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Summary . This paper addresses the problem of estimating the tail index « of distributions with heavy,
Pareto—type tails for dependent data, that is of interest in the areas of finance, insurance, environmental
monitoring and teletraffic analysis. A novel approach based on the max self—similarity scaling behavior of
block maxima is introduced. The method exploits the increasing lack of dependence of maxima over large
size blocks, which proves useful for time series data.

We establish the consistency of the proposed max—spectrum estimator for certain classes of dependent
time series and demonstrate its robustness to short-lived contaminations in the data. The max—spectrum
estimator exhibits linear computational time and memory complexity and can be calculated in a sequential
manner, that makes it particularly well suited both for massive, as well as streaming data sets. Further,
it provides a natural time—scale perspective in the analysis of heavy—tailed time series, not available in
Hill-type techniques. The performance of the max—spectrum estimator is illustrated on synthetic and real
data.
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1. Introduction

The problem of estimating the exponent in heavy tailed datashlong history in statistics, due to its practical
importance and the technical challenges it poses. Heaegltdistributions are characterized by the slow, hyper-
bolic decay of their tail. Formally, a real valued randomiaiale X with cumulative distribution function (c.d.f.)
F(z) = P{X <z}, z € Ris (right) heavy-tailed with index > 0, if

P{X >z} =1—-F(x) ~ofz™ ", asz — oo, 1)

with oy > 0, and where~ denotes that the ratio of the left—hand side to the rightdisae in (1) tends tad, as
x — oo. For simplicity purposes, we assume here tkiais almost surely positive i.7'(0) = 0. Thetail index
(exponenta controls the rate of decay of the tail 61

The presence of heavy tails in data was originally notedéntbrk of Zipf on word frequencies in languages
(Zipf (1932)), who also introduced a graphical device fogithdetection (de Sousa and Michailidis (2004)).
Subsequently, Mandelbrot (1960) noted their presence anéilal data. Since the early 1970s heavy tailed
behavior has been noted in many other scientific fields, sachydrology, insurance claims and social and
biological networks (see, e.g. Finkeadt and Rootzn (2004) and Barabasi (2002)). In particular, the ememgenc
of the Internet and the World Wide Web gave a new impetus tethey of heavy tailed distributions, due to
their omnipresence in Internet packet and flow data, thelogjeal structure of the Web, the size of computer
files, etc. (see e.g. Adler et al. (1998), Resnick (1997)ouiabs et al. (1999), Adamic and Huberman (2000,

tAddress for correspondencgtilian A. Stoev, Department of Statistics, The University of Michigan, 42&Mall, 1085
South University, Ann Arbor, MI 48109-1107, U.S.E-mail: sstoev@umich.edu.



2 Stoev & Michailidis

x 10* TCP Flow Sizes: Off-peak UNC 2000
= 8r ]
o
o 6 T
R
o 4
]
S
g2 L

| |MJ il s Lol Jm\n‘ Losboni il
0 5 10 15 20 25 30 35

Time (minutes)

Fig. 1. TCP connection flow sizes (in number of packets) as a function of time.

2002), Park and Willinger (2000)). In fact, heavy tailed &abr is a characteristic of highly optimized physical
systems, as argued in Carlson and Doyle (1999).

However, the availability of Internet and other high fregog data pose a set of new challenges for the
problem of estimating the tail index discussed next in thetext of the following data set that contains the size
(in packets) ofl42,170 IP (Internet Protocol) flows, collected over a period of abgiminutes on a link at
the UNC Chapel Hill campus network starting&at 30 a.m. in 2000. A time plot of the data, shown in Figure
1, reveals several spikes indicating the potential preseftieavy tails. Some important features of such data
are: (i) their large size due to the fine time scale resolusibwhich they are collected, resulting in hundreds
of thousands or even millions of observations, (ii) themperal structure that introduces dependence amongst
observations, and (iii) their sequential nature, sinceenlaions are added to the data set over time. Traditional
methods for estimating the tail index are not well suiteddfddressing these issues, as discussed below.

The majority of the approaches proposed in the literatucagan the scaling behavior of the largest order
statisticsX () > X () > -+ > X obtained from an i.i.d. sampl&(1),..., X (V) from F’; typical examples
include Hill's estimator Hill (1975) and its numerous vdigas (Kratz and Resnick (1996), Resnick andrigh
(1997)), kernel based estimators ¢@¥ et al. (1985) and Feuerverger and Hall (1999)). A reviewheflse
methods and their applications is given in de Haan et al.q80ad de Sousa and Michailidis (2004)). The most
widely used in practice is the Hill estimatar, (k) defined as:

k —
(k) == (%ZlnX@ ~In X(e41)) B @)
i=1

with k£,1 < k < N — 1 being the number of included order statistics. The paranieigtypically selected by
examining the plot of thé; (k)’s versusk, known as théHill plot. In practice, one chooses a valuetofvhere

the Hill plot exhibits a fairly constant behavior (see e gHhan et al. (2000)). However, the use of order statistics
requiressortingthe data that: (i) is computationally demandiagi( cksor t requires on averag@(N log(N))
steps, although its worst case performana®@(2V?)), (i) destroys the time ordering of the data and hence their
temporal structure and (iii) summary statistics can notdweirsively updated in the presence of new data, since
a new sorting is required. Further, as can be seen from tkeéresiiew above, most of the emphasis has been
placed on point estimation of the tail index and little on stoacting confidence intervals. Exceptions can be
found in the work of Cheng and Peng (2001) and Lu and Peng §Z60the construction of confidence intervals
and of Resnick and &tica (1995) on the estimation of for dependent data.

The purpose of this study is to introduce a method for estimgdhe tail index that overcomes the above listed
shortcomings of other techniques. It is based on the asyiopt@ax self—similarityproperties of heavy—tailed
maxima. Specifically, the maximum values of data calculatest blocks of sizen, scale at a rate af.!/.
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Therefore, by examining a sequence of growing, dyadic bizésm = 27/, 1 < j < log, N, j € N, and
subsequently estimating the mean of logarithms of blocktma (log—block—maxima) one obtains an estimate
of the tail indexa. Notice that by using blocks of data, the temporal structiitbe data is preserved. As shown
in Section 2.2, this procedure requil@$N) operations, making it particularly useful for large datessturther,

the estimates fotv can be updated recursively as new data become availablejiny anly O (log, N) memory

and without the knowledge of the entire data set, thus matkiagproposed estimator particularly suitable for
streaming data (see e.g. Henzinger et al. (1998), Gilbeat ¢2001), and Muthukrishnan (2003)). Estimators
based on max—self similarity for the tail index for i.i.d.tdavere introduced in Stoev et al. (2006), where their
consistency and asymptotic normality was establishedhithpgaper, we extend them to dependent data, prove
their consistency, examine and illustrate their perforoearsing synthetic and real data sets and discuss a number
of implementation issues.

The remainder of the paper is structured as follows: in 8ac? the estimators are introduced and their
computational complexity examined. Their consistencysiglaished in Section 3.1 and the construction of
confidence intervals is addressed in Section 3.2. Sevepgkimentation issues are examined in Section 4.
Applications to financial time series are discussed in $adhi, while some concluding remarks are drawn in
Section 6.

2. Max self—similarity and tail exponent estimators

In this section, we introduce the max self—similarity estiors for the tail exponent and demonstrate several of
their characteristics.

2.1. Definition and basic properties
We briefly review the basic ideas behind the proposed esiisdibr independent and identically distributed
(i.i.d.) data. A detailed exposition is given in Stoev et(@006). We discuss the casedgpendentX (i)'s in
Section 3.1 below.

Consider the sequence of block—maxima

m

X (k) = max X(m(k—1)+i)=\/ X(m(k—1)+i), k=1,2,..., meN,

1<i<m .
i=1

whereX,, (k) denotes the largest observation in theth block. By the Fisher-Tippett—-Gnedenko Theorem we

have that ) ]
{me(k)}keN 7 {Z(k)}keN’ ®)

where-% denotes convergence of the finite—dimensional distribgtiavith theZ (k)’s being independent copies
of ana—Fréchet random variable. For large valuesigfthe normalized block—maxima behave like a sequence
of i.i.d. a—Fréchet variables. Further, a sequence of i.i.d. variableallsdmax self-similaiin the following
sense:

Definition 2.1. A sequence of random variabl&s= { X (k) }».cn (defined on the same probability space) is
said to be max self-similar with self-similarity parameter> 0, if for any m > 0,

(4)

keN’

{i_\"}lX(m(k 1)+ z’)}kEN 4 {mHX(k)}

with =9 denoting equality of the finite—dimensional distributions

Relationship (4) holds asymptotically for i.i.d. data an@ely for Fiechet distributed data. Hence, any
sequence of i.i.d. heavy—tailed variables can be regarslagyaptotically max self—similavith self—similarity
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parameterd = 1/a. This feature suggests that an estimatorbfand consequently can be obtained by
focusing on the scaling of the maximum values in blocks ofvgng size. A similar idea applied to block—wise
sums was used in Crovella and Tagqu (1999) for estimatirig the casé < o < 2.

