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Summary . This paper addresses the problem of estimating the tail index α of distributions with heavy,
Pareto–type tails for dependent data, that is of interest in the areas of finance, insurance, environmental
monitoring and teletraffic analysis. A novel approach based on the max self–similarity scaling behavior of
block maxima is introduced. The method exploits the increasing lack of dependence of maxima over large
size blocks, which proves useful for time series data.
We establish the consistency of the proposed max–spectrum estimator for certain classes of dependent
time series and demonstrate its robustness to short–lived contaminations in the data. The max–spectrum
estimator exhibits linear computational time and memory complexity and can be calculated in a sequential
manner, that makes it particularly well suited both for massive, as well as streaming data sets. Further,
it provides a natural time–scale perspective in the analysis of heavy–tailed time series, not available in
Hill–type techniques. The performance of the max–spectrum estimator is illustrated on synthetic and real
data.

Keywords: heavy–tail exponent, max–spectrum, block–maxima, heavy tailed time series, moving maxima,
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1. Introduction

The problem of estimating the exponent in heavy tailed data has a long history in statistics, due to its practical
importance and the technical challenges it poses. Heavy tailed distributions are characterized by the slow, hyper-
bolic decay of their tail. Formally, a real valued random variableX with cumulative distribution function (c.d.f.)
F (x) = P{X ≤ x}, x ∈ R is (right) heavy–tailed with indexα > 0, if

P{X > x} = 1 − F (x) ∼ σα
0 x

−α, asx→ ∞, (1)

with σ0 > 0, and where∼ denotes that the ratio of the left–hand side to the right–hand side in (1) tends to1, as
x → ∞. For simplicity purposes, we assume here thatX is almost surely positive i.e.F (0) = 0. Thetail index
(exponent) α controls the rate of decay of the tail ofF .

The presence of heavy tails in data was originally noted in the work of Zipf on word frequencies in languages
(Zipf (1932)), who also introduced a graphical device for their detection (de Sousa and Michailidis (2004)).
Subsequently, Mandelbrot (1960) noted their presence in financial data. Since the early 1970s heavy tailed
behavior has been noted in many other scientific fields, such as hydrology, insurance claims and social and
biological networks (see, e.g. Finkenstädt and Rootźen (2004) and Barabasi (2002)). In particular, the emergence
of the Internet and the World Wide Web gave a new impetus to thestudy of heavy tailed distributions, due to
their omnipresence in Internet packet and flow data, the topological structure of the Web, the size of computer
files, etc. (see e.g. Adler et al. (1998), Resnick (1997), Faloutsos et al. (1999), Adamic and Huberman (2000,
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Fig. 1. TCP connection flow sizes (in number of packets) as a function of time.

2002), Park and Willinger (2000)). In fact, heavy tailed behavior is a characteristic of highly optimized physical
systems, as argued in Carlson and Doyle (1999).

However, the availability of Internet and other high frequency data pose a set of new challenges for the
problem of estimating the tail index discussed next in the context of the following data set that contains the size
(in packets) of142, 170 IP (Internet Protocol) flows, collected over a period of about 36 minutes on a link at
the UNC Chapel Hill campus network starting at8 : 30 a.m. in 2000. A time plot of the data, shown in Figure
1, reveals several spikes indicating the potential presence of heavy tails. Some important features of such data
are: (i) their large size due to the fine time scale resolutionat which they are collected, resulting in hundreds
of thousands or even millions of observations, (ii) their temporal structure that introduces dependence amongst
observations, and (iii) their sequential nature, since observations are added to the data set over time. Traditional
methods for estimating the tail index are not well suited foraddressing these issues, as discussed below.

The majority of the approaches proposed in the literature focus on the scaling behavior of the largest order
statisticsX(1) ≥ X(2) ≥ · · · ≥ X(N) obtained from an i.i.d. sampleX(1), . . . ,X(N) fromF ; typical examples
include Hill’s estimator Hill (1975) and its numerous variations (Kratz and Resnick (1996), Resnick and Stǎricǎ
(1997)), kernel based estimators (Csörgő et al. (1985) and Feuerverger and Hall (1999)). A review of these
methods and their applications is given in de Haan et al. (2000) and de Sousa and Michailidis (2004)). The most
widely used in practice is the Hill estimatorα̂H(k) defined as:

α̂H(k) :=
(1

k

k∑

i=1

lnX(i) − lnX(k+1)

)−1

, (2)

with k, 1 ≤ k ≤ N − 1 being the number of included order statistics. The parameter k is typically selected by
examining the plot of thêαH(k)’s versusk, known as theHill plot . In practice, one chooses a value ofk where
the Hill plot exhibits a fairly constant behavior (see e.g. de Haan et al. (2000)). However, the use of order statistics
requiressortingthe data that: (i) is computationally demanding (quicksort requires on averageO(N log(N))
steps, although its worst case performance isO(N2)), (ii) destroys the time ordering of the data and hence their
temporal structure and (iii) summary statistics can not be recursively updated in the presence of new data, since
a new sorting is required. Further, as can be seen from the brief review above, most of the emphasis has been
placed on point estimation of the tail index and little on constructing confidence intervals. Exceptions can be
found in the work of Cheng and Peng (2001) and Lu and Peng (2002) for the construction of confidence intervals
and of Resnick and Stǎricǎ (1995) on the estimation ofα for dependent data.

The purpose of this study is to introduce a method for estimating the tail index that overcomes the above listed
shortcomings of other techniques. It is based on the asymptotic max self–similarityproperties of heavy–tailed
maxima. Specifically, the maximum values of data calculatedover blocks of sizem, scale at a rate ofm1/α.
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Therefore, by examining a sequence of growing, dyadic blocksizesm = 2j , 1 ≤ j ≤ log2N, j ∈ N, and
subsequently estimating the mean of logarithms of block–maxima (log–block–maxima) one obtains an estimate
of the tail indexα. Notice that by using blocks of data, the temporal structureof the data is preserved. As shown
in Section 2.2, this procedure requiresO(N) operations, making it particularly useful for large data sets; further,
the estimates forα can be updated recursively as new data become available, by using onlyO(log2N) memory
and without the knowledge of the entire data set, thus makingthe proposed estimator particularly suitable for
streaming data (see e.g. Henzinger et al. (1998), Gilbert etal. (2001), and Muthukrishnan (2003)). Estimators
based on max–self similarity for the tail index for i.i.d. data were introduced in Stoev et al. (2006), where their
consistency and asymptotic normality was established. In this paper, we extend them to dependent data, prove
their consistency, examine and illustrate their performance using synthetic and real data sets and discuss a number
of implementation issues.

The remainder of the paper is structured as follows: in Section 2 the estimators are introduced and their
computational complexity examined. Their consistency is established in Section 3.1 and the construction of
confidence intervals is addressed in Section 3.2. Several implementation issues are examined in Section 4.
Applications to financial time series are discussed in Section 5, while some concluding remarks are drawn in
Section 6.

2. Max self–similarity and tail exponent estimators

In this section, we introduce the max self–similarity estimators for the tail exponent and demonstrate several of
their characteristics.

2.1. Definition and basic properties
We briefly review the basic ideas behind the proposed estimators for independent and identically distributed
(i.i.d.) data. A detailed exposition is given in Stoev et al.(2006). We discuss the case ofdependentX(i)’s in
Section 3.1 below.

Consider the sequence of block–maxima

Xm(k) := max
1≤i≤m

X(m(k − 1) + i) =

m∨

i=1

X(m(k − 1) + i), k = 1, 2, . . . , m ∈ N,

whereXm(k) denotes the largest observation in thek−th block. By the Fisher–Tippett–Gnedenko Theorem we
have that { 1

m1/α
Xm(k)

}

k∈N

d−→
{
Z(k)

}

k∈N

, (3)

where
d→ denotes convergence of the finite–dimensional distributions, with theZ(k)’s being independent copies

of anα−Fréchet random variable. For large values ofm, the normalized block–maxima behave like a sequence
of i.i.d. α−Fréchet variables. Further, a sequence of i.i.d. variables iscalledmax self–similarin the following
sense:

Definition 2.1. A sequence of random variablesX = {X(k)}k∈N (defined on the same probability space) is
said to be max self–similar with self–similarity parameterH > 0, if for anym > 0,

{ m∨

i=1

X(m(k − 1) + i)
}

k∈N

d
=

{
mHX(k)

}

k∈N

, (4)

with =d denoting equality of the finite–dimensional distributions.

