (bottom–right in

the left plot). The slight bias in the histogram on the top–right is due to the fact that often

slightly lower than the MSE–optimal values of j1 were chosen by the automatic procedure.

More extensive analysis of this procedure is presented in Stoev and Michailidis (2006).

5.3. Data analysis

We first discuss a popular insurance data set of 2, 167 fire losses in Denmark from 1980 to

1990. This data set has been studied extensively, see e.g. McNeil (1997), Resnick (1997a), Lu

and Peng (2002) and Peng and Qi (2004).

Figure 6 displays the data, its corresponding Hill plot (bottom left) and its max–spectrum

(bottom right). The max–spectrum yields an estimate α̂ = 1.66 obtained with an automatic

selection of the scale j1 by using a tunning parameter p = 0.01 (see Section 5.2), and the

Hill plot yields an estimate α̂H(k) = 1.39 for k = 1, 000. This discrepancy between the two

methods is interesting since they yield comparable results in many typical models (see Section

5.1, above). To explore further the significance of this difference, we resort to calculating

confidence intervals.

A particular advantage of the max–spectrum type estimators is that one can naturally obtain

the following two types of confidence intervals for the parameters H and α = 1/H: (i) based

on the asymptotic normal distribution (see Proposition 4.2) and (ii) based on a permutation

bootstrapping procedure. We will only briefly describe the procedure for obtaining permutation

bootstrap confidence intervals. Its theoretical analysis is outside the scope of the present paper.

Permutation bootstrap confidence intervals

Given an i.i.d. sample X(1), . . . , X(N), generate M independent random permutations

πi : {1, . . . , N} → {1, . . . , N}, i = 1, . . . ,M . Then, construct the permuted samples
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Fig 6. Top panel: time series of insurance losses due to fire in Denmark from 1980 to 1990 losses
(in million Danish krones). Bottom left panel: the Hill plot of the fire loss data set. Bottom right: the
max–spectrum of the data. Note that the Hill estimate is α̂H(k) = 1.39, with k = 1, 000 and the max
self–similarity estimate is α̂ = 1.66.

X̃i(1), . . . , X̃i(N), i = 1, . . . ,M , where X̃i(k) = X(πi(k)), k = 1, . . . , N . Fix a range of scales

j1 < j2 ≤ log2N and for each i = 1, . . . ,M , compute the GLS max self–similarity estima-

tor Ĥi = Ĥi(j1, j2), from the permuted sample X̃i(1), . . . , X̃i(N). We will refer to the sample

Ĥi, i = 1, . . . ,M as to the permutation bootstrap sample of the estimator Ĥ = Ĥ(j1, j2), based

on the original data set X(1), . . . , X(N).

Observe that the statistics Ĥi, i = 1, . . . ,M are mutually dependent, since they are based on

the original sample X(1), . . . , X(N). However, since the X(k)’s are i.i.d. and the permutations

πi’s are independent, we have that Ĥi =d Ĥ(j1, j2), for all i = 1, . . . ,M . One has moreover that

the sequence Ĥi, i = 1, . . . ,M is exchangeable. This suggests using the permutation bootstrap
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Fig 7. Left panel: 95% confidence intervals for H = 1/α based on: (i) permutation–bootstrap from 10, 000
independent permutations and (ii) asymptotic distribution for the max self–similarity estimators. Right
panel: 95% confidence intervals for α = 1/H obtained by inverting the confidence intervals in the left

panel. The horizontal lines indicate the estimated value of Ĥ = 0.6 and α̂ = 1/Ĥ = 1.66 for H and α,
respectively, obtained with the max self–similarity estimator in Figure 6.

sample Ĥ1, . . . , ĤM as a proxy to the sampling distribution of Ĥ. We thus propose to use

the empirical confidence interval based on the permutation bootstrap sample as a confidence

interval for H. Corresponding bootstrap confidence intervals for α = 1/H are obtained through

the inversion method.

Experience with several simulation experiments suggests the following conjecture.

Conjecture 5.1 Let Ĥi, i = 1, . . . ,M be a permutation bootstrap sample of the estimator

Ĥ(j1, j2). Consider the scales j1, j2 and the permutation sample size M as functions of the

sample size N , which tend to infinity as N → ∞.