For ani.i.d. sampl&(1),..., X (V) from F, define

27

D(j, k) := X2 (k-1)+i)=\/ X2 (k-1 +1i), k=1,2,...,N; 5
(8= max XO =140 = V XOE =140, k=12, N, )
forall j = 1,2,...,[log, N|, where N, := [N/2/] and wherdz] denotes the largest integer not greater than

x € R. By analogy to the discrete wavelet transform, we refer eofgarameteyj as thescaleand tok as the
locationparameter. We consider dyadic block—sizes for algoritranit computational convenience (see Section
2.2 for more details). Introduce the statistics

N
1 < . .
Y} :ﬁZIOgQD(jvk)v 321;2»a[10g2(N)] (6)
J k=1
Then, a regression-based estimatorbf= 1/« (and hencex) for a range of scales < j; < j < jo <
[log,(N)] is given by:

J2
Hy(j1,42) == > w;Yj, and @y(j1,ja) = 1/Hu (i1, j2), )
J=i

where the weights; are chosen so that

J2 J2
> w;=0 and » jw; =1 (8)
J=i1 J=i1
The optimal weightsv; can be calculated througjeneralized least squar€§LS) regression using the asymp-
totic covariance matrix of th&’;’s. In practice, it is important to at least usesighted least square@VLS)
regression which accounts for the magnitude of the varmnttheY’s (see, Stoev et al. (2006)).

We propose to use the estimator defined in (7) in dependertgaries data. We first illustrate its usage
through a simulated data example. A data set of 8ize 2'° = 32, 768 was generated from an auto—regressive
time series of order one with Pareto innovations. Specifical

X(k):¢X(k71)+Z(k):i¢iZ(k7i), k=1,...,N,

=0

where¢ = 0.9 andP{Z(k) > z} = =%, = > 1, with @ = 1.5. The data together with its Hill plot are shown
in Figure 2. Notice that even though the Hill estimator wodsbfor Pareto data, the dependence structure in
the model makes the Hill plot quite misleading (see the noteft panel). The zoomed-in version of the Hill
plot (bottom right panel) however indicates that the tag@xent lies in the range 1.5 to 2 and the plot stabilizes
very briefly aroundl.75. Resnick and Strica (1997) have shown that the Hill estimator is consistenstmh
dependent data sets. Nevertheless, as this example eslitae¢ Hill plot can be difficult to assess in practice.

In Figure 3, thanax—spectrumlot is shown; i.e. the plot of the statistit$ versus the available dyadic scales
J, 1 < j < [log, N](= 15). The estimated tail exponent over the range of scdl@sl5) is 1.4844, which is
very close to the nominal value of = 1.5. Moreover, the max—spectrum is easy to assess and intefpnet
clearly sees a “knee” in the plot near scale: 10, where the max—spectrum curves upwards and thus it is hatura
to choose the range of scal@$), 15) to estimatex. The choice of the scaldg,, j») can be also automated, as
briefly discussed in Section 4.1 below.

We examine next some important characteristics of the nmectsum tail index estimators.
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AR(1) with Pareto innovations: = 0.9, a = 1.5
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Fig. 2. Top panel auto—regressive time series of order 1 with Pareto innovations of tail exponent o = 1.5. Bottom
left and right panels the Hill plot for this data set and its zoomed—in version, respectively. The dashed horizontal
line indicates the value of o = 1.5.
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Fig. 3. The max—spectrum plot for the data set in Figure 2. The max self—similarity estimator of the tail exponent,
obtained from the range of scales (j1, j2) = (10,15), is @(10, 15) = 1.4844.

2.2. Algorithmic and computational features
The nature of the max-spectrum estimators offers significamputational advantages over the existing Hill-
type and kernel-based estimators. Given a sample of'\6jzmne can compute the max—spectriim 1 < j <
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[log, N] in O(N) operations, since it involve®(N/27) pair-wise maxima and sums, for= 1,..., [log, N]
for a total of
[log, N] )
0( 3 [N/QJ]) = O(N)
j=1

operations.

In contrast, methods based on the order statistics invalvéng the sample and hence require at least
O(N log,(N)) operations. Moreover, one can compute the max—spectruineofiata by using onlyYD(N)
memory, which is essentially the memory required to stoeedifita. Thesequentiaklgorithm presented below
usesO(log, N) memory and operations per update. The computational aalyasitof our estimators become
particularly important when dealing with massive data et have become ubiquitous in many applied areas,
such as Internet traffic monitoring, sensor networks, fieaamod insurance. Further, the ability to compute the
tail index sequentially proves useful when monitoring higgguency processes in real time, such as TCP flows
of Internet traffic, traded volumes of stocks, etc. On theeptiand, in order to use a Hill-type estimator, the
whole sample of historical data needs to be stored for upglétie order statistics. This is a tall requirement in
areas where gigabytes of data are generated in short tigie demputer network traces, volume and price of
financial data) or in situations where storage or computatioesources are limited (e.g. sensor networks). An
algorithm for sequentially updating th§’s is given next.

Algorithm
Variables:Keep N and a list of variable§Y;, N;, M; andR;}/_,.

Initialization: Given a preliminary sampl& (1), ..., X (), one initializes the above variables as follows. First,
setJ := [log, N] andN; := [N/27], j =1,...,J. Then,lety;, j =1,...,J be asin (6) and define:

M;:=N-2/N;, j=1,....,J and R;:= 12%)((?1\9 + ).
—="=""J

Update: When a new sample poid (N + 1) is observed:

Step L:Forallj =1,...,J,setM; := M; + 1 andR; := max{R;, X(N + 1)}. SetN := N + 1.
Step 2:Forallj =1,...,J — 1: If M; =27, then updaté&’;, N;, M; andR; as follows:

Y} = (N7§/J + IOgQ(RJ»/(NJ + 1) and SEWj = Nj + 1, Mj =0 and RJ = 0.

Step 3:Forj = J: if M; = 27, then creat&’; 1 := max{Y,log,(R;)} and updat&’;, N, M, and
RjasinStep 2CreateN;.q :=1, My :=0andR;; :=0,and set/ := J + 1.

Remark 1: SinceN; = [N/27], for each scalg, there may be data points (left-over at the end of the daa set
that are not enough to fit in a block of si2é. The variables; in the above algorithm contain the maxima of
these data points, namel¥,(2/ N, +1), ..., X (N) andM; = N —2/N; < 27 —1, denotes their number. When

a new data poink (/N + 1) arrives, one update®; asR; V X (N + 1) andM; = M; + 1 (Step ). If now the
left-over data points are enough to complete a block, onateptl; and setsk; and M to zero Step 2. Step

3 concerns the situation where there is enough new data tctlgliiecrease the number of available scale®
J+1

Remark 2: The algorithm operates with a small amount of memory of o@é7) = O(log, N) and when

a new data point becomes available, the max—speckfuny = 1,...,J statistics are updated by using only
O(J) = O(log, N) operations. Further, the algorithm becomes operatiorea @ith a sample df observations.
In this case, to compute the max—spectrum of a sample of\sjzme performs

O(logy(2) +1ogy(3) + - - +10gy (V) = O(Nlogy(N) — N) = O(N log,(N))
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operations.

Remark 3: In order to estimater using the Hill estimator, one should maintaih@ap data structuref size at
leastO(N) (see, e.g. Ch. Il in Cormen et al. (2002)), as opposed t@ttieg N') memory requirement of the
max—spectrum estimator.

Remark 4: In applications, when monitoring streaming data, one mag alish to discount the effect of ob-
servations in the distant past. This can be done by modiffiagsequential algorithm above to include suitable
exponential moving average versions of the statisticsFor simplicity, in Figure 4 we merely computed the
max—spectrum oved6 non—overlapping windows of the data.

2.3. TCP connection sizes — a sequential approach
We illustrate next the max self-similarity estimator andittsequential nature using the Internet data set of
TCP connection flow sizes, shown in Figure 4. The top paneligfiré 4 diplays sizes (in packets) of the
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Fig. 4. Top panel: TCP connection (flow) sizes X (k) (in number of packets) as a function of time. Every data
point X (k) has a time—stamp ¢(k) of the time when the TCP connection ended. Bottom panel:max self-similarity
estimates a(j1, j2) of the heavy tail exponent «, computed over one minute long windows of data. The scale j.
equals 11 and the scale j; was chosen automatically with tuning parameters p = 0.01 and b = 4 (see Section 4.1).
The dotted envelope indicates 95% confidence intervals for o obtained by using an asymptotic approximation.