Relationship (4) holds asymptotically for i.i.d. data and exactly for Fŕechet distributed data. Hence, any
sequence of i.i.d. heavy–tailed variables can be regarded as asymptotically max self–similarwith self–similarity
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parameterH = 1/α. This feature suggests that an estimator ofH and consequentlyα can be obtained by
focusing on the scaling of the maximum values in blocks of growing size. A similar idea applied to block–wise
sums was used in Crovella and Taqqu (1999) for estimatingα, in the case0 < α < 2.

For an i.i.d. sampleX(1), . . . ,X(N) from F , define

D(j, k) := max
1≤i≤2j

X(2j(k − 1) + i) =

2j∨

i=1

X(2j(k − 1) + i), k = 1, 2, . . . , Nj , (5)

for all j = 1, 2, . . . , [log2N ], whereNj := [N/2j ] and where[x] denotes the largest integer not greater than
x ∈ R. By analogy to the discrete wavelet transform, we refer to the parameterj as thescaleand tok as the
locationparameter. We consider dyadic block–sizes for algorithmicand computational convenience (see Section
2.2 for more details). Introduce the statistics

Yj :=
1

Nj

Nj∑

k=1

log2D(j, k), j = 1, 2, . . . , [log2(N)]. (6)

Then, a regression–based estimator ofH = 1/α (and henceα) for a range of scales1 ≤ j1 ≤ j ≤ j2 ≤
[log2(N)] is given by:

Ĥw(j1, j2) :=

j2∑

j=j1

wjYj , and α̂w(j1, j2) := 1/Ĥw(j1, j2), (7)

where the weightswj are chosen so that

j2∑

j=j1

wj = 0 and
j2∑

j=j1

jwj = 1. (8)

The optimal weightswj can be calculated throughgeneralized least squares(GLS) regression using the asymp-
totic covariance matrix of theYj ’s. In practice, it is important to at least useweighted least squares(WLS)
regression which accounts for the magnitude of the variances of theYj ’s (see, Stoev et al. (2006)).

We propose to use the estimator defined in (7) in dependent time series data. We first illustrate its usage
through a simulated data example. A data set of sizeN = 215 = 32, 768 was generated from an auto–regressive
time series of order one with Pareto innovations. Specifically,

X(k) = φX(k − 1) + Z(k) =

∞∑

i=0

φiZ(k − i), k = 1, . . . , N,

whereφ = 0.9 andP{Z(k) > x} = x−α, x > 1, with α = 1.5. The data together with its Hill plot are shown
in Figure 2. Notice that even though the Hill estimator work best for Pareto data, the dependence structure in
the model makes the Hill plot quite misleading (see the bottom left panel). The zoomed–in version of the Hill
plot (bottom right panel) however indicates that the tail exponent lies in the range 1.5 to 2 and the plot stabilizes
very briefly around1.75. Resnick and Stǎricǎ (1997) have shown that the Hill estimator is consistent forsuch
dependent data sets. Nevertheless, as this example indicates, the Hill plot can be difficult to assess in practice.

In Figure 3, themax–spectrumplot is shown; i.e. the plot of the statisticsYj versus the available dyadic scales
j, 1 ≤ j ≤ [log2N ](= 15). The estimated tail exponent over the range of scales(10, 15) is 1.4844, which is
very close to the nominal value ofα = 1.5. Moreover, the max–spectrum is easy to assess and interpret. One
clearly sees a “knee” in the plot near scalej = 10, where the max–spectrum curves upwards and thus it is natural
to choose the range of scales(10, 15) to estimateα. The choice of the scales(j1, j2) can be also automated, as
briefly discussed in Section 4.1 below.

We examine next some important characteristics of the max–spectrum tail index estimators.
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Fig. 3. The max–spectrum plot for the data set in Figure 2. The max self–similarity estimator of the tail exponent,
obtained from the range of scales (j1, j2) = (10, 15), is bα(10, 15) = 1.4844.

2.2. Algorithmic and computational features
The nature of the max-spectrum estimators offers significant computational advantages over the existing Hill–
type and kernel–based estimators. Given a sample of sizeN , one can compute the max–spectrumYj , 1 ≤ j ≤
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[log2N ] in O(N) operations, since it involvesO(N/2j) pair–wise maxima and sums, forj = 1, . . . , [log2N ]
for a total of

O
( [log2 N ]∑

j=1

[N/2j ]
)

= O(N)

operations.
In contrast, methods based on the order statistics involve sorting the sample and hence require at least

O(N log2(N)) operations. Moreover, one can compute the max–spectrum of the data by using onlyO(N)
memory, which is essentially the memory required to store the data. Thesequentialalgorithm presented below
usesO(log2N) memory and operations per update. The computational advantages of our estimators become
particularly important when dealing with massive data setsthat have become ubiquitous in many applied areas,
such as Internet traffic monitoring, sensor networks, finance and insurance. Further, the ability to compute the
tail index sequentially proves useful when monitoring highfrequency processes in real time, such as TCP flows
of Internet traffic, traded volumes of stocks, etc. On the other hand, in order to use a Hill–type estimator, the
whole sample of historical data needs to be stored for updating the order statistics. This is a tall requirement in
areas where gigabytes of data are generated in short time (e.g. computer network traces, volume and price of
financial data) or in situations where storage or computational resources are limited (e.g. sensor networks). An
algorithm for sequentially updating theYj ’s is given next.

Algorithm

Variables:KeepN and a list of variables{Yj , Nj , Mj andRj}J
j=1.

Initialization: Given a preliminary sampleX(1), . . . ,X(N), one initializes the above variables as follows. First,
setJ := [log2N ] andNj := [N/2j ], j = 1, . . . , J . Then, letYj , j = 1, . . . , J be as in (6) and define:

Mj := N − 2jNj , j = 1, . . . , J and Rj := max
1≤i≤Mj

X(2jNj + i).

Update:When a new sample pointX(N + 1) is observed:

Step 1:For all j = 1, . . . , J , setMj := Mj + 1 andRj := max{Rj ,X(N + 1)}. SetN := N + 1.
Step 2:For all j = 1, . . . , J − 1: If Mj = 2j , then updateYj , Nj ,Mj andRj as follows:

Yj := (NjYj + log2(Rj))/(Nj + 1) and setNj := Nj + 1, Mj := 0 and Rj := 0.

Step 3:For j = J : if Mj = 2j , then createYJ+1 := max{YJ , log2(RJ)} and updateYJ , NJ , MJ and
RJ as inStep 2. CreateNJ+1 := 1,MJ+1 := 0 andRJ+1 := 0, and setJ := J + 1.

Remark 1: SinceNj = [N/2j ], for each scalej, there may be data points (left–over at the end of the data set)
that are not enough to fit in a block of size2j . The variablesRj in the above algorithm contain the maxima of
these data points, namely,X(2jNj +1), . . . ,X(N) andMj = N−2jNj ≤ 2j −1, denotes their number. When
a new data pointX(N + 1) arrives, one updatesRj asRj ∨X(N + 1) andMj = Mj + 1 (Step 1). If now the
left–over data points are enough to complete a block, one updatesYj and setsRj andMj to zero (Step 2). Step
3 concerns the situation where there is enough new data to directly increase the number of available scalesJ to
J + 1.

Remark 2: The algorithm operates with a small amount of memory of orderO(J) = O(log2N) and when
a new data point becomes available, the max–spectrumYj , j = 1, . . . , J statistics are updated by using only
O(J) = O(log2N) operations. Further, the algorithm becomes operational even with a sample of2 observations.
In this case, to compute the max–spectrum of a sample of sizeN , one performs

O(log2(2) + log2(3) + · · · + log2(N)) = O(N log2(N) −N) = O(N log2(N))
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operations.

Remark 3: In order to estimateα using the Hill estimator, one should maintain aheap data structureof size at
leastO(N) (see, e.g. Ch. II in Cormen et al. (2002)), as opposed to theO(logN) memory requirement of the
max–spectrum estimator.

Remark 4: In applications, when monitoring streaming data, one may also wish to discount the effect of ob-
servations in the distant past. This can be done by modifyingthe sequential algorithm above to include suitable
exponential moving average versions of the statisticsYj . For simplicity, in Figure 4 we merely computed the
max–spectrum over36 non–overlapping windows of the data.

2.3. TCP connection sizes – a sequential approach
We illustrate next the max self–similarity estimator and their sequential nature using the Internet data set of
TCP connection flow sizes, shown in Figure 4. The top panel of Figure 4 diplays sizes (in packets) of the
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Fig. 4. Top panel: TCP connection (flow) sizes X(k) (in number of packets) as a function of time. Every data
point X(k) has a time–stamp t(k) of the time when the TCP connection ended. Bottom panel:max self–similarity
estimates bα(j1, j2) of the heavy tail exponent α, computed over one minute long windows of data. The scale j2
equals 11 and the scale j1 was chosen automatically with tuning parameters p = 0.01 and b = 4 (see Section 4.1).
The dotted envelope indicates 95% confidence intervals for α obtained by using an asymptotic approximation.