Under certain conditions on the rates of growth of j1, j2 and M , the empirical distribution of

the permutation bootstrap sample Ĥi, i = 1, . . . ,M yields asymptotically consistent confidence

intervals for Ĥ.

Figure 7 displays 95% confidence intervals for H (left panel) and α = 1/H (right panel)

for the Danish fire loss data. Different scales j1 were used and j2 was chosen as the largest

available scale 11. The permutation confidence intervals (denoted by dots) are obtained from

M = 10, 000 random permutations and the asymptotic confidence intervals (denoted by circles)
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are obtained from the asymptotic variance in Proposition 4.2 where the unknown value ofH was

replaced by Ĥ. To be able to compare the two types of intervals, we centered the asymptotic

confidence intervals at the means of the permutation bootstrap samples Ĥi, i = 1, . . . ,M .

Observe that although the two procedures for constructing confidence intervals are different,

they yield very similar results. The permutation bootstrap intervals are always slightly more

narrow than the asymptotic ones. As Figure 6 indicates, the use of scales j1 = 1 and j2 =

11 is acceptable. The resulting permutation and asymptotic confidence intervals for H are:

[0.5880, 0.6361] and [0.5710, 0.6540], respectively. They are consistent with, but considerably

tighter than the likelihood–based intervals in Figure 8 of Lu and Peng (2002) for the same data

set. This can be contributed to the fact that the max–spectrum estimators and the Hill–type

estimators are based on different principles. The performance of the permutation bootstrap

and asymptotic confidence intervals is addressed in more detail in Stoev and Michailidis (2006).

The second data set to be analyzed in this section consists of the volumes in trillion cubic

feet of the 406 largest natural gas world provinces. The data were obtained from Table 1 in

(n.d.). The study of the patterns in such data will help in the development of future natural

gas resources leading to better assessments of the reserve growth potential of the world’s

provinces. The max self–similarity estimator, obtained from a typical randomly permuted

sample is α̂ = 1.284 (Figure 8). Observe that the Hill plot shown in the bottom–left panel of

Figure 8 is very volatile and appears to stabilize in a narrow range around k = 60, where the

resulting estimator is α̂H(60) = 0.826. Notice that the integer nature of the observations makes

the Hill plot exhibit a saw-tooth like pattern and hence difficult to obtain a good estimate for

α. Due to the discrepancy between the two methods, obtaining confidence intervals becomes

particularly pertinent.

Permutation bootstrap and asymptotic confidence intervals for the max self–similarity esti-

mators for H = 1/α and α are presented in Figure 9. As in Figure 9, the asymptotic confidence

intervals are slightly wider than the ones based on the permutation bootstrap. Observe that,

contrary to the case of fire loss data in Figure 7, the locations of the confidence intervals for

the gas data set stabilize only at scales j ≥ 4. This indicates that the value α̂ = 1.284, obtained
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Fig 8. Top panel: randomly permuted sample of volumes natural gas reserves (in trillion cubic feet) found
in 406 provinces. Bottom left panel: the Hill plot of the data set. Bottom right panel: the max–spectrum
of the data. Note that the Hill estimate is α̂H(k) = 0.826, with k = 60 and the max self–similarity
estimate is α̂ = 1.284.

from the range of scales j1 = 4 and j2 in Figure 8 is credible. The fact that the resulting Hill

estimate α̂H(60) = 0.826 is less than 1 appears to be not statistically significant, according to

the confidence intervals in Figure 9, which is in line with the findings in de Sousa and Michai-

lidis (2004). This last fact and the volatility of the Hill plot suggest that the max self–similarity

estimators can be viewed as more reliable in this setting.
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Fig 9. Left panel: 95% confidence intervals for H = 1/α based on: (i) permutation–bootstrap from 10, 000
independent permutations and (ii) asymptotic distribution for the max self–similarity estimators. Right
panel: 95% confidence intervals for α = 1/H obtained by inverting the confidence intervals in the left

panel. The horizontal lines indicate the estimated value of Ĥ = 0.78 and α̂ = 1/Ĥ = 1.28 for H and α,
respectively, obtained with the max self–similarity estimator in Figure 8.