142,170 TCP connections active over the main UNC Chapel Hill camjnis dluring an off—peak period of

about36 minutes in 2000. The x—axis indicates the time the connectitded. The observed heavy tailed
distribution is typical for such data and it can be attriloute the distribution of file sizes and/or durations of
user activities (see e.g. Crovella et al. (1998) and theectiin of papers in Park and Willinger (2000)). The
heavy tailed nature of TCP connection sizes and duratioc®sely related to the observed self-similarity and
long—range dependence of network traffic traces (see ery.eé®al. (1996), Crovella and Bestavros (1996),
Taqqu et al. (1997)). Thus, the value of the heavy—tail inddras important implications on the dimensioning
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and management of the network. In fact, simply monitorirgttil exponent sequentially in time, as new traffic
arrives, provides valuable feedback on the current stateeohetwork. The bottom panel of Figure 4 displays
max self-similarity estimates, calculated from one miratey windows of the data for each of the 36 available
minutes. The dotted lines indica8% asymptotic confidence intervals for the corresponding wivel(for their
calculation see Section 3.2).

Max self-similarity: a(5,10) = 0.9486, «(10,12) =1.4124
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Fig. 5. The max—spectrum of the TCP connection sizes data set. The long vertical lines indicate two ranges of
scales where the max—spectrum has different slopes. The range of smaller scales (5, 10) yelds &(5, 10) = 0.9486,
which corresponds to the tail behavior of the data over time scales of about 2'° observations or 15 seconds. The
second range (10, 12) yields @(10,12) = 1.4124, which corresponds to the tails of the maxima over durations of
about 15 seconds to 1 minute. Depending on the goals and time horizont of interest, the practitioner may choose
to work with different parts of the max—spectrum.

Observe that the estimators track well the periods at whiéérent magnitude heavy—tailed TCP connections
occur. For example, the large spikes in the top plot arouedl#hth and36-th minutes correspond to tail
exponents less thah In these cases, the confidence intervalsofao not containl. On the other hand, the
confidence interval of the tail exponent around the 30-thuteiiis wide, which indicates that this fluctuation may
not be significant. Further, the estimated tail exponentstet around two values:4 and0.9. This is also seen
on the max—spectrum plot of the entire data set in Figure &.blbck—maxima scale over small time periods of
210 observations (about seconds) with(5, 10) = 0.9486 and over intermediate onez'{ to 2!? observations
(15 seconds td minute) witha(10,12) = 1.4124. This is largely due to the fact that over larger periodseher
are relatively few fluctuations, notably the spikes arouraliti-th and36-th minutes, resulting in a flatter slope
for the max—spectrum.

For comparison purposes, we present in Figure 6 the Hillgfltie same data set, which proves challenging
to assess. An inspection around the largés£(k < 1,000) and intermediate5( 000 < k& < 20,000) order
statistics, yields values similar to those obtained fromrtfax—spectrum plot. For exampéey (300) = 1.4114
anday (12,000) = 0.9296 match the max self—similarity estimata#$10, 12) anda(5, 10), respectively. Nev-
ertheless, the Hill plot remains difficult to interpret otfjgely and can be quite misleading in practice. On the
other hand, the max—spectrum is robust and easy to intefaretlly, contrary to the max—spectrum estimator, it
is not practical to compute and interpret the Hill plots satially, as new Internet traffic data become available.
To do so, one needs to store either a sufficiently large windothe entire past data.

3. Asymptotic properties

3.1. Consistency ~
The estimator¢{,, anda,, = 1/H,, in (7) utilize the scaling properties of the max—spectruatisticsY; in (6).
Therefore, their asymptotic behavior is closely linkedhe aisymptotic behavior of the max—spectrum as both
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Fig. 6. Top panel:the Hill plot (ax (k) versus k, see (2)) for the TCP connection sizes data set in Figure 4. Observe
the volatile, saw—tooth shape of the graph, which does not appear to stabilize. Two zoomed-in regions of the Hill
plot are displayed in the bottom (indicated by the vertical lines on the top plot).

the scalgj and the sample siz& tend to infinity. In the case of i.i.d. data, the Law of Largenhers implies
that for fixedj, asN; — oo, theY’s are consistent and unbiased estimatorBBf = Elog, D(j,1), if finite
(see Corollary 3.1 in Stoev et al. (2006)). On the other hdrelasymptotic max self-similarity (3) &f and (5)
imply that, asj — oo,

EYj = Elog, D(j,1) ~ j/a + C, 9)

whereC' = C(o0y, a) = Elog, 00Z, and where~ means that the difference between the left— and the right-ha
side tends to zero, witl being anoc—Fréchet variable with unit scale coefficient. A random vakablis said
to bea—Frécheta > 0, with scale coefficient > 0, if

exp{—oc®z~ %} , x>0
P{ng}{op{ } 0 (10)

The previous discussion suggests that the max self—sityitstimators in (7) will be consistent as both the
scalej and N, tend to infinity. The consistency and asymptotic normalityh@se estimators was established
in Stoev et al. (2006) for i.i.d. data. This was accomplishgdassessing the rate of convergence of moment
type functionals of block—maxima, such Bsog, D(j, 1), under mild conditions on the rate of the tail decay
in (1). Here, we focus on the case of dependent data and chifficient conditions for the consistency of the
proposed max self—similarity estimators. Deriving thelyraptotic distribution for dependent data appears to be
a challenging problem, which we plan to address in futurekwor

Consider a strictly stationary process (time seri€s)y { X (i)};cn with heavy—tailed marginal c.d.F as
in (1). Further, assume that tt3(i)’s are positive, almost surely, that i8(0) = 0. It is expected that the max
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self-similarity estimators will work for dependent, timeries data, provided that the block—maximaXokcale
at a raten!/“ as the block sizen grows. The latter holds for processes with a posiéixgemal index

Definition 3.1. A strictly stationary procesX with marginal c.d.f.F" as in (1) is said to have an extremal

indexfx > 0, if )

nl/a
whereZ is ana—Fréchet varible with scale coefficient.

(X(l) VEPY X(n)) 4, 9Y 7, asn — o, (11)

The above definition is equivalent to the usual definitionhef éxtremal index in the special case when the
marginal c.d.f.F" of X isasin (1) (see Ch. 3.7, p. 67 in Leadbetter et al. (1983)shsvn in Theorem 3.7.1 of
Leadbetter et al. (1983), under the genaimptotic independencendition “D(w,,)” (see, p. 53 in Leadbetter
et al. (1983)), the heavy—tailed time seri€shas an extremal indeky, where0 < 6x < 1. Observe that when
the X (i)'s are i.i.d. therfx equalsl. Therefore, the extremal indéx can be viewed as a measure of the degree
of extremal dependence among tki€¢i)’s — the closep x to zero, the stronger the dependence and vice versa.

In order to gain some insight into the proposed approacthasgfor the time being, thaf has a positive
extremal indeXdx > 0. In view of (11), relationship (9) holds with' = C’(G%aao, «). Therefore, to obtain
consistent estimates for the parameie= 1/a one should focus on a range of scales which grow as the sample
size increases. We thtig a rangej; < j < ja, j1,j2 € N and focus on the vectols. := {Yj+,,.}§2:jl, with
r € N, r + ja < [log, N] and where the parameter= (V) grows with the sample size.

As in (7), define

J2
H:=> w;¥j,, (12)
J=ij1
where thew;’s are as in (8).

We present next sufficient conditions on the dependencetstriof the procesX’ that help us establish the
consistency of the estimatéf. Subsequently, we show that a large class of max—stablegses satisfies these
conditions.

Condition E: LetM,, :=n~"* Vi<,<,, X (i), n € N. Suppose thak|log,(M,)[? < oo, p = 1,2, and that,
p
E(logz(Mn)) — ¢p, asn — oo, (13)

wherec, # 0, p=1,2.
Condition C: Let D(j, k) be as in(5). Suppose that, for somg € N,

K(n):= sup ‘Cov(logQ D(j,n+ 1), logy D(J, 1))‘ — 0, asn — oo. (14)
Jj>jo,JEN

Observe that these conditiods notinvolve the extremal indeflx of X, nor do they assume its existence.
In practice, the extremal index of a time seri€smay be hard to evaluate and in fact may be difficult to relate
to the asymptotic properties of the max—spectrunXofThe above conditions are more directly related to the
asymptotic nature of the max self—similatirty estimati discuss further Conditions E and C in the Remarks
below. The following result shows that these conditionslynthe consistency off, with its proof given in
Section 7.