142, 170 TCP connections active over the main UNC Chapel Hill campus link during an off–peak period of
about36 minutes in 2000. The x–axis indicates the time the connection ended. The observed heavy tailed
distribution is typical for such data and it can be attributed to the distribution of file sizes and/or durations of
user activities (see e.g. Crovella et al. (1998) and the collection of papers in Park and Willinger (2000)). The
heavy tailed nature of TCP connection sizes and durations isclosely related to the observed self–similarity and
long–range dependence of network traffic traces (see e.g. Park et al. (1996), Crovella and Bestavros (1996),
Taqqu et al. (1997)). Thus, the value of the heavy–tail indexα has important implications on the dimensioning
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and management of the network. In fact, simply monitoring the tail exponent sequentially in time, as new traffic
arrives, provides valuable feedback on the current state ofthe network. The bottom panel of Figure 4 displays
max self–similarity estimates, calculated from one minutelong windows of the data for each of the 36 available
minutes. The dotted lines indicate95% asymptotic confidence intervals for the corresponding windows (for their
calculation see Section 3.2).
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Fig. 5. The max–spectrum of the TCP connection sizes data set. The long vertical lines indicate two ranges of
scales where the max–spectrum has different slopes. The range of smaller scales (5, 10) yelds bα(5, 10) = 0.9486,
which corresponds to the tail behavior of the data over time scales of about 210 observations or 15 seconds. The
second range (10, 12) yields bα(10, 12) = 1.4124, which corresponds to the tails of the maxima over durations of
about 15 seconds to 1 minute. Depending on the goals and time horizont of interest, the practitioner may choose
to work with different parts of the max–spectrum.

Observe that the estimators track well the periods at which different magnitude heavy–tailed TCP connections
occur. For example, the large spikes in the top plot around the 14-th and36-th minutes correspond to tail
exponents less than1. In these cases, the confidence intervals forα do not contain1. On the other hand, the
confidence interval of the tail exponent around the 30-th minute is wide, which indicates that this fluctuation may
not be significant. Further, the estimated tail exponents cluster around two values:1.4 and0.9. This is also seen
on the max–spectrum plot of the entire data set in Figure 5. The block–maxima scale over small time periods of
210 observations (about15 seconds) witĥα(5, 10) = 0.9486 and over intermediate ones (210 to 212 observations
(15 seconds to1 minute) withα̂(10, 12) = 1.4124. This is largely due to the fact that over larger periods there
are relatively few fluctuations, notably the spikes around the14-th and36-th minutes, resulting in a flatter slope
for the max–spectrum.

For comparison purposes, we present in Figure 6 the Hill plotof the same data set, which proves challenging
to assess. An inspection around the largest (1 ≤ k ≤ 1, 000) and intermediate (5, 000 ≤ k ≤ 20, 000) order
statistics, yields values similar to those obtained from the max–spectrum plot. For example,α̂H(300) = 1.4114
andα̂H(12, 000) = 0.9296 match the max self–similarity estimatorsα̂(10, 12) andα̂(5, 10), respectively. Nev-
ertheless, the Hill plot remains difficult to interpret objectively and can be quite misleading in practice. On the
other hand, the max–spectrum is robust and easy to interpret. Finally, contrary to the max–spectrum estimator, it
is not practical to compute and interpret the Hill plots sequentially, as new Internet traffic data become available.
To do so, one needs to store either a sufficiently large window, or the entire past data.

3. Asymptotic properties

3.1. Consistency
The estimatorŝHw andα̂w = 1/Ĥw in (7) utilize the scaling properties of the max–spectrum statisticsYj in (6).
Therefore, their asymptotic behavior is closely linked to the asymptotic behavior of the max–spectrum as both
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the volatile, saw–tooth shape of the graph, which does not appear to stabilize. Two zoomed–in regions of the Hill
plot are displayed in the bottom (indicated by the vertical lines on the top plot).

the scalej and the sample sizeN tend to infinity. In the case of i.i.d. data, the Law of Large Numbers implies
that for fixedj, asNj → ∞, theYj ’s are consistent and unbiased estimators ofEYj = E log2D(j, 1), if finite
(see Corollary 3.1 in Stoev et al. (2006)). On the other hand,the asymptotic max self–similarity (3) ofX and (5)
imply that, asj → ∞,

EYj = E log2D(j, 1) ≃ j/α+ C, (9)

whereC = C(σ0, α) = E log2 σ0Z, and where≃ means that the difference between the left– and the right–hand
side tends to zero, withZ being anα−Fréchet variable with unit scale coefficient. A random variableZ is said
to beα−Fréchet,α > 0, with scale coefficientσ > 0, if

P{Z ≤ x} =

{
exp{−σαx−α} , x > 0
0 , x ≤ 0

(10)

The previous discussion suggests that the max self–similarity estimators in (7) will be consistent as both the
scalej andNj tend to infinity. The consistency and asymptotic normality of these estimators was established
in Stoev et al. (2006) for i.i.d. data. This was accomplishedby assessing the rate of convergence of moment
type functionals of block–maxima, such asE log2D(j, 1), under mild conditions on the rate of the tail decay
in (1). Here, we focus on the case of dependent data and obtainsufficient conditions for the consistency of the
proposed max self–similarity estimators. Deriving their asymptotic distribution for dependent data appears to be
a challenging problem, which we plan to address in future work.

Consider a strictly stationary process (time series)X = {X(i)}i∈N with heavy–tailed marginal c.d.f.F as
in (1). Further, assume that theX(i)’s are positive, almost surely, that is,F (0) = 0. It is expected that the max
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self–similarity estimators will work for dependent, time series data, provided that the block–maxima ofX scale
at a ratem1/α as the block sizem grows. The latter holds for processes with a positiveextremal index.

Definition 3.1. A strictly stationary processX with marginal c.d.f.F as in (1) is said to have an extremal
indexθX > 0, if

1

n1/α

(
X(1) ∨ · · · ∨X(n)

)
d−→ θ

1/α
X Z, asn→ ∞, (11)

whereZ is anα−Fréchet varible with scale coefficientσ0.

The above definition is equivalent to the usual definition of the extremal index in the special case when the
marginal c.d.f.F of X is as in (1) (see Ch. 3.7, p. 67 in Leadbetter et al. (1983)). Asshown in Theorem 3.7.1 of
Leadbetter et al. (1983), under the generalasymptotic independencecondition “D(un)” (see, p. 53 in Leadbetter
et al. (1983)), the heavy–tailed time seriesX has an extremal indexθX , where0 ≤ θX ≤ 1. Observe that when
theX(i)’s are i.i.d. thenθX equals1. Therefore, the extremal indexθX can be viewed as a measure of the degree
of extremal dependence among theX(i)’s – the closerθX to zero, the stronger the dependence and vice versa.

In order to gain some insight into the proposed approach, suppose for the time being, thatX has a positive
extremal indexθX > 0. In view of (11), relationship (9) holds withC = C(θ

1/α
X σ0, α). Therefore, to obtain

consistent estimates for the parameterH = 1/α one should focus on a range of scales which grow as the sample
size increases. We thusfix a rangej1 ≤ j ≤ j2, j1, j2 ∈ N and focus on the vectorsYr := {Yj+r}j2

j=j1
, with

r ∈ N, r + j2 ≤ [log2N ] and where the parameterr = r(N) grows with the sample size.
As in (7), define

Ĥ :=

j2∑

j=j1

wjYj+r, (12)

where thewj ’s are as in (8).

We present next sufficient conditions on the dependence structure of the processX that help us establish the
consistency of the estimator̂H. Subsequently, we show that a large class of max–stable processes satisfies these
conditions.

Condition E: LetMn := n−1/α ∨1≤i≤n X(i), n ∈ N. Suppose thatE| log2(Mn)|p <∞, p = 1, 2, and that,

E

(
log2(Mn)

)p

−→ cp, asn→ ∞, (13)

wherecp 6= 0, p = 1, 2.

Condition C: LetD(j, k) be as in(5). Suppose that, for somej0 ∈ N,

K(n) := sup
j≥j0,j∈N

∣∣∣Cov
(

log2D(j, n+ 1), log2D(j, 1)
)∣∣∣ −→ 0, asn→ ∞. (14)

Observe that these conditionsdo notinvolve the extremal indexθX of X, nor do they assume its existence.
In practice, the extremal index of a time seriesX may be hard to evaluate and in fact may be difficult to relate
to the asymptotic properties of the max–spectrum ofX. The above conditions are more directly related to the
asymptotic nature of the max self–similatirty estimators.We discuss further Conditions E and C in the Remarks
below. The following result shows that these conditions imply the consistency of̂H, with its proof given in
Section 7.