6. Concluding remarks

In this paper, a new estimator for the tail exponent of a distribution was introduced and its

asymptotic properties established. The estimator is based on block–maxima of the data and

can be visualized through a new graphical device called the max–spectrum plot. Numerical

work shows that compared to the widely used Hill estimator, the max self–similarity estimator

performs competitively in the case of the Pareto distribution and it outperforms the Hill

estimators in the cases of the stable, Fréchet and certain t-distributions. In practice, the max–

spectrum plot is less volatile than the classical Hill plot. Thus, the max self–similarity estimator

can be used in situations where the Hill plot fails or when it is hard to interpret. Finally, the

fact that the estimator is based on block maxima makes it particularly suitable for time series

data, a topic discussed in a companion paper Stoev and Michailidis (2006).
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7. Appendix: auxiliary results and tables

7.1. Auxiliary results

We briefly review some properties of the α−Fréchet distributions used above.

Definition 7.1 A random variable Z is said to have an α−Fréchet distribution, if

P{Z ≤ x} =





exp{−σαx−α} , x > 0

0 , x ≤ 0,
(7.1)

with σ > 0. The parameter σ is referred to as the scale coefficient of Z. The random variable

Z is said to be standard α−Fréchet if σ = 1.

Let Z be an α−Fréchet variable with scale coefficient σ > 0. The next properties follow

directly from Relation (7.1).

Properties

1. (scale family) For all c > 0, the random variable cZ is α−Fréchet and has scale coefficient

cσ.

2. (heavy tails) The Taylor expansion of the exponential around the origin implies that

P{Z > x} = 1 − e−σαx−α ∼ σαx−α, as x→ ∞. (7.2)

3. (moments) In view of (7.2), for all p > 0,

EZp <∞ if and only if p < α.

One has moreover, that EZp = σpΓ(1−p/α), p ∈ (0, α), with Γ(x) =
∫∞
0 ux−1e−udu, x >

0.

4. (log–moments) For all p > 0, the moments E| lnZ|p are finite. This follows from the fact

that ξ := α ln(Z/σ) has the Gumbel distribution, i.e. P{ξ ≤ x} = exp{−e−x}, x ∈ R.

See also Corollary 3.1 below.
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5. (power transformations) For any p > 0, the random variable Zp is α/p−Fréchet with

scale coefficient σp. Consequently, if Z1 is a standard 1−Fréchet variable, then

Z := Z
1/α
1

is standard α−Fréchet, for all α > 0.

The α−Fréchet distributions are also max–stable in the following sense.

Definition 7.2 A random variable Z is said to be max–stable, if for all a, b > 0 there exist

c > 0, d ∈ R, such that

max{aZ ′, bZ ′′} d
= cZ + d,

where Z ′ and Z ′′ are independent copies of Z and where =d means equality in distribution.

In particular, by (7.1), one gets that if Z(1), . . . , Z(n), n ∈ N are i.i.d. α−Fréchet, then

Z(1) ∨ · · · ∨ Z(n)
d
= n1/αZ(1). (7.3)

This last relation shows that a sequence of i.i.d. α−Fréchet variables is also max self–similar

with parameter H = 1/α (see Definition 2.1 above). Relation (7.3) served as the main motiva-

tion to define the max self–similarity estimators in Section 2 above.

The class of max–stable distributions in the sense of Definition 7.2 above includes, in addition

to the Fréchet, only the classes of negative Fréchet and the Gumbel laws. These three classes of

distributions are the only distributions arising in the limit of maxima of i.i.d. variables under

appropriate normalization (see e.g. Proposition 0.3 in Resnick (1987) and also Leadbetter,

Lindgren and Rootzén (1983)).

The following integration by parts formula is used in the proof of Theorem 3.1.

Lemma 7.1 Let f : [a, b] → R, a, b ∈ R be an absolutely continuous function, that is, f(x) =

f(a)+
∫ x
a f

′(u)du, for some Lebesgue integrable f ′(x), x ∈ [a, b]. Then, for any c.d.f. G(x), we

have ∫ b

a
f(x)dG(x) = f(b)G(b) − f(a)G(a) −

∫ b

a
G(x)f ′(x)dx. (7.4)
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Proof: Since f(x) = f(a) +
∫ b
a f

′(u)1[a,x)(u)du, we have that

∫ b

a
f(x)dG(x) = f(a)G(b) − f(a)G(a) +

∫ b

a

(∫ b

a
f ′(u)1[a,x)(u)du

)
dG(x).