Theorem 3.1. Let X = {X (i) };en be a strictly stationary process with heavy—tailed margne.f. F as in
(1) with F(0) = 0. LetH, j; < j, andr = r(N) be as in(12) with w;’s as in(8). If r = 7(N) — oo and
N/2" — o0, asN — oo, then Conditions E and C imply

E(H — H)> — 0, asN — oo, (15)

whereH :=1/a. In particular, H — H, N — co.
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Condition C is readily satisfied if the sequen¥¢i), i € N is m—dependent. We next show that timeving
maximaFréchet processes always satisfy Conditions E and CaLet) anda(k) > 0, k € Z be such that

> a(k)* < oo (16)

keZ

and letZ(k), k € Z be independent and identically distributed Fréchet variables with unit scale coefficients.
Then, the procesy = {X (k) }rez,

X(k) =\ alk —i)Z(i) = \/ ali)Z(k — i), k€ Z, (17)
1E€EZL 1EZ

is said to be a moving maxima with kernek= {a(k)}xcz and innovationsZ (k), k € Z. The analogous moving
minima processes were first introduced by Deheuvels (198ayis and Resnick (1993) study the context of
maxima, in a general setting. The maxima of moving maximaJ®processes, of Smith and Weissman (1996)
provide flexible extensions to the moving maxima models @se Zhang and Smith (2004)). General max—
stable processes with &het marginal distributions can be handled by using de Baaectral representation
(de Haan (1984)), or by using the extremal stochastic iategn Stoev and Taqqu (2006). Here, we focus on the
simple, but useful moving maxima model although we expeatt @onditions E and C continue to hold for M3
processes, as well.

The condition (16) guarantees that the maxima in (17) cg®aver probability and, in fact, almost surely, by
monotonicity. MoreoverX = {X (k) }xcz is a strictly stationary max—stable process; i.e. its firdtmensional
distributions are multivariate max—stable (see, e.g. Gh.Besnick (1987)). Specifically, for ali; € Z, z; >
0,j=1,...,n, n €N, onehas

P{X(k:j)ng,j:l,...,n}:exp{ Z( \/ alk; — i) —a)} (18)

ieN  1<j<n

(see, e.g. Stoev and Taqqu (2006)).
For convenience, the scale coefficient of @rFréchet variable, will be often denoted byj¢||... Note
that ||¢||, doesnot equal(E£*)!/«, which is infinite. Observe that, by (18), for ary € Zandb; > 0, j =

L,...,n, n € N, the max-linear combinationg;_, b; X (k;) area—Fréchet variables with scale coefficients
n 1/«
H\/ij(k) :(Z( \/ bja(k )) . (19)
j=1 @ 1<j<n

This follows from (18) by setting:; := bj‘l, ji=1,...,n

Note that by picking various sequences- {a(k)}rez, One can obtain moving maxima processésvith
very different dependence structures. The slowentlg’s tend to zero, a — oo, the stronger the dependence
of the X (k)’s. In fact, by (19),

1
[zx@y--vx

SEORVREUS

ZEZ 1<j<n

The following lemma of Smith and Weissmann implies that tktesznal indexd x of the moving maxima process
X equals
O0x = \/ a(i)*/ > ali)". (20)
1E€EZ €L
Lemma 3.1. (Lemma 3.2 in Smith and Weissman (1996))d,et 0, k € Z and suppose ., b < oo.
Then L
lim — = . 21
Jm 2>V =V (21)

i€ i+1<k<i+n keZ
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We show next that the max self—similarity estimators aresist@nt for an arbitrary moving maxinaa-Fréchet
processX.

Theorem 3.2. Thea—Fréchet moving maxima proce&sdefined in(17) satisfies Conditions E and C, where
cp = E(logy a* +logy, Z(1))7, p = 1,2, witha* :=\/, _, a(k).

Proof: Given in the Appendix.

Remark 1: To establish the asymptotic distribution of the estimaiain (12), one needs to study the covariance
structure of the vecto{YjH}f:‘ , asr — oo. Such a study would depend on the concrete model for the
dependence of th& (i)’s and it falls beyond the scope of the present work.

Remark 2: Let X be a positive and strictly stationary process with heaviedamarginal distributions. Suppose
that X has a positive extremal index; i.e. relation (11) holds. niitae uniform integrabilityof the random
variables| log M, |P, p = 1,2, n € N implies Condition E. This follows from the definition of uniim inte-
grability by using truncation and applying the continuouspping theorem. Thus, if for some> 0, we have
sup,,>; E|log M, |?>T¢ < oo, then Condition E holds.

Remark 3: As indicated above, strictly stationary,—dependent sequenc&ssatisfy Condition C. The previous
remark also shows that many such sequences satisfy Cangiamd hence the max self—similarity estimatbr
is consistent (Theorem 3.1).

3.2.  On the construction of confidence intervals

In many applications, an uncertainty assessment aboustimeated tail exponent is important and therefore one
has to construct confidence intervals. In Stoev et al. (20#8)fidence intervals foff in (7) were proposed, in
the case of.i.d. data based on the asymptotic distribution of the max—spectrlineorem 4.1 therein implies,
under certain conditions on the rate of convergence inliaj, t

VNjotr (Y7~+j = fy (j))j:j1

asN — oo, so thatr = r(N) — oo andr(N)/log,(IN) — 0. Here

J2

i>'/\/'((_)07Ea(.jl,jQ))? (22)

IU’T(]) = (.7 +T)/a + C(O’Q,Oé) and Ea(jth) = Oé_2 (wlj(jl’jz))me
whereC' = C(oy, a) is as in (9), and where
i (41, 2) := 279172 Cov(logy (21), logy (21 v (21771 — 1) 2)), (23)

for independent, standatd-Fréchet variableg’; and Z,. N
In view of (7), the result (22) readily yields the asymptatistribution of the estimata® = 1/H. Thus, one
has the followingasymptotic confidence intervir « of levely, 0 < v < 1:

((ﬁ — ﬁ—Z(l_,y)/gx/Cw/\/ Nr+j2)71, (fi\[ + ﬁZ(l_,y)/Q\/cw/\/ Nr+j2)71>7 (24)
wherez(,_.) /2 is (14+) /2—quantile of the standard normal distribution, and whgre= ij:m w;w; i (J1, J2)

with w; as in (8). Here, as recommended in Stoev et al. (2006), wehesetiprocal of a symmetric confidence
interval for H to obtain a confidence interval for=1/H.

Observe that the asymptotic covariance matrix in (22) da#snvolve the scale parametey (see (1)).
Therefore, one does not need to estimate it to obtain a cowidmterval fora. Numerical experiments with
independent datahow that the asymptotic confidence intervals in (24) worly veell in practice.

Now, let us turn to the dependent casEhere are very few results on confidence intervals for thenhea
tail exponent even in the case of independent data. We arawat of any general results on the asymptotic
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i1 3 1 5 6 7 8 9 10 11

90% c.i. = 0.1 | 0.891 | 0.894 | 0.912 | 0.919 | 0.897 | 0.903 | 0.889 | 0.895 | 0.875
¢ =03 0.759 | 0.888 | 0.914 | 0.915 | 0.899 | 0.901 | 0.889 | 0.895 | 0.875
¢=0.5 0.229 | 0.772 | 0.889 | 0.915 | 0.892 | 0.899 | 0.888 | 0.895 | 0.875

¢ =0.7 0.000 | 0.299 | 0.801 | 0.895 | 0.895 | 0.899 | 0.887 | 0.895 | 0.875

¢ =09 0.000 | 0.000 | 0.070 | 0.641 | 0.843 | 0.890 | 0.877 | 0.890 | 0.875
95% c.i. ¢ = 0.1 | 0.943 | 0.952 | 0.954 | 0.953 | 0.949 | 0.950 | 0.931 | 0.931 | 0.904
¢ =03 0.844 | 0.940 | 0.952 | 0.953 | 0.949 | 0.950 | 0.931 | 0.931 | 0.904
=05 0.321 | 0.854 | 0.950 | 0.954 | 0.948 | 0.950 | 0.931 | 0.931 | 0.904

¢ =0.7 0.000 | 0.395 | 0.872 | 0.946 | 0.944 | 0.950 | 0.931 | 0.931 | 0.904

¢ =09 0.000 | 0.000 | 0.123 | 0.738 | 0.911 | 0.941 | 0.927 | 0.930 | 0.904
99% c.i.¢ = 0.1 | 0.990 | 0.990 | 0.989 | 0.991 | 0.987 | 0.993 | 0.975 | 0.972 | 0.947
$=0.3 0.946 | 0.985 | 0.990 | 0.991 | 0.987 | 0.992 | 0.975 | 0.972 | 0.947

¢ =05 0.552 | 0.953 | 0.984 | 0.990 | 0.987 | 0.991 | 0.975 | 0.972 | 0.947
¢=0.7 0.000 | 0.642 | 0.959 | 0.981 | 0.988 | 0.990 | 0.974 | 0.972 | 0.947

¢ =09 0.000 | 0.000 | 0.276 | 0.897 | 0.968 | 0.984 | 0.973 | 0.972 | 0.947

Table 1. Coverage probabilities of the asymptotic confidence intervals (24) for o for max-AR(1)
time series as in (25) of length 2*°. Max self-similarity estimators H = H(ji, j») were used
with 1 < j; < j2 and j» = 15. Results for three confidence levels: 90%, 95% and 99% are
shown for different values of j;.

distribution of the Hill or the moment estimator @ffor dependent data. No theory for the asymptotic distrdouti

of the max—spectrum is available either, in the dependesd.cBeveloping such a theory is beyond the scope
of the present work. Nevertheless, we will present next aisigziasymptotic argument justifying the use of the
confidence intervals (24) even when the data are dependent.