Theorem 3.1. LetX = {X(i)}i∈N be a strictly stationary process with heavy–tailed marginal c.d.f.F as in
(1) with F (0) = 0. Let Ĥ, j1 < j2 and r = r(N) be as in(12) with wj ’s as in (8). If r = r(N) → ∞ and
N/2r → ∞, asN → ∞, then Conditions E and C imply

E(Ĥ −H)2 −→ 0, asN → ∞, (15)

whereH := 1/α. In particular, Ĥ →P H, N → ∞.
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Condition C is readily satisfied if the sequenceX(i), i ∈ N ism−dependent. We next show that themoving
maximaFréchet processes always satisfy Conditions E and C. Letα > 0 anda(k) ≥ 0, k ∈ Z be such that

∑

k∈Z

a(k)α <∞ (16)

and letZ(k), k ∈ Z be independent and identically distributedα−Fréchet variables with unit scale coefficients.
Then, the processX = {X(k)}k∈Z,

X(k) :=
∨

i∈Z

a(k − i)Z(i) =
∨

i∈Z

a(i)Z(k − i), k ∈ Z, (17)

is said to be a moving maxima with kernela = {a(k)}k∈Z and innovationsZ(k), k ∈ Z. The analogous moving
minima processes were first introduced by Deheuvels (1983).Davis and Resnick (1993) study the context of
maxima, in a general setting. The maxima of moving maxima, orM3 processes, of Smith and Weissman (1996)
provide flexible extensions to the moving maxima models (seealso Zhang and Smith (2004)). General max–
stable processes with Fréchet marginal distributions can be handled by using de Haan’s spectral representation
(de Haan (1984)), or by using the extremal stochastic integrals in Stoev and Taqqu (2006). Here, we focus on the
simple, but useful moving maxima model although we expect that Conditions E and C continue to hold for M3
processes, as well.

The condition (16) guarantees that the maxima in (17) converge in probability and, in fact, almost surely, by
monotonicity. Moreover,X = {X(k)}k∈Z is a strictly stationary max–stable process; i.e. its finite–dimensional
distributions are multivariate max–stable (see, e.g. Ch. 5in Resnick (1987)). Specifically, for allkj ∈ Z, xj >
0, j = 1, . . . , n, n ∈ N, one has

P{X(kj) ≤ xj , j = 1, . . . , n} = exp
{
−

∑

i∈N

( ∨

1≤j≤n

a(kj − i)αx−α
j

)}
, (18)

(see, e.g. Stoev and Taqqu (2006)).
For convenience, the scale coefficient of anα−Fréchet variableξ, will be often denoted by‖ξ‖α. Note

that‖ξ‖α doesnot equal(Eξα)1/α, which is infinite. Observe that, by (18), for anykj ∈ Z andbj > 0, j =
1, . . . , n, n ∈ N, the max–linear combinations

∨n
j=1 bjX(kj) areα−Fréchet variables with scale coefficients

∥∥∥
n∨

j=1

bjX(kj)
∥∥∥

α
=

( ∑

i∈Z

( ∨

1≤j≤n

bja(kj − i)
)α)1/α

. (19)

This follows from (18) by settingxj := b−1
j , j = 1, . . . , n.

Note that by picking various sequencesa = {a(k)}k∈Z, one can obtain moving maxima processesX with
very different dependence structures. The slower thea(k)’s tend to zero, ask → ∞, the stronger the dependence
of theX(k)’s. In fact, by (19),

∥∥∥
1

n1/α
X(1) ∨ · · · ∨X(n)

∥∥∥
α

α
=

1

n

∑

i∈Z

∨

1≤j≤n

a(j − i)α.

The following lemma of Smith and Weissmann implies that the extremal indexθX of the moving maxima process
X equals

θX =
∨

i∈Z

a(i)α/
∑

i∈Z

a(i)α. (20)

Lemma 3.1. (Lemma 3.2 in Smith and Weissman (1996)) Letbk ≥ 0, k ∈ Z and suppose
∑

k∈Z
bk < ∞.

Then

lim
n→∞

1

n

∑

i∈Z

∨

i+1≤k≤i+n

bk =
∨

k∈Z

bk. (21)
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We show next that the max self–similarity estimators are consistent for an arbitrary moving maximaα−Fréchet
processX.

Theorem 3.2. Theα−Fréchet moving maxima processX defined in(17)satisfies Conditions E and C, where
cp = E(log2 a

∗ + log2 Z(1))p, p = 1, 2, with a∗ :=
∨

k∈Z
a(k).

Proof: Given in the Appendix.

Remark 1: To establish the asymptotic distribution of the estimatorĤ in (12), one needs to study the covariance
structure of the vector{Yj+r}j2

j=j1
, asr → ∞. Such a study would depend on the concrete model for the

dependence of theX(i)’s and it falls beyond the scope of the present work.

Remark 2: LetX be a positive and strictly stationary process with heavy–tailed marginal distributions. Suppose
thatX has a positive extremal index; i.e. relation (11) holds. Then, theuniform integrabilityof the random
variables| logMn|p, p = 1, 2, n ∈ N implies Condition E. This follows from the definition of uniform inte-
grability by using truncation and applying the continuous mapping theorem. Thus, if for someǫ > 0, we have
supn≥1 E| logMn|2+ǫ <∞, then Condition E holds.

Remark 3: As indicated above, strictly stationary,m−dependent sequencesX satisfy Condition C. The previous
remark also shows that many such sequences satisfy Condition E and hence the max self–similarity estimatorĤ
is consistent (Theorem 3.1).

3.2. On the construction of confidence intervals
In many applications, an uncertainty assessment about the estimated tail exponent is important and therefore one
has to construct confidence intervals. In Stoev et al. (2006), confidence intervals forH in (7) were proposed, in
the case ofi.i.d. data, based on the asymptotic distribution of the max–spectrum.Theorem 4.1 therein implies,
under certain conditions on the rate of convergence in (1), that

√
Nj2+r

(
Yr+j − µr(j)

)j2

j=j1

d−→ N (~0,Σα(j1, j2)), (22)

asN → ∞, so thatr = r(N) → ∞ andr(N)/ log2(N) → 0. Here

µr(j) := (j + r)/α+ C(σ0, α) and Σα(j1, j2) := α−2
(
ψij(j1, j2)

)

m×m
,

whereC = C(σ0, α) is as in (9), and where

ψij(j1, j2) := 2max{i,j}−j2Cov(log2(Z1), log2(Z1 ∨ (2|i−j| − 1)Z2)), (23)

for independent, standard1−Fréchet variablesZ1 andZ2.
In view of (7), the result (22) readily yields the asymptoticdistribution of the estimator̂α = 1/Ĥ. Thus, one

has the followingasymptotic confidence intervalfor α of levelγ, 0 < γ < 1:
(
(Ĥ − Ĥz(1−γ)/2

√
cw/

√
Nr+j2)

−1, (Ĥ + Ĥz(1−γ)/2
√
cw/

√
Nr+j2)

−1
)
, (24)

wherez(1−γ)/2 is (1+γ)/2−quantile of the standard normal distribution, and wherecw :=
∑j2

i,j=j1
wiwjψij(j1, j2)

with wj as in (8). Here, as recommended in Stoev et al. (2006), we use the reciprocal of a symmetric confidence
interval forH to obtain a confidence interval forα = 1/H.

Observe that the asymptotic covariance matrix in (22) does not involve the scale parameterσ0 (see (1)).
Therefore, one does not need to estimate it to obtain a confidence interval forα. Numerical experiments with
independent datashow that the asymptotic confidence intervals in (24) work very well in practice.