An application of Fubini’s theorem yields

f(a)G(b) − f(a)G(a) +

∫ b

a
f ′(u)(G(b) −G(u))du

= f(a)G(b) − f(a)G(a) + (f(b) − f(a))G(b) −
∫ b

a
f ′(u)G(u)du.

Observe that the right–hand sides of the last expression and Relation (7.4) coincide. ¤

7.2. Tables
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H n j
opt
1 mean median RMSE kopt mean median RMSE

10.00 5 1 10.0846 9.7746 2.9605 13 11.4894 11.2866 3.3410

10.00 7 1 9.9446 9.8286 1.4438 43 11.0420 10.9059 1.9439

10.00 9 1 10.0269 10.0108 0.7144 117 10.7463 10.7790 1.2390

10.00 11 1 9.9992 10.0072 0.3595 281 10.3576 10.3463 0.7048

10.00 13 1 10.0085 9.9979 0.1750 759 10.2509 10.2447 0.4375

10.00 15 1 10.0158 10.0161 0.0877 2089 10.1753 10.1759 0.2755

10.00 17 1 10.0139 10.0143 0.0490 5005 10.1043 10.1004 0.1738

2.00 5 1 2.0472 2.0152 0.5631 12 2.2783 2.2258 0.6495

2.00 7 1 2.0317 2.0152 0.2886 40 2.2067 2.2002 0.3945

2.00 9 1 2.0318 2.0252 0.1433 109 2.1252 2.1198 0.2305

2.00 11 1 2.0257 2.0223 0.0771 273 2.0727 2.0727 0.1414

2.00 13 1 2.0296 2.0295 0.0463 794 2.0530 2.0515 0.0858

2.00 15 2 2.0093 2.0088 0.0273 1982 2.0336 2.0314 0.0566

2.00 17 2 2.0071 2.0069 0.0141 4317 2.0158 2.0160 0.0336

1.00 5 1 1.0209 0.9833 0.2978 13 1.1296 1.1021 0.3175

1.00 7 1 1.0212 1.0106 0.1521 44 1.0721 1.0698 0.1722

1.00 9 1 1.0198 1.0136 0.0730 140 1.0432 1.0397 0.0943

1.00 11 1 1.0194 1.0186 0.0404 424 1.0249 1.0212 0.0540

1.00 13 1 1.0201 1.0198 0.0272 1332 1.0151 1.0150 0.0314

1.00 15 4 0.9874 0.9870 0.0281 3928 1.0075 1.0070 0.0176

1.00 17 4 0.9858 0.9855 0.0189 12618 1.0052 1.0051 0.0104

0.67 5 1 0.6594 0.6376 0.1854 13 0.6881 0.6697 0.1820

0.67 7 1 0.6614 0.6561 0.0936 52 0.6733 0.6695 0.0864

0.67 9 1 0.6623 0.6584 0.0457 206 0.6687 0.6693 0.0447

0.67 11 4 0.5920 0.5920 0.0983 818 0.6672 0.6662 0.0225

0.67 13 5 0.6203 0.6193 0.0654 3278 0.6674 0.6677 0.0115

0.67 15 6 0.6397 0.6377 0.0424 13063 0.6666 0.6665 0.0056

0.67 17 7 0.6540 0.6543 0.0260 1326 0.6544 0.6536 0.0217

0.53 5 1 0.4981 0.4832 0.1363 12 0.4925 0.4810 0.1401

0.53 7 1 0.5004 0.4979 0.0699 55 0.5250 0.5223 0.0660

0.53 9 1 0.4998 0.4977 0.0433 223 0.5281 0.5269 0.0344

0.53 11 7 0.4072 0.3908 0.1818 893 0.5258 0.5261 0.0171

0.53 13 8 0.4592 0.4505 0.1211 3579 0.5265 0.5265 0.0089

0.53 15 9 0.4880 0.4846 0.0822 14317 0.5265 0.5264 0.0041

0.53 17 9 0.4918 0.4901 0.0505 261 0.5002 0.4988 0.0410

Table 7.1

Absolute values of strictly α−stable samples were analyzed for α ∈ {0.1, 0.5, 1, 1.5, 1.9}. The first set of
mean, median and root–mean squared error (RMSE) columns correspond to the max self–similarity