Let X = {X(i)};en be a strictly stationary time series with heavy-tailed rrelgc.d.f. as in (1) with
F(0) = 0. Suppose thaX has a positive extremal indé) (see (11)). Under many dependence scenarios, the
block maximaX,,, (k) := maxi<;<,, X (m(k—1)+i) become “weakly dependent” asgrows. In fact, suppose
that as in the independent case, (3) holds, whereZitig’s are i.i.d.«—Fréchet. In this case, relation (11)
implies that the scale coefficients of th&k)’s involve the extremal index oK. This suggests that, regardless
of the dependence structure &f, relation (22) will continue to hold, under certain conaiits on the rate of
r(IN) as a function ofN. We expect only the constafit in the centering quantity,.(j) to be affected by the
dependence. Due to the asymptotic independence of the-st@kima, we expect the max—spectrum to have
the sameasymptotic covariance structure, as in the independeat cas

If the limit covariance structure of the max—spectrum isghme as in the independent case, then the same
confidence intervals as in (24) would apply. The fact thatakgemal index is not likely to appear in the
asymptotic distribution o is important since its estimation is a challenging problerits own right (see e.g.
Ancona-Navarrete and Tawn (2000)).

Table 1 illustrates the coverage probabilities of the camfae intervals in (24) for dependent data. Specifi-
cally, 1 000 independent replications of max—AR(1) time setes= { X (k) }rez:

X(k):=0X(k—1)+Z(k) = \/ ¢ Z(k—1i), k=1,...,N, (25)
1=0

of size N = 21° = 32768 for different values ofp were generated. The coverage probabilitiesofeio, 95%
and99% levels, for confidence intervals based Bn= H (ji, j») are reported in each row, as a function;of
Observe that when the data are closer to independest (.1), the coverage probabilities match the nominal
values even for smalj;’'s. As the degree of dependence grows, larger valueg;fare required to achieve
accurate coverage probabilities. Nevertheless, evereimibst dependent setting & 0.9) the value ofj; = 8
yields very good results. The fact that coverage probasliteteriorate for very large scalgsis due to the
inadequacy of the normal approximation in (22) in the presesf a limited number of block—maxima.
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These brief numerical experiments suggest that, providedstales; andj, are well-chosen, the confi-
dence intervals in (24) work well in practice, even for degrmt data. We plan to study further the problem of
constructing confidence intervals feiin future work, both theoretically and through more exteasimulations.

4. Parameter selection, time scales and robustness

In this Section, several issues that relate to the perfoceand tuning of the max-spectrum estimator are exam-
ined.

4.1. On the automatic selection of the cut—off scale j;

In the ideal case ofi—Frechet i.i.d. data, the max—spectrum plotGfis linear inj. When the distribution of
the data is not Fachet, or when the data are dependent, then the max—spdstagymptotically linear, as the
scalesj tend to infinity. It is therefore important to select appiafely the range of large scalggor estimation
purposes. In view of (9), one can always chogse= [log, N] to be the largest available scale and hence, the
problem is reduced to choosing the scalel < j; < j». The estimator of: is then obtained by performing a
WLS or GLS linear regression af; versusj, ji < j < j> (see (7)).

The “cut-off” parameterj; can be selected either by visually inspecting the max—spmabr through a data
driven procedure. In Stoev et al. (2006) an automatic pnaieefbr selecting the cut—off parameter was proposed,
in the case of independent data, whose main steps are brigfignarized next. We also demonstrate that it
performs satisfactorily for dependent data. The algoriffets;js := [log, N] andj; := max{1, j — b}, with
b = 3 or4 in practice for moderate sample sizes. Nextjs iteratively decreased until statistically significant
deviations from linearity ot’;, j; < j < ]2 are detected. Namely, §§ > 1, at each iteration over the scale
the following two quantltles are caIcuIatGHIiﬂeW = H(j1 —1,72) andHold = H(]l,]g) Whenever the value
of zero isnot contained a confidence interval centeredﬁgew — old) the algorithm stops and returns the
selectedj; anda = 1/H01d, otherwise, it setg; := j; — 1 and proceeds accordingly. The construction of the
confidence interval abOl(IHnew — Hold) utilizes the covariance matriX; (see (22)). Obviously, due to the fact
that the exact asymptotic distribution is unknown for defestt data, the above procedure is heuristic in nature,
but nevertheless exhibits a good performance in practice.

Figure 7 demonstrates the performance of the automaticte®igorocedure in the case of dependent data.
Even though the marginal distributions &fare FEchet, the dependence causes a knee in the max—spectrum plot
(see, e.g. Figure 3). The automatic selection proceduks pip this “knee” and yields reasonably unbiased and
preciseautomatic estimates of (see the top-right panel in Figure 7). Comparing the MSEgidtthe histogram
of the selected; values, we see that ovE0% of the times the valug; = 5 was chosen, which is close to the
optimal value ofj; = 6. The histogram of the resulting automatic estimates {@p—right panel) is not “very
different” from the histogram of the estimators correspogdo the MSE—optimajf; = 6 (bottom—right panel).

Recall Table 1, and observe that the case 0.9 corresponds to the time series analyzed in Figure 7. The
coverage probabilities of the confidence intervalsdassentially match the nominal levels, far> 8. On the
other hand the MSE—optimal valuejis = 6 (Figure 7) which is only slightly smaller thais = 8. This can be
contributed to the fact that the bias involved in the estorgatatj; = 6, although comparable to their standard
errors is significant and noticeal#hiftsthe confidence interval. As the scalegrows, the bias quickly becomes
negligible and the resulting confidence intervals beconcerate.

These brief experiments suggest that the automatic proeésigpractical and works reasonably well in the
case of dependent moving maxima time series. Similar exgeris for independent heavy—tailed data (not
shown here) indicate that the automatic selection proeedomtinues to perform well and chooses valueg, of
close to the MSE—optimal ones, thus making it appropriateiée in empirical work. Nevertheless, a detailed
study of its performance under a combination of heavy-dailistributions and dependence structures, as well
as its sensitivity to the choice of the back—start parameterd the level of significance, is necessary and the
subject of future work.
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Fig. 7. The top—plot shows the histogram of automatically selected j; values for 1,000 independent samples
of size N = 2% from an exponential moving maxima a—Fréchet process, X = {X(k)}xez, defined as in (25)
with ¢ = 0.9 and with i.i.d. 1.5—Fréchet innovations. We used significance level and back-start parameters are
p = 0.01 and b = 4, respectively. The top-right plot show the histogram of the resulting @ = 1/H estimates. The
bottom-—left plot shows estimates of the square root of the mean squared error (MSE) E(fl — H)? as a function of
j1. The bottom-right plot contains a histogram of a estimates obtained with the MSE—optimal choice of j; = 11.

4.2. Robustness and the emergence of extreme value time scales: numerical illustrations

In this section, we focus on two useful features for applicet of the max self-similarity estimators: their ro-
bustness to short-lived non—stationary contaminantsid#ta and their ability to identify the time scales where
heavy—tailed behavior emerges. The objective is to ilstsuch features ambt an exhaustive quantitative
assessment.