Now, let us turn to the dependent case.There are very few results on confidence intervals for the heavy
tail exponent even in the case of independent data. We are notaware of any general results on the asymptotic
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j1 3 4 5 6 7 8 9 10 11

90% c.i. φ = 0.1 0.891 0.894 0.912 0.919 0.897 0.903 0.889 0.895 0.875
φ = 0.3 0.759 0.888 0.914 0.915 0.899 0.901 0.889 0.895 0.875
φ = 0.5 0.229 0.772 0.889 0.915 0.892 0.899 0.888 0.895 0.875
φ = 0.7 0.000 0.299 0.801 0.895 0.895 0.899 0.887 0.895 0.875
φ = 0.9 0.000 0.000 0.070 0.641 0.843 0.890 0.877 0.890 0.875

95% c.i. φ = 0.1 0.943 0.952 0.954 0.953 0.949 0.950 0.931 0.931 0.904
φ = 0.3 0.844 0.940 0.952 0.953 0.949 0.950 0.931 0.931 0.904
φ = 0.5 0.321 0.854 0.950 0.954 0.948 0.950 0.931 0.931 0.904
φ = 0.7 0.000 0.395 0.872 0.946 0.944 0.950 0.931 0.931 0.904
φ = 0.9 0.000 0.000 0.123 0.738 0.911 0.941 0.927 0.930 0.904

99% c.i. φ = 0.1 0.990 0.990 0.989 0.991 0.987 0.993 0.975 0.972 0.947
φ = 0.3 0.946 0.985 0.990 0.991 0.987 0.992 0.975 0.972 0.947
φ = 0.5 0.552 0.953 0.984 0.990 0.987 0.991 0.975 0.972 0.947
φ = 0.7 0.000 0.642 0.959 0.981 0.988 0.990 0.974 0.972 0.947
φ = 0.9 0.000 0.000 0.276 0.897 0.968 0.984 0.973 0.972 0.947

Table 1. Coverage probabilities of the asymptotic confidence intervals (24) for α for max–AR(1)
time series as in (25) of length 215. Max self–similarity estimators bH = bH(j1, j2) were used
with 1 ≤ j1 ≤ j2 and j2 = 15. Results for three confidence levels: 90%, 95% and 99% are
shown for different values of j1.

distribution of the Hill or the moment estimator ofα for dependent data. No theory for the asymptotic distribution
of the max–spectrum is available either, in the dependent case. Developing such a theory is beyond the scope
of the present work. Nevertheless, we will present next a heuristic asymptotic argument justifying the use of the
confidence intervals (24) even when the data are dependent.

Let X = {X(i)}i∈N be a strictly stationary time series with heavy–tailed marginal c.d.f. as in (1) with
F (0) = 0. Suppose thatX has a positive extremal indexθX (see (11)). Under many dependence scenarios, the
block maximaXm(k) := max1≤i≤mX(m(k−1)+i) become “weakly dependent” asm grows. In fact, suppose
that as in the independent case, (3) holds, where theZ(k)’s are i.i.d.α−Fréchet. In this case, relation (11)
implies that the scale coefficients of theZ(k)’s involve the extremal index ofX. This suggests that, regardless
of the dependence structure ofX, relation (22) will continue to hold, under certain conditions on the rate of
r(N) as a function ofN . We expect only the constantC in the centering quantityµr(j) to be affected by the
dependence. Due to the asymptotic independence of the block–maxima, we expect the max–spectrum to have
thesameasymptotic covariance structure, as in the independent case.

If the limit covariance structure of the max–spectrum is thesame as in the independent case, then the same
confidence intervals as in (24) would apply. The fact that theextremal index is not likely to appear in the
asymptotic distribution of̂α is important since its estimation is a challenging problem in its own right (see e.g.
Ancona-Navarrete and Tawn (2000)).

Table 1 illustrates the coverage probabilities of the confidence intervals in (24) for dependent data. Specifi-
cally, 1 000 independent replications of max–AR(1) time seriesX = {X(k)}k∈Z:

X(k) := φX(k − 1) + Z(k) =

∞∨

i=0

φiZ(k − i), k = 1, . . . , N, (25)

of sizeN = 215 = 32 768 for different values ofφ were generated. The coverage probabilities for90%, 95%
and99% levels, for confidence intervals based onĤ = Ĥ(j1, j2) are reported in each row, as a function ofj1.
Observe that when the data are closer to independent (φ = 0.1), the coverage probabilities match the nominal
values even for smallj1’s. As the degree of dependence grows, larger values forj1 are required to achieve
accurate coverage probabilities. Nevertheless, even in the most dependent setting (φ = 0.9) the value ofj1 = 8
yields very good results. The fact that coverage probabilities deteriorate for very large scalesj1 is due to the
inadequacy of the normal approximation in (22) in the presence of a limited number of block–maxima.
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These brief numerical experiments suggest that, provided the scalesj1 andj2 are well–chosen, the confi-
dence intervals in (24) work well in practice, even for dependent data. We plan to study further the problem of
constructing confidence intervals forα in future work, both theoretically and through more extensive simulations.

4. Parameter selection, time scales and robustness

In this Section, several issues that relate to the performance and tuning of the max-spectrum estimator are exam-
ined.

4.1. On the automatic selection of the cut–off scale j1
In the ideal case ofα−Frechet i.i.d. data, the max–spectrum plot ofYj is linear inj. When the distribution of
the data is not Fŕechet, or when the data are dependent, then the max–spectrumis asymptotically linear, as the
scalesj tend to infinity. It is therefore important to select appropriately the range of large scalesj for estimation
purposes. In view of (9), one can always choosej2 = [log2N ] to be the largest available scale and hence, the
problem is reduced to choosing the scalej1, 1 ≤ j1 < j2. The estimator ofα is then obtained by performing a
WLS or GLS linear regression ofYj versusj, j1 ≤ j ≤ j2 (see (7)).

The “cut-off” parameterj1 can be selected either by visually inspecting the max–spectrum or through a data
driven procedure. In Stoev et al. (2006) an automatic procedure for selecting the cut–off parameter was proposed,
in the case of independent data, whose main steps are briefly summarized next. We also demonstrate that it
performs satisfactorily for dependent data. The algorithmsetsj2 := [log2N ] andj1 := max{1, j2 − b}, with
b = 3 or 4 in practice for moderate sample sizes. Next,j1 is iteratively decreased until statistically significant
deviations from linearity ofYj , j1 ≤ j ≤ j2 are detected. Namely, asj1 > 1, at each iteration over the scalej1
the following two quantities are calculated̂Hnew = Ĥ(j1 − 1, j2) andĤold = Ĥ(j1, j2). Whenever the value
of zero isnot contained a confidence interval centered at(Ĥnew − Ĥold), the algorithm stops and returns the
selectedj1 andα̂ = 1/Ĥold; otherwise, it setsj1 := j1 − 1 and proceeds accordingly. The construction of the
confidence interval about(Ĥnew − Ĥold) utilizes the covariance matrixΣ1 (see (22)). Obviously, due to the fact
that the exact asymptotic distribution is unknown for dependent data, the above procedure is heuristic in nature,
but nevertheless exhibits a good performance in practice.

Figure 7 demonstrates the performance of the automatic selection procedure in the case of dependent data.
Even though the marginal distributions ofX are Fŕechet, the dependence causes a knee in the max–spectrum plot
(see, e.g. Figure 3). The automatic selection procedure picks up this “knee” and yields reasonably unbiased and
preciseautomatic estimates ofα (see the top–right panel in Figure 7). Comparing the MSE plotand the histogram
of the selectedj1 values, we see that over70% of the times the valuej1 = 5 was chosen, which is close to the
optimal value ofj1 = 6. The histogram of the resulting automatic estimates ofα (top–right panel) is not “very
different” from the histogram of the estimators corresponding to the MSE–optimalj1 = 6 (bottom–right panel).

Recall Table 1, and observe that the caseφ = 0.9 corresponds to the time series analyzed in Figure 7. The
coverage probabilities of the confidence intervals forα essentially match the nominal levels, forj1 ≥ 8. On the
other hand the MSE–optimal value isj2 = 6 (Figure 7) which is only slightly smaller thanj1 = 8. This can be
contributed to the fact that the bias involved in the estimators atj1 = 6, although comparable to their standard
errors is significant and noticeablyshiftsthe confidence interval. As the scalej1 grows, the bias quickly becomes
negligible and the resulting confidence intervals become accurate.

These brief experiments suggest that the automatic procedure is practical and works reasonably well in the
case of dependent moving maxima time series. Similar experiments for independent heavy–tailed data (not
shown here) indicate that the automatic selection procedure continues to perform well and chooses values ofj1
close to the MSE–optimal ones, thus making it appropriate for use in empirical work. Nevertheless, a detailed
study of its performance under a combination of heavy–tailed distributions and dependence structures, as well
as its sensitivity to the choice of the back–start parameterb and the level of significancep, is necessary and the
subject of future work.
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Fig. 7. The top–plot shows the histogram of automatically selected j1 values for 1, 000 independent samples
of size N = 215 from an exponential moving maxima α−Fréchet process, X = {X(k)}k∈Z, defined as in (25)
with φ = 0.9 and with i.i.d. 1.5−Fréchet innovations. We used significance level and back–start parameters are
p = 0.01 and b = 4, respectively. The top–right plot show the histogram of the resulting bα = 1/ bH estimates. The
bottom–left plot shows estimates of the square root of the mean squared error (MSE) E( bH −H)2 as a function of
j1. The bottom–right plot contains a histogram of bα estimates obtained with the MSE–optimal choice of j1 = 11.