GLS estimators of H = 1/α, and the last three columns correspond to the Hill estimators. The

MSE–optimal values of j1 = jopt
1 and k = kopt were used and indicated in the third and seventh

columns, respectively, (see (5.1)). The sample sizes used are 2n where n is indicated in the second
column. These statistics are based on samples of 1, 000 independent realizations of the estimators.
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H n j
opt
1 mean median RMSE kopt mean median RMSE

10.00 5 1 8.5999 8.2542 3.0084 29 10.2350 10.1124 1.8397

10.00 7 1 8.6290 8.6311 1.9107 115 10.1288 10.0887 0.9383

10.00 9 2 9.2893 9.2053 1.2134 450 10.0863 10.0775 0.4761

10.00 11 3 9.6282 9.6084 0.7785 1730 10.0286 10.0240 0.2407

10.00 13 3 9.6243 9.6061 0.5125 6760 10.0214 10.0201 0.1219

10.00 15 4 9.8126 9.8087 0.3101 19895 9.9979 9.9969 0.0690

10.00 17 5 9.8926 9.8982 0.2028 19947 9.9975 9.9961 0.0700

2.00 5 1 1.8038 1.7530 0.5739 20 2.1636 2.1299 0.4901

2.00 7 1 1.8002 1.7798 0.3372 66 2.0540 2.0414 0.2445

2.00 9 2 1.8618 1.8574 0.2381 267 2.0547 2.0528 0.1301

2.00 11 3 1.9323 1.9278 0.1524 844 2.0244 2.0204 0.0721

2.00 13 3 1.9298 1.9288 0.1012 2882 2.0132 2.0121 0.0396

2.00 15 4 1.9616 1.9627 0.0628 10123 2.0068 2.0061 0.0207

2.00 17 5 1.9795 1.9793 0.0407 19996 2.0006 2.0003 0.0141

1.00 5 1 1.0240 0.9930 0.2898 14 1.1355 1.1211 0.3061

1.00 7 1 1.0151 1.0037 0.1471 44 1.0669 1.0621 0.1664

1.00 9 1 1.0204 1.0207 0.0760 136 1.0406 1.0353 0.0970

1.00 11 1 1.0214 1.0209 0.0417 403 1.0241 1.0228 0.0550

1.00 13 1 1.0197 1.0196 0.0263 1285 1.0134 1.0126 0.0315

1.00 15 1 1.0191 1.0191 0.0211 3839 1.0076 1.0070 0.0179

1.00 17 4 0.9859 0.9856 0.0191 10773 1.0040 1.0038 0.0103

0.67 5 1 0.7989 0.7864 0.2540 10 0.7959 0.7799 0.2645

0.67 7 2 0.7036 0.6963 0.1399 23 0.7136 0.7017 0.1426

0.67 9 2 0.7100 0.7073 0.0812 79 0.7035 0.7049 0.0821

0.67 11 3 0.6764 0.6736 0.0480 245 0.6897 0.6889 0.0485

0.67 13 3 0.6798 0.6799 0.0266 614 0.6807 0.6804 0.0297

0.67 15 4 0.6699 0.6694 0.0175 1912 0.6762 0.6759 0.0179

0.67 17 4 0.6702 0.6702 0.0092 5115 0.6729 0.6728 0.0113

0.20 5 3 0.3250 0.2958 0.2111 3 0.3228 0.2934 0.2089

0.20 7 4 0.2863 0.2730 0.1324 7 0.2832 0.2719 0.1284

0.20 9 5 0.2649 0.2564 0.0936 13 0.2546 0.2472 0.0855

0.20 11 6 0.2453 0.2429 0.0651 38 0.2481 0.2465 0.0609

0.20 13 7 0.2313 0.2302 0.0436 57 0.2290 0.2276 0.0406

0.20 15 8 0.2243 0.2224 0.0325 105 0.2214 0.2208 0.0298

0.20 17 9 0.2167 0.2159 0.0226 169 0.2131 0.2135 0.0204

Table 7.2

Absolute values of t−distributed samples with α degrees of freedom were analyzed, for
α ∈ {0.1, 0.5, 1, 1.5, 5}. The first set of mean, median and root–mean squared error (RMSE) columns