In Figure 8, we demonstrate the max self—similarity estorstor a GARCH(1,1) time serie¥ = { X, };cz:
X, =042, —EZ;), where o} =¢o+ ¢1 X7 |+ 60107, tE€Z, (26)

with ¢g, ¢1, 61 > 0. The Z;’s are i.i.d. Pareto distributed random variabB$4; > x} = 2=, o = 5, for
x > 1). The parameters of the model were sebgo= 1, ¢; = 0.1 andd = 0.8. The factthal£Z}! < oo, ¢ > 0
and¢, + 6; < 1 imply the existence of a stationary solution to the equai8), called a GARCH(1,1) time
series (see Theorem 1 in Bollerslev (1986)). The GARCH n®datl their numerous generalizations provide
flexible classes of time series, widely used for modelingfoia data (see e.g. Tsay (2005)).

To limit the effect of negative values, we analyzed a simptalification of the GARCH(1,1) time series,
namely X, + u, wherey = 15. The classical Hill plot of the data, shown on the bottom pefihel of Figure 8
is quite volatile, although it provides reasonably goodnestes of« = 5 for small and moderate values kbf
The max—spectrum (in the bottom right panel) is more rokthsin(the Hill plot) and yields an estimatex 5.3
close to the nominal value. This was achieved by selectiagpltametey; = 6 automatically (withp = 0.01
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GARCH (1,1), with Pareto(a=5) innovations

100 T T T T ]
80 b
60 8
20

O .
1 2 3 4 5 6
4
x 10
Hill plot a =5.2554
7 4%
1S
2
56
o o
?
35
=
4 4
0 2000 4000 6000 5 10 15
Order statistics k Scales j

Fig. 8. The top paneldisplays a sample of a GARCH(1,1) time series with Pareto (o = 5) innovations. Bottom-left:
a plain Hill plot, zoomed to a range where the ay (k)’s are relatively constant in k. The resulting estimates are
relatively close to the nominal value of « = 5 (indicated by the horizontal dotted line) only for small values of k.
The Hill plot exhibits a sizable bias for moderate and large k’s. Bottom-right:the max—spectrum i.e. the log—scale
statistics Y; versus the scale j. The reciprocal of the slope yields an estimate of & = 5.2554 for the nominal value
of a = 5.

andb = 4, see Section 4.1). Even in the difficult GARCH dependencéestihe max self—similarity estimator
works well, even in the presence of Pareto data.

A well known feature of the Hill plot is its non—robustnessdima coming from mixture distributions. The
top plot of Figure 9, shows the GARCH time series from FigureiBere about 1.5% of the data are replaced by
i.i.d. Pareto variables with tail exponemt = 1. Notice that the data set in Figure 9 is not an i.i.d. sampulmfa
mixture distribution, since the heavier tailed componsihb¢ated at the beginning of the series. Nevertheless, the
Hill plot involves the order statistics, and it cannot digtilish between mixtures and short—lived contamination
in the data. The Hill plot shown, briefly stabilizes for smalues ofk taking values close to 1. It grows rapidly
for larger order statistics and stabilizes briefly near tbmimal level5. Once again, it proves difficult to assess
and interpret and in particular pick out the special featwnederlying this data set. On the other hand, the max—
spectrum is relatively robust and essentially unaffectethb contamination. It yields an estimatecof 4.89,
close to the nominal value, obtained by choosing the paemiet= 6 automatically (withp = 0.01 andb = 4).

The presence of the contaminant affects the max—spectriynadthe largest scales by making is slightly more
steep.

We next demonstrate another interesting feature of the rlfxsmilarity estimation framework; namely,
that it provides insight into the time scales of the data, neheertain heavy—tailed behavior becomes relevant.
This aspect is particularly important when studying timeesedata, where the index of the observations has a
physical meaning. In Figure 10, we show the heavy tailed GARCL) data set studied above, with a heavy—
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GARCH(1,1) with Pareto(a=5) innovations, contaminated with Pareto(a=1)

400
300
200
100
0
Hill plot o =4.8943
5 £ 12
2
4 5 10
(]
o o 3
3 9 8
3
2 = 6
1L . . . ] 4 ! . .
0 2000 4000 6000 5 10 15
Order statistics k Scales j

Fig. 9. The top paneldisplays the GARCH(1,1) time series from Figure 8, where about 1.5% of the sample was
contaminated (replaced) by a Pareto distribution with tail exponent o’ = 1. Observe the region of larger values in
the beginning of the data. The bottom—leftand bottom—rightpanels show the Hill plot and the max—spectrum of the
data, respectively.

tailed Pareto component inserted at evebg—th sample value. Observe that over a very short segment of
k values the Hill estimator& (k) happen to approximately identify the tail exponent= 1 of the Pareto
component. The max self—similarity estimator also idesgifihne presence of the heavy—tailed component and
estimates its index a8 = 1.6994. In addition, the procedure of automatic selection of thegeaof scaleg
chooseg; = 10 (solid vertical line), which can be linked to the time sc2i6 = 28 where the Pareto component
starts to dominate the block—maxima. This is an importawaathge of the max self—similarity estimators over
the classical tail exponent estimators. The latter oneblard to the temporal structure in the data since they
involve sorted observations.

Observe also that the max—spectrum yields an estimate5.25, over the range of scalég, j»] = [4, 8].
This corresponds to the tail exponent of the underlying GARIC1) time series. This region of scales also
reflects the time scale where the heavier—tailed compometitei data is irrelevant. One cannot obtain such
information from the Hill plot, which does not provide timeade information and does not appear to stabilize
near the levely = 5 (horizontal dashed line).

5. Applications to Financial Data

We analyze market transactions for two stocks -Intel (syinii®C) and Google (GOOG)- using the max—
spectrum. The data sets were obtained froniltiagles and Quote§AQ) data base afonsolidated transactions
of theNew York Stock Exchan@iYSE) and NASDAQ (see Wharton Research Data Service (urt))iaclude
the following information about every single trade of thelarlying stock:time of transactior{up to seconds),
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GARCH(1,1) contaminated with Pareto (a=1) every 256 points
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Fig. 10. The top paneldisplays the GARCH(1,1) time series from Figure 8. Every 256—th data point is replaced
by a sample from a Pareto distribution with tail exponent o’ = 1. The bottom panelslisplay Hill plots and the max
self—similarity spectrum of the data, respectively.

price (of the share) andolume(in number of shares). In our analysis, we focus on the tradednes of the two
stocks for November 2005, that could provide informationwhihe respective sector’s, as well as the market's
economic conditions (Lo and Wang (2000)).

A ubiquitous feature of the volume data sets is the presehbeavy, Pareto type tails, as can be seen in
Figure 12. Specifically, the top panel shows transactionmels for the Google stock on November 7, 2005,
while the bottom panels show the Hill and the max—spectrustsplespectively. The tail exponent, estimated
from the max—spectrum over the range of scdlels 15) is & = 1.0729. The Hill plot indicates heavy—tail
exponent estimates betweerd and2, which correspond to the slope of the max—spectrum overahger of
scales(1,10). The small dip in the Hill plot for very large order statigti¢smallk's) can be related to the
behavior of the max—spectrum for scalgd, 15) (see also Section 4.2, above). Such behavior is typical for
almost all liquid stocks, as well as the presence of noriesiatity and dependence. In order to minimize the
intricate non-stationarity effects, we focus here on tdadelumes within a day. The max—spectrum yields
consistent tail exponent estimates even in the presenapeidience. This fact and the demonstrated robustness
of the max—spectrum (see Section 4.2) suggest that it magfbly sised in various practical scenarios involving
heavy—tailed data. In Figure 11, we show the max self—siityilastimates of the tail exponents, for each of
the 21 trading days in November, 2005. The max—spectra gktBé time series (not shown here) of trading
volumes are essentially linear. This confirms the validita beavy—tailed model for the data, valid over a wide
range of time scales — from seconds up to hours and days.édruatithe beginning and end of the trading day,
several large volume transactions are observed, as dotedhenHong and Wang (2000). Nevertheless, the
trading activity of Google, remains essentially linearaye period under study, with a few bumps at the largest
scales due to diurnal effects and other non—stationarities
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Fig. 11. Top panel:traded volumes for the Google stock from the TAQ data base of consolidated trades of NYSE
and NASDAQ for the month of November, 2005. The x— axis and y—axis correspond to time and number of traded
shares, respectively. This is a high— frequency data set, where each data point corresponds to the volume of
a single transaction and no temporal aggregation is performed. The gaps of zeros in the data correspond to
hours of the day with no trading and/or weekends. Bottom panel:estimated tail exponents (indicated by circles)
from the max—spectrum and their corresponding 95% confidence intervals (indicated by broken lines), based on
the asymptotic approximation for independent and identically distributed data. Automatic selection of the cut-off
scale j; was done with p = 0.1 and b = 3 (see Section 4.1). Every estimate was computed from a day worth of
transaction volumes.