4.2. Robustness and the emergence of extreme value time scales: numerical illustrations
In this section, we focus on two useful features for applications of the max self–similarity estimators: their ro-
bustness to short–lived non–stationary contaminants in the data and their ability to identify the time scales where
heavy–tailed behavior emerges. The objective is to illustrate such features andnot an exhaustive quantitative
assessment.

In Figure 8, we demonstrate the max self–similarity estimators for a GARCH(1,1) time seriesX = {Xt}t∈Z:

Xt = σt(Zt − EZt), where σ2
t = φ0 + φ1X

2
t−1 + θ1σ

2
t−1, t ∈ Z, (26)

with φ0, φ1, θ1 > 0. TheZt’s are i.i.d. Pareto distributed random variables (P{Zt > x} = x−α, α = 5, for
x ≥ 1). The parameters of the model were set toφ0 = 1, φ1 = 0.1 andθ = 0.8. The fact thatEZ4

t <∞, φ0 > 0
andφ1 + θ1 < 1 imply the existence of a stationary solution to the equation(26), called a GARCH(1,1) time
series (see Theorem 1 in Bollerslev (1986)). The GARCH models and their numerous generalizations provide
flexible classes of time series, widely used for modeling financial data (see e.g. Tsay (2005)).

To limit the effect of negative values, we analyzed a simple modification of the GARCH(1,1) time series,
namelyXt + µ, whereµ = 15. The classical Hill plot of the data, shown on the bottom leftpanel of Figure 8
is quite volatile, although it provides reasonably good estimates ofα = 5 for small and moderate values ofk.
The max–spectrum (in the bottom right panel) is more robust (than the Hill plot) and yields an estimatêα ≈ 5.3
close to the nominal value. This was achieved by selecting the parameterj1 = 6 automatically (withp = 0.01
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Fig. 8. The top paneldisplays a sample of a GARCH(1,1) time series with Pareto (α = 5) innovations. Bottom–left:
a plain Hill plot, zoomed to a range where the bαH(k)’s are relatively constant in k. The resulting estimates are
relatively close to the nominal value of α = 5 (indicated by the horizontal dotted line) only for small values of k.
The Hill plot exhibits a sizable bias for moderate and large k’s. Bottom–right:the max–spectrum i.e. the log–scale
statistics Yj versus the scale j. The reciprocal of the slope yields an estimate of bα = 5.2554 for the nominal value
of α = 5.

andb = 4, see Section 4.1). Even in the difficult GARCH dependence context the max self–similarity estimator
works well, even in the presence of Pareto data.

A well known feature of the Hill plot is its non–robustness todata coming from mixture distributions. The
top plot of Figure 9, shows the GARCH time series from Figure 8, where about 1.5% of the data are replaced by
i.i.d. Pareto variables with tail exponentα′ = 1. Notice that the data set in Figure 9 is not an i.i.d. sample from a
mixture distribution, since the heavier tailed component is located at the beginning of the series. Nevertheless, the
Hill plot involves the order statistics, and it cannot distinguish between mixtures and short–lived contamination
in the data. The Hill plot shown, briefly stabilizes for smallvalues ofk taking values close to 1. It grows rapidly
for larger order statistics and stabilizes briefly near the nominal level5. Once again, it proves difficult to assess
and interpret and in particular pick out the special features underlying this data set. On the other hand, the max–
spectrum is relatively robust and essentially unaffected by the contamination. It yields an estimate ofα̂ ≈ 4.89,
close to the nominal value, obtained by choosing the parameter j1 = 6 automatically (withp = 0.01 andb = 4).
The presence of the contaminant affects the max–spectrum only at the largest scales by making is slightly more
steep.

We next demonstrate another interesting feature of the max self–similarity estimation framework; namely,
that it provides insight into the time scales of the data, where certain heavy–tailed behavior becomes relevant.
This aspect is particularly important when studying time series data, where the index of the observations has a
physical meaning. In Figure 10, we show the heavy tailed GARCH(1,1) data set studied above, with a heavy–
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Fig. 9. The top paneldisplays the GARCH(1,1) time series from Figure 8, where about 1.5% of the sample was
contaminated (replaced) by a Pareto distribution with tail exponent α′ = 1. Observe the region of larger values in
the beginning of the data. The bottom–leftand bottom–rightpanels show the Hill plot and the max–spectrum of the
data, respectively.

tailed Pareto component inserted at every256−th sample value. Observe that over a very short segment of
k values the Hill estimatorŝαH(k) happen to approximately identify the tail exponentα = 1 of the Pareto
component. The max self–similarity estimator also identifies the presence of the heavy–tailed component and
estimates its index aŝα = 1.6994. In addition, the procedure of automatic selection of the range of scalesj
choosesj1 = 10 (solid vertical line), which can be linked to the time scale256 = 28 where the Pareto component
starts to dominate the block–maxima. This is an important advantage of the max self–similarity estimators over
the classical tail exponent estimators. The latter ones areblind to the temporal structure in the data since they
involve sorted observations.

Observe also that the max–spectrum yields an estimateα̂ ≈ 5.25, over the range of scales[j1, j2] = [4, 8].
This corresponds to the tail exponent of the underlying GARCH(1,1) time series. This region of scales also
reflects the time scale where the heavier–tailed component in the data is irrelevant. One cannot obtain such
information from the Hill plot, which does not provide time scale information and does not appear to stabilize
near the levelα = 5 (horizontal dashed line).

5. Applications to Financial Data

We analyze market transactions for two stocks -Intel (symbol INTC) and Google (GOOG)- using the max–
spectrum. The data sets were obtained from theTrades and Quotes(TAQ) data base ofconsolidated transactions
of theNew York Stock Exchange(NYSE) and NASDAQ (see Wharton Research Data Service (url)) and include
the following information about every single trade of the underlying stock:time of transaction(up to seconds),
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Fig. 10. The top paneldisplays the GARCH(1,1) time series from Figure 8. Every 256−th data point is replaced
by a sample from a Pareto distribution with tail exponent α′ = 1. The bottom panelsdisplay Hill plots and the max
self–similarity spectrum of the data, respectively.

price (of the share) andvolume(in number of shares). In our analysis, we focus on the tradedvolumes of the two
stocks for November 2005, that could provide information about the respective sector’s, as well as the market’s
economic conditions (Lo and Wang (2000)).

A ubiquitous feature of the volume data sets is the presence of heavy, Pareto type tails, as can be seen in
Figure 12. Specifically, the top panel shows transaction volumes for the Google stock on November 7, 2005,
while the bottom panels show the Hill and the max–spectrum plots, respectively. The tail exponent, estimated
from the max–spectrum over the range of scales(11, 15) is α̂ = 1.0729. The Hill plot indicates heavy–tail
exponent estimates between1.5 and2, which correspond to the slope of the max–spectrum over the range of
scales(1, 10). The small dip in the Hill plot for very large order statistics (smallk’s) can be related to the
behavior of the max–spectrum for scales(11, 15) (see also Section 4.2, above). Such behavior is typical for
almost all liquid stocks, as well as the presence of non–stationarity and dependence. In order to minimize the
intricate non–stationarity effects, we focus here on traded volumes within a day. The max–spectrum yields
consistent tail exponent estimates even in the presence of dependence. This fact and the demonstrated robustness
of the max–spectrum (see Section 4.2) suggest that it may be safely used in various practical scenarios involving
heavy–tailed data. In Figure 11, we show the max self–similarity estimates of the tail exponents, for each of
the 21 trading days in November, 2005. The max–spectra of these 21 time series (not shown here) of trading
volumes are essentially linear. This confirms the validity of a heavy–tailed model for the data, valid over a wide
range of time scales – from seconds up to hours and days. Further, at the beginning and end of the trading day,
several large volume transactions are observed, as documented in Hong and Wang (2000). Nevertheless, the
trading activity of Google, remains essentially linear over the period under study, with a few bumps at the largest
scales due to diurnal effects and other non–stationarities.
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Fig. 11. Top panel:traded volumes for the Google stock from the TAQ data base of consolidated trades of NYSE
and NASDAQ for the month of November, 2005. The x– axis and y–axis correspond to time and number of traded
shares, respectively. This is a high– frequency data set, where each data point corresponds to the volume of
a single transaction and no temporal aggregation is performed. The gaps of zeros in the data correspond to
hours of the day with no trading and/or weekends. Bottom panel:estimated tail exponents (indicated by circles)
from the max–spectrum and their corresponding 95% confidence intervals (indicated by broken lines), based on
the asymptotic approximation for independent and identically distributed data. Automatic selection of the cut-off
scale j1 was done with p = 0.1 and b = 3 (see Section 4.1). Every estimate was computed from a day worth of
transaction volumes.