correspond to the max self–similarity GLS estimators of H = 1/α, and the last three columns

correspond to the Hill estimators. The MSE–optimal values of j1 = jopt
1 and k = kopt were used and

indicated in the third and seventh columns, respectively, (see (5.1)). The sample sizes used are 2n

where n is indicated in the second column. These statistics are based on samples of 1, 000 independent
realizations of the estimators.
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ψ(i) i+ 0 i+ 1 i+ 2 i+ 3 i+ 4

i = 0 3.423696 2.211864 1.387207 0.846734 0.504666

i = 5 0.294581 0.168963 0.095563 0.053288 0.029470

i = 10 0.016072 0.008755 0.004756 0.002552 0.001405

i = 15 0.000709 0.000335 0.000175 0.000097 0.000032

Table 7.3

We present here numerical approximations of the values ψ(i), i = 0, 1, . . . , 19 involved in the
expression of the covariance matrices Σα(j1, j2;N) in (2.14) (see also (2.15)). We used Monte Carlo
simulations with 10, 000, 000 independent pairs of 1−Fréchet variables. To reduce the variance of the
estimates we used “bagging”. That is, the Monte Carlo simulations were repeated independently 1, 000

times and then the resulting means were taken as the final estimates reported in the table above.

j 2 3 4 5 6 7 8 9 10 11
p

cw(j) 1.417 0.802 0.515 0.346 0.238 0.166 0.116 0.082 0.058 0.041

j+ = 10 0.029 0.020 0.014 0.010 0.007 0.005 0.004 0.003 0.002 0.001
p

2jcw(j) 2.834 2.267 2.060 1.960 1.905 1.875 1.857 1.847 1.841 1.837

j+ = 10 1.835 1.834 1.834 1.833 1.833 1.833 1.833 1.833 1.833 1.833

Table 7.4

We present here numerical estimates of the constants cw involved in the asymptotic variances in
Proposition 4.2 above. Here, we use j1 = 1, for simplicity, and display 20 different values

corresponding to j2 = j = 2, . . . , 21. For convenience, we present
√
cw together with

√
2j2cw where the

latter constant is useful if one normalizes in (4.28) by using
√
Nr instead of

√
Nj2+r.
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Resnick, S. & Stǎricǎ, C. (1997), ‘Smoothing the Hill estimator’, Adv. in Appl. Probab.

29(1), 271–293.

Resnick, S. I. (1987), Extreme Values, Regular Variation and Point Processes, Springer-Verlag,

New York.

Resnick, S. I. (1997b), ‘Heavy tail modeling and teletraffic data’, The Annals of Statistics

25, 1805–1869. With discussions and rejoinder.

Stoev, S. & Michailidis, G. (2006), On the estimation of the heavy–tail exponent in time series

using the max–spectrum, Technical Report 447, Department of Statistics, The University

of Michigan.

Tsonis, A., Schultz, C. & Tsonis, P. (1997), ‘Zipf’s law and the structure and evolution of

languages’, Complexity 2(5), 12–13.

Weissman, I. (1978), ‘Estimation of parameters and large quantiles based on the k largest

observations’, Journal of the American Statistical Association 73, 812–815.

imsart ver. 2006/03/07 file: max-spectrum-1-corrected.tex date: March 28, 2007



Stoev et al. /Estimating heavy–tail exponents through max self–similarity 55

Zipf, G. (1932), Selective Studies and the Principle of Relative Frequency in Language, Harvard

University Press.

Zipf, G. (1949), Human Behavior and the Principle of Least Effort, Addison–Wesley.

imsart ver. 2006/03/07 file: max-spectrum-1-corrected.tex date: March 28, 2007