In Figure 11, the daily tail exponent estimates are showrnHerGoogle stock, which fluctuate between 1
and 2, along with pointwise confidence intervals (brokeed)n These estimates indicate that the tail exponent
exhibits a significant degree of variability over the peradé month, and that an infinite variance model may be
most appropriate for modeling trading volumes. For exangteNovember 7 (see Figure 12), the estimate of
is nearly1, which may be due to the several extremely large peaks indhane data. The upward knee in the
max—spectrum of this data set is likely caused by these péidis max—spectra on most other days are much
closer to linear than the one in Figure 12. Such corresparedbatween the presence of large peaks in the data
and the behavior of the max—spectrum can be used to idetuifigtically significant fluctuations in the volume
data. Hence, the max—spectrum plot can be used not onlyitoagsty, but also to detect changes in the market.
We illustrate this last point next, by examining an unusteding pattern in the Intel stock towards the end of
November, 2005.

Figure 13 shows the max—spectrum estimates of the tail exsifior the traded volumes of the Intel stock for
21 trading days in November 2005. Notice that up to Novembetti tail exponent is fairly constant, fluctuating
between 1.2 and 2. On November 22 (Tue) and 23 (Wed), befer&@tianksgiving holiday on November 24
(Thur), the tail exponent takes values larger than 3 anddpewively. This change is quite surprising and it
is deemed significant by the corresponding confidence ial®nA closer look at the data from November 23
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Transaction volumes for GOOG: Nov 7, 2005
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Fig. 12. Top panel:the transaction volumes during the trading hours of November 7, 2005. The x—axis corresponds
to the number of the transaction and the y—axis to number of shares. Note that about 50, 000 transactions occurred
on this day, which is typical for the Google stock. Observe also the fairly classical heavy—tailed nature of the
volume data. Bottom panelsthe Hill plot (left) and the max—spectrum (right) of the data. The Hill plot is zoomed—in
to a range where it is fairly constant and a tail exponent between 1.5 and 2 can be identified. The max—spectrum
reveals more: on large scales the plot is steeper than on small scales with the tail exponent about 1 on the range
of scales (11, 15) and exponent about 1.7 on scales (1,10). The presence of a knee in the max— spectrum plot
suggests different behavior of the largest volumes on large time scales than on small time scales and can be
contributed to the several very large spikes of over 20, 000 traded shares (about 5 million US dollars) the top plot.

(Figure 14) shows a changing but persistent pattern ofrigpds compared to November 21; see for example
Figure 15).

This behavior proves persistent and continues on Novenmheafer the Thanksgiving holiday. Moreover,
no such behavior was observed for the Google data on any @fltitvading days in November, 2005. Although
trading of extremely large volumes occurs on November 23geas in Figure 14, these trades are very regular
and hence inconsistent with a heavy—tailed model. Althaeghlar in time, these large transactions occur on a
time scale of several minutes, and hence the small scalé® shax—spectrum are not affected by these peaks
and behave as on a normal trading day (see Figure 15). Howtkedarge peaks dominate the larger scglasd
their regularity makes the max—spectrum essentially batal. The Hill plot, shown on the bottom-left panel
of Figure 14, fails to pick up the unusual behavior, sinceiggests values ef = 1, which corresponds only to
the smallest portion of the max—spectrum, whefg, 11) = 1.0578 ~ 1.

Our best guess is that this change in activity is related eécagiproval by the board of directors of the Intel
Corp. on November 10 of a program for a stock buy—back worthipto 25 billion US dollars; (see, e.g.
the Financial Times, London, on Thursday November 11, p&Qeh&nce, some of the delayed effects of the
announcement of the program and market reaction to it ar@dstimated in the volume activity discussed above.
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Fig. 13. This figure has the same format as Figure 11. On the top panel, the traded volumes of the Intel stock for
the month of November, 2005 are shown. Observe that the tail exponent estimates on the bottom plot fluctuate
between 1.5 and 2 up to November 21. On and after November 22, unusually high values of « appear (compare
with the case of the Google stock in Figure 11). This is further analyzed in Figures 14 and 15, below.

6. Conclusion

In this paper, the problem of estimating the tail index ofuyeiiled dependent data is studied and an estimator
based on the max self-similarity scaling behavior of blockkima is introduced. Its consistency is established
and several of its features discussed. Analysis of Interaffic and stock volume data demonstrate its usefulness
in applications. As indicated on several occasions, thélpro of deriving the asymptotic distribution of the
proposed estimator is of interest for further study.

7. Proofs

PROOF OFTHEOREM 3.1: In view of (12) and (8), we have that

J2 J2
H-H=Y wj(Yjer —EYjr) + > wj(EYjuy — (j +1)/a — 1), 27)
J=J1 J=J1

wherec; is as in (13). Now, by applying the Cauchy—Schwartz inedgalnd the inequality

m
>
i=1

m
p
<m®™PUN g, meN, validforallp, z; €R, i=1,...,m, (28)
=1
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Fig. 14. Top panel:traded volumes of the Intel stock for November 23, 2005. Observe the regular occurrence of
many very large trades of approximately the same sizes: 10, 000, 15, 000, 25, 000 and a few of 20, 000 shares.
This is a very unusual behavior of the volume data, as compared to a typical trading day (see, e.g. Figure 15).
Bottom panelsthe Hill plot and the max—spectrum of the data. Notice that the Hill plot fails to identify the unusual
behavior of the data, whereas the max—spectrum flattens out, on large scales due to the regular non—heavy tailed
behavior of the largest traded volumes. Once identified on the max—spectrum plot, one can perhaps read—off
these details from the volatile Hill plot for very small k's. On small scales, where the regular large transactions are
not frequent and do not play a role, the max—spectrum yields tail exponents about 1. This is in line with the Hill
plot.

we obtain

J2 J2
E(H — H)? < const( > BV, —EY;ir)? + Y (B — (G +7)/a —c1)?). (29)
J=i J=J1
Fix j, j1 < j < jo and observe that
1
Nit,

E(Vj4r — EYjy,)? = Var(logy D(j +1,1)) (30)

o Nitr—l

Nty

(NjJrr - k)

+
Nty

Cov(logy D(j 4+ r, k + 1), logs D(j +1,1)).

k=1

Note that

Var(log, D(j +1,1)) = Var(log2(D(j +r, 1)/2(3"”)/&)) = Var<10g2 ]Vfg_j+r>,
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Fig. 15. This figure has the same format as Figure 14. The top plot shows the volumes of INTC during November
21, 2005, which as the volumes of GOOG in Figure 12, behave like a classical heavy—tailed sample. The Hill plot
and the max—spectrum (bottom left and right panels, respectively) identify tail exponents around 1.5. The cut off
scale in the max—spectrum plot was selected automatically with p = 0.1 and b = 3 (as in Figure 13. Notice the
volatile, saw—tooth shape of the Hill plot which is due to its non-robustness to deviations from the Pareto model.
The max—spectrum is more robust and fairly linear with a small knee on scale j = 12, which may be due to a few
clusters of large volumes in the beginning and at the end of the trading day.

whereM,;+- is as in Condition E. Thus, by (13), the first term in the ridtatrd side (r.h.s.) of (30) vanishes,
asN, = N/2" — oo. On the other hand, Condition C implies that the second terthe r.h.s. of (30) also
vanishes, a®&v/2" — oc.

We have thus shown that the first term (variance) in the i.&9) tends to zero, a¥ — oo. Now, focus
on the second term in the r.h.s. of (29). In view of (6), forjallj; < j < jo,

EY;., — (j +7)/a —c1 = Elog, (D(j ¥ 1)/2<j+*>/a) — 1 = Elogy My — c1,

which vanishes, as = r(N) — oo, by Condition E. Therefore, the r.h.s. of (29) convergesaimzas: — oo
andN/2" — oo and the proof of the theorem is complete.

The next three elementary results are used in the proof afréne3.2.

Lemma7.l. Letb, > 0, k € Z and supposgkeZ by < oo. Then, for anyr € N,

ViesaS \ ws<Yn (31)

kEZ i€Z i+1<k<i+n keZ
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PROOFR We haveb,- = \/, ., bx, for somek* € Z, since} ", ., by < oo. Thus,\/, 1 pciry Ok = bi=,
foralli = k* —n,...,k* — 1. Since at least of the terms\/, ., _, ., bx are equal to the maximuy,- =
V wcz br, We obtain that the first inequality in (31) holds. The secbodnd in (31) follows from the fact that

i+1<k<i+n b < Zi+1§k§i+'n by O

Lemma 7.2. Let Z; and Z, be independent—Fréchet variablesqe > 0, with positive scale coefficients
| Z1||« and || Z2]| o, respectively. Then, for afl > 0 and~ € (0, a/q), there exists a constant, ., independent
of Z;, i = 1,2, such that

qy
E|logy(Z1 V Z2) — logy Z1[* < Cyry (1Z2lla/ 1 Z11la) - (32)
PROOF The expectation in (32) equals
Ellogy(1V (Z2/21))|" < CJE(Z37/21") = C{(EZ3")(EZ ™), (33)

for some constant’,, which is independent of; and Z,. In the last relation, we used the inequality<
log,(1V z) < Cy27, valid for all z, v > 0 and some”,, > 0, and the independence &f andZ;.