In Figure 11, the daily tail exponent estimates are shown forthe Google stock, which fluctuate between 1
and 2, along with pointwise confidence intervals (broken lines). These estimates indicate that the tail exponent
exhibits a significant degree of variability over the periodof a month, and that an infinite variance model may be
most appropriate for modeling trading volumes. For example, on November 7 (see Figure 12), the estimate ofα
is nearly1, which may be due to the several extremely large peaks in the volume data. The upward knee in the
max–spectrum of this data set is likely caused by these peaks. The max–spectra on most other days are much
closer to linear than the one in Figure 12. Such correspondence between the presence of large peaks in the data
and the behavior of the max–spectrum can be used to identify statistically significant fluctuations in the volume
data. Hence, the max–spectrum plot can be used not only to estimateα, but also to detect changes in the market.
We illustrate this last point next, by examining an unusual trading pattern in the Intel stock towards the end of
November, 2005.

Figure 13 shows the max–spectrum estimates of the tail exponents for the traded volumes of the Intel stock for
21 trading days in November 2005. Notice that up to November 21, the tail exponent is fairly constant, fluctuating
between 1.2 and 2. On November 22 (Tue) and 23 (Wed), before the Thanksgiving holiday on November 24
(Thur), the tail exponent takes values larger than 3 and 5, respectively. This change is quite surprising and it
is deemed significant by the corresponding confidence intervals. A closer look at the data from November 23
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Fig. 12. Top panel:the transaction volumes during the trading hours of November 7, 2005. The x–axis corresponds
to the number of the transaction and the y–axis to number of shares. Note that about 50, 000 transactions occurred
on this day, which is typical for the Google stock. Observe also the fairly classical heavy–tailed nature of the
volume data. Bottom panels:the Hill plot (left) and the max–spectrum (right) of the data. The Hill plot is zoomed–in
to a range where it is fairly constant and a tail exponent between 1.5 and 2 can be identified. The max–spectrum
reveals more: on large scales the plot is steeper than on small scales with the tail exponent about 1 on the range
of scales (11, 15) and exponent about 1.7 on scales (1, 10). The presence of a knee in the max– spectrum plot
suggests different behavior of the largest volumes on large time scales than on small time scales and can be
contributed to the several very large spikes of over 20, 000 traded shares (about 5 million US dollars) the top plot.

(Figure 14) shows a changing but persistent pattern of trading as compared to November 21; see for example
Figure 15).

This behavior proves persistent and continues on November 25, after the Thanksgiving holiday. Moreover,
no such behavior was observed for the Google data on any of the21 trading days in November, 2005. Although
trading of extremely large volumes occurs on November 23, asseen in Figure 14, these trades are very regular
and hence inconsistent with a heavy–tailed model. Althoughregular in time, these large transactions occur on a
time scale of several minutes, and hence the small scales of the max–spectrum are not affected by these peaks
and behave as on a normal trading day (see Figure 15). However, the large peaks dominate the larger scalesj and
their regularity makes the max–spectrum essentially horizontal. The Hill plot, shown on the bottom–left panel
of Figure 14, fails to pick up the unusual behavior, since it suggests values ofα ≈ 1, which corresponds only to
the smallest portion of the max–spectrum, whereα̂(7, 11) = 1.0578 ≈ 1.

Our best guess is that this change in activity is related to the approval by the board of directors of the Intel
Corp. on November 10 of a program for a stock buy–back worth ofup to 25 billion US dollars; (see, e.g.
the Financial Times, London, on Thursday November 11, page 27); hence, some of the delayed effects of the
announcement of the program and market reaction to it are demonstrated in the volume activity discussed above.
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Fig. 13. This figure has the same format as Figure 11. On the top panel, the traded volumes of the Intel stock for
the month of November, 2005 are shown. Observe that the tail exponent estimates on the bottom plot fluctuate
between 1.5 and 2 up to November 21. On and after November 22, unusually high values of α appear (compare
with the case of the Google stock in Figure 11). This is further analyzed in Figures 14 and 15, below.

6. Conclusion

In this paper, the problem of estimating the tail index of heavy tailed dependent data is studied and an estimator
based on the max self–similarity scaling behavior of block maxima is introduced. Its consistency is established
and several of its features discussed. Analysis of Internettraffic and stock volume data demonstrate its usefulness
in applications. As indicated on several occasions, the problem of deriving the asymptotic distribution of the
proposed estimator is of interest for further study.

7. Proofs

PROOF OFTHEOREM 3.1: In view of (12) and (8), we have that

Ĥ −H =

j2∑

j=j1

wj(Yj+r − EYj+r) +

j2∑

j=j1

wj(EYj+r − (j + r)/α− c1), (27)

wherec1 is as in (13). Now, by applying the Cauchy–Schwartz inequality and the inequality

∣∣∣
m∑

i=1

xi

∣∣∣
p

≤ m0∨(p−1)
m∑

i=1

|xi|p, m ∈ N, valid for all p, xi ∈ R, i = 1, . . . ,m, (28)
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Fig. 14. Top panel:traded volumes of the Intel stock for November 23, 2005. Observe the regular occurrence of
many very large trades of approximately the same sizes: 10, 000, 15, 000, 25, 000 and a few of 20, 000 shares.
This is a very unusual behavior of the volume data, as compared to a typical trading day (see, e.g. Figure 15).
Bottom panels:the Hill plot and the max–spectrum of the data. Notice that the Hill plot fails to identify the unusual
behavior of the data, whereas the max–spectrum flattens out, on large scales due to the regular non–heavy tailed
behavior of the largest traded volumes. Once identified on the max–spectrum plot, one can perhaps read–off
these details from the volatile Hill plot for very small k’s. On small scales, where the regular large transactions are
not frequent and do not play a role, the max–spectrum yields tail exponents about 1. This is in line with the Hill
plot.

we obtain

E(Ĥ −H)2 ≤ const
( j2∑

j=j1

E(Yj+r − EYj+r)
2 +

j2∑

j=j1

(EYj+r − (j + r)/α− c1)
2
)
. (29)

Fix j, j1 ≤ j ≤ j2 and observe that

E(Yj+r − EYj+r)
2 =

1

Nj+r
Var(log2D(j + r, 1)) (30)

+
2

Nj+r

Nj+r−1∑

k=1

(Nj+r − k)

Nj+r
Cov(log2D(j + r, k + 1), log2D(j + r, 1)).

Note that

Var(log2D(j + r, 1)) = Var
(

log2(D(j + r, 1)/2(j+r)/α)
)

= Var
(

log2M2j+r

)
,
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Fig. 15. This figure has the same format as Figure 14. The top plot shows the volumes of INTC during November
21, 2005, which as the volumes of GOOG in Figure 12, behave like a classical heavy–tailed sample. The Hill plot
and the max–spectrum (bottom left and right panels, respectively) identify tail exponents around 1.5. The cut off
scale in the max–spectrum plot was selected automatically with p = 0.1 and b = 3 (as in Figure 13. Notice the
volatile, saw–tooth shape of the Hill plot which is due to its non–robustness to deviations from the Pareto model.
The max–spectrum is more robust and fairly linear with a small knee on scale j = 12, which may be due to a few
clusters of large volumes in the beginning and at the end of the trading day.

whereM2j+r is as in Condition E. Thus, by (13), the first term in the right–hand side (r.h.s.) of (30) vanishes,
asNr = N/2r → ∞. On the other hand, Condition C implies that the second term in the r.h.s. of (30) also
vanishes, asN/2r → ∞.

We have thus shown that the first term (variance) in the r.h.s.of (29) tends to zero, asN → ∞. Now, focus
on the second term in the r.h.s. of (29). In view of (6), for allj, j1 ≤ j ≤ j2,

EYj+r − (j + r)/α− c1 = E log2

(
D(j + r, 1)/2(j+r)/α

)
− c1 = E log2M2(j+r)/α − c1,

which vanishes, asr = r(N) → ∞, by Condition E. Therefore, the r.h.s. of (29) converges to zero, asr → ∞
andN/2r → ∞ and the proof of the theorem is complete.2

The next three elementary results are used in the proof of Theorem 3.2.