Now, observe thaE(Z]") = || Z2||[9"E(Z97), andE(Z; %) = || Z1||" V' E(Z~77), whereZ is ana—Fréchet
random variable with unit scale coefficient. The expectdlioZ —7¢) is finite, for anyag > 0, sincega € (0, ),
the expectatiofit(Z7*) is also finite. This, in view of (33), implies (32)1

Lemma 7.3. For any two non—-empty index setsand 3, and real numbers:,,, ,,, m € Aandn € B, we

havesume.A (SupneB xmfﬂ) = SUP(m,n)eAxB Tm,n-

This result follows directly from the definition of the supram.

PROOF OFTHEOREM 3.2: We first show Condition E. In view of (19), we have tid}, equals in distribution
to || M,||«Z(1), where
|M Ha - Z \/

zGZ 1<k<n

denotes the scale coefficient of the-Frechet variablé\/,,.
Lemma 3.1, applied to, := a(k)*, k € Z, implies that|| M, ||, — a* = /5 a(k), asn — oco. We
therefore obtain

E(logy M,)P = E(log, || Myl +10gy Z(1))? — ¢, := E(logy a™ +1og, Z(1))?, p=1,2,

which implies Condition E.

The validation of Condition C is more involve@bserve that the sequendds$j,n + 1), n € Z in (14) are
in fact a type of moving maxima processes. Indeed, in vievbpa(d (17), we obtain

2]
D@Gn+1) = \/ \ ak)Z@n+i-k)
i=1k€EZ
2J
=V (Vatk+) 20—k =\ 0022~ k), (34)
kezZ i=1 keZ

where the second equality in (34) follows by making the cleasfg/ariables: := k£ —i and interchanging the two
maxima (Lemma 7.3). Thus, we have thiatj,n+ 1) = X;(27n), whereX; (k) := \/,., b;(i)Z(k —i), k € Z
is a moving maxima process as in (17). Thatis, the profBs3, k) } 1.cz is adown—sampled versiasf a moving
maxima process.
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Let nowm € N be an arbitrary parameter and consider the decomposition:

1 ~
mD(j,n—kl) = Dpn(j,n+1)VDp(j,n+1), nez, (35)
where .
2.7
. 1 , _
Dm(]an + 1) = 2j/a \/ ( \/ a(k + Z>)1{|k|§m27}z(2]n - k) (36)
kezZ j=1
and .
_ 1 2 .
Dutiin+1) = 57 V/ (V ak+0) etz 22 = b 37)
€ J=

Note the presence of the normalization fact6i* in (35) as well as in (36) and (37).

We now give some intuition behind the decomposition (35)séte that the indicator fun;tioﬂ@mgmy}
andl y|x|>m2iy restrict the outer maximain (36) and (37) to the sets of ieslfé € Z : |k| < m2’}and{k € Z:
|k| > m27}, respectively. Also, as argued above, the sequebggg,n + 1), n € Z andf)m(j, n+1l),neZ
are down—sampled moving maxima. Note, however that, for allN, {D,,,(j,n + 1) },,ez is a2m—dependent
sequence, and therefore its covariances at lags greate;thaanish. We therefore proceed by showing that the
covariances in (14) can be bounded in terms offthe(j, k)’s plus an asymptotically negligible contribution due
to the D, (j, k)’s.

We start by deriving several inequalities for the scalefitiehts|| D (4, 1)/27/% |, || D (5, 1)||o @nd|| Dy (5, 1)]|o-
Observe that by (34),

1DG, 1)/2ﬂ/“||a=2jH\/(\J/ (i +) 2(- Zy\/ alk +3)” (39)

where in the last equality we used the fact thatZl{é)’s are i.i.d. standard—Fréchet variables (see (18)).
Now, by applying Lemma 7.1 to the r.h.s. of (38), we obtain

\/ a(k)* <|[D(,1)/277*1a <> a(k)™. (39)

kEZ keZ

As in (38), we also have that

[ Do (45 ||a*z \/ (k + 1)1 {jkj<mosy and [ Dy (5,1 ||Q*Z \/ (k +4)*1{k)>ma2iy-

keZ i=1 kEZ i=1

By using thatk +i| < (m —1)27 < (m — 1) implies|k| < m27, foralli = 1,...,27, j € N, we obtain

27
e 1 o a
1D (5, VIS > 5 V alk +8)*Uprii<m-ny2y =\ alk)*Ljri<m—13, (40)
keZ 1=1 keZ

where the last inequality follows from Lemma 7.1. By Lemm&, As in (39), we also have
[1Dm (G, D12 < alk)™. (41)
keZ

Since|k| > m27 implies|k +i| > (m —1)27 > (m — 1), foralli = 1,...,27, by Lemma 7.1,

27
n . « 1 o o
1Dm (G DG <D 55 V alk+ ) U igism-nzy < Y alk)*Lrsm-1}- (42)
keZ =1 kEZ
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Consider now the covariances in (14) and observe that tleegaural to
Cov(logy (D(jyn +1)/27/%),10gy(D(j,1)/27/) ) = E&()n() — E£(EN(),

where, for brevity, we le¢(j) := log,(D(j,n + 1)/27/), andn(j) := logy(D(j,1)/27/). Let alsot,, (5) :=
logy D (4, n + 1) andn,,, (j) := log, Dy (4, 1) and observe that the triangle and the Cauchy—Schwartzahequ
ities, imply

ESGIN) — B (30 ()] < Bl G)1(7) — mra())] + EIG)EG) ~ )
< (Ben()D)2 (EG) ~ nn)?) + @)DV (BEG) - €a)?) - @3)

Note that, by stationarity),,,(j,1) =% D,,(j,n + 1) =2 || Dy (5, 1)« Z (1), and hence

EEn () = B ()” = E (108, DG, 1) o+ loga Z(1))

We similarly have that

EE(j)” = En()* = E(logs D0, 1)/2/° | + 108, Z(1)

Therefore, the inequalities (39), (40) and (41) imply that; .y EE,,, (j)? = sup; ey En () andsup, ey EE(5)? =
sup;cy En(j)* are finite, for all sufficiently largen. Indeed, this follows from the inequalitylog, ()| <
log,(e)(x + 1/x), valid for all z > 0. Thus, by (43), for all sufficiently large:, we have

1/2
sup [E£(j)n(7) — B ()1m (7)) < constsup (E(€(7) = &m(7))?)
jEN jEN
) 1/2
— constsup (E(logy (D(j, 1)/27/*) ~ logy D (3, 1))) - (44)
jEN

Note thatD,, (j,1) and D, (j, 1) are independent since they involve maxima of non—overtappnges of

Z(k)'s (see (36) and (37)). Thus, in view of (35), Lemma 7.2, apto the r.h.s. of (44) implies that

(lﬁm(]» 1)||oz)a/4
1D (4, Dl

a/4
) =: constR(m), (45)

sup [E§(5)n () — E&m (4)mm(j)| < constsup
JEN JEN

>z @F)“L{jk|> (m-1))
Viez a(k)*L{jk|<(m-1)}
where the last inequality follows from (40).

Similarly, by using the triangle inequality and the factttBaX | < (EX?)'/2, we get

sup IES(H)En()) — E&m (5)Enm ()| < constR(m), (46)
J

< COﬂSt(

for all sufficiently largem € N, whereR(m) is as in (45). Now, by combining relations (45) and (46), weagb
that

sup |Cov(&(5),n(h))| < sup |Cov(&m(5); nm(5))] + constR(m)

= sup |Cov(logy Dy, (4,1 + 1),10gy Dy (3, 1))| + constR(m). (47)
jeN
a4
SinceR(m) = _alk)® o ya(k)® — 0, asm — oo, one can make the second
[k|>(m—1) [k|<(m—1)

termin the r.h.s. of (47) arbitrarily small, for all sufficigy largem’s. However, since,,,(j,1) andD,,,(j,n+1)
are independent, for ali > 2m, and for anyj € N, the first term in the r.h.s. of (47) vanishes foralt> 2m.
This implies that (14) holds and completes the proof of tle®tbm.O
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