Lemma 7.1. Let bk ≥ 0, k ∈ Z and suppose
∑

k∈Z
bk <∞. Then, for anyn ∈ N,

∨

k∈Z

bk ≤ 1

n

∑

i∈Z

∨

i+1≤k≤i+n

bk ≤
∑

k∈Z

bk. (31)
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PROOF. We havebk∗ =
∨

k∈Z
bk, for somek∗ ∈ Z, since

∑
k∈Z

bk < ∞. Thus,
∨

i+1≤k≤i+n bk = bk∗ ,
for all i = k∗ − n, . . . , k∗ − 1. Since at leastn of the terms

∨
i+1≤k≤i+n bk are equal to the maximumbk∗ =∨

k∈Z
bk, we obtain that the first inequality in (31) holds. The secondbound in (31) follows from the fact that∨

i+1≤k≤i+n bk ≤ ∑
i+1≤k≤i+n bk. 2

Lemma 7.2. Let Z1 andZ2 be independentα−Fréchet variables,α > 0, with positive scale coefficients
‖Z1‖α and‖Z2‖α, respectively. Then, for allq > 0 andγ ∈ (0, α/q), there exists a constantCq,γ , independent
ofZi, i = 1, 2, such that

E| log2(Z1 ∨ Z2) − log2 Z1|q ≤ Cq,γ

(
‖Z2‖α/‖Z1‖α

)qγ

. (32)

PROOF. The expectation in (32) equals

E| log2(1 ∨ (Z2/Z1))|q ≤ Cq
γE(Zqγ

2 /Zqγ
1 ) = Cq

γ(EZqγ
2 )(EZ−qγ

1 ), (33)

for some constantCγ , which is independent ofZ1 andZ2. In the last relation, we used the inequality0 ≤
log2(1 ∨ x) ≤ Cγx

γ , valid for all x, γ > 0 and someCγ > 0, and the independence ofZ1 andZ2.
Now, observe thatE(Zqγ

2 ) = ‖Z2‖qγ
E(Zqγ), andE(Z−qα

1 ) = ‖Z1‖−qγ
E(Z−qγ), whereZ is anα−Fréchet

random variable with unit scale coefficient. The expectationE(Z−qα) is finite, for anyαq > 0, sinceqα ∈ (0, α),
the expectationE(Zqα) is also finite. This, in view of (33), implies (32).2

Lemma 7.3. For any two non–empty index setsA andB, and real numbersxm,n, m ∈ A andn ∈ B, we

havesupm∈A

(
supn∈B xm,n

)
= sup(m,n)∈A×B xm,n.

This result follows directly from the definition of the supremum.

PROOF OFTHEOREM 3.2: We first show Condition E. In view of (19), we have thatMn equals in distribution
to ‖Mn‖αZ(1), where

‖Mn‖α
α =

1

n

∑

i∈Z

∨

1≤k≤n

a(k − i)α,

denotes the scale coefficient of theα−Fréchet variableMn.
Lemma 3.1, applied tobk := a(k)α, k ∈ Z, implies that‖Mn‖α → a∗ :=

∨
k∈Z

a(k), asn → ∞. We
therefore obtain

E(log2Mn)p = E(log2 ‖Mn‖α + log2 Z(1))p −→ cp := E(log2 a
∗ + log2 Z(1))p, p = 1, 2,

which implies Condition E.

The validation of Condition C is more involved.Observe that the sequencesD(j, n + 1), n ∈ Z in (14) are
in fact a type of moving maxima processes. Indeed, in view of (5) and (17), we obtain

D(j, n+ 1) =

2j∨

i=1

∨

k∈Z

a(k)Z(2jn+ i− k)

=
∨

k∈Z

( 2j∨

i=1

a(k + i)
)
Z(2jn− k) =:

∨

k∈Z

bj(k)Z(2jn− k), (34)

where the second equality in (34) follows by making the change of variablesk := k−i and interchanging the two
maxima (Lemma 7.3). Thus, we have thatD(j, n+1) = X̃j(2

jn), whereX̃j(k) :=
∨

i∈Z
bj(i)Z(k− i), k ∈ Z

is a moving maxima process as in (17). That is, the process{D(j, k)}k∈Z is adown–sampled versionof a moving
maxima process.
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Let nowm ∈ N be an arbitrary parameter and consider the decomposition:

1

2j/α
D(j, n+ 1) =: Dm(j, n+ 1) ∨ D̃m(j, n+ 1), n ∈ Z, (35)

where

Dm(j, n+ 1) :=
1

2j/α

∨

k∈Z

( 2j∨

j=1

a(k + i)
)
1{|k|≤m2j}Z(2jn− k) (36)

and

D̃m(j, n+ 1) :=
1

2j/α

∨

k∈Z

( 2j∨

j=1

a(k + i)
)
1{|k|>m2j}Z(2jn− k). (37)

Note the presence of the normalization factor2j/α in (35) as well as in (36) and (37).
We now give some intuition behind the decomposition (35). Observe that the indicator functions1{|k|≤m2j}

and1{|k|>m2j} restrict the outer maxima in (36) and (37) to the sets of indices{k ∈ Z : |k| ≤ m2j} and{k ∈ Z :

|k| > m2j}, respectively. Also, as argued above, the sequencesDm(j, n+ 1), n ∈ Z andD̃m(j, n+ 1), n ∈ Z

are down–sampled moving maxima. Note, however that, for allj ∈ N, {Dm(j, n+ 1)}n∈Z is a2m−dependent
sequence, and therefore its covariances at lags greater than 2m vanish. We therefore proceed by showing that the
covariances in (14) can be bounded in terms of theDm(j, k)’s plus an asymptotically negligible contribution due
to theD̃m(j, k)’s.

We start by deriving several inequalities for the scale coefficients‖D(j, 1)/2j/α‖α, ‖Dm(j, 1)‖α and‖D̃m(j, 1)‖α.
Observe that by (34),

‖D(j, 1)/2j/α‖α
α =

1

2j

∥∥∥
∨

k∈Z

( 2j∨

i=1

a(k + i)
)
Z(−k)

∥∥∥
α

α
=

∑

k∈Z

1

2j

2j∨

i=1

a(k + i)α, (38)

where in the last equality we used the fact that theZ(k)’s are i.i.d. standardα−Fréchet variables (see (18)).
Now, by applying Lemma 7.1 to the r.h.s. of (38), we obtain

∨

k∈Z

a(k)α ≤ ‖D(j, 1)/2j/α‖α
α ≤

∑

k∈Z

a(k)α. (39)

As in (38), we also have that

‖Dm(j, 1)‖α
α =

∑

k∈Z

1

2j

2j∨

i=1

a(k + i)α1{|k|≤m2j} and ‖D̃m(j, 1)‖α
α =

∑

k∈Z

1

2j

2j∨

i=1

a(k + i)α1{|k|>m2j}.

By using that|k + i| ≤ (m− 1)2j ≤ (m− 1) implies |k| ≤ m2j , for all i = 1, . . . , 2j , j ∈ N, we obtain

‖Dm(j, 1)‖α
α ≥

∑

k∈Z

1

2j

2j∨

i=1

a(k + i)α1{|k+i|≤(m−1)2j} ≥
∨

k∈Z

a(k)α1{|k|≤m−1}, (40)

where the last inequality follows from Lemma 7.1. By Lemma 7.1, as in (39), we also have

‖Dm(j, 1)‖α
α ≤

∑

k∈Z

a(k)α. (41)

Since|k| > m2j implies |k + i| > (m− 1)2j ≥ (m− 1), for all i = 1, . . . , 2j , by Lemma 7.1,

‖D̃m(j, 1)‖α
α ≤

∑

k∈Z

1

2j

2j∨

i=1

a(k + i)α1{|k+i|>(m−1)2j} ≤
∑

k∈Z

a(k)α1{|k|>m−1}. (42)



26 Stoev & Michailidis

Consider now the covariances in (14) and observe that they are equal to

Cov
(

log2(D(j, n+ 1)/2j/α), log2(D(j, 1)/2j/α)
)

=: Eξ(j)η(j) − Eξ(j)Eη(j),

where, for brevity, we letξ(j) := log2(D(j, n+ 1)/2j/α), andη(j) := log2(D(j, 1)/2j/α). Let alsoξm(j) :=
log2Dm(j, n+ 1) andηm(j) := log2Dm(j, 1) and observe that the triangle and the Cauchy–Schwartz inequal-
ities, imply

|Eξ(j)η(j) − Eξm(j)ηm(j)| ≤ E|ξm(j)(η(j) − ηm(j))| + E|η(j)(ξ(j) − ξm(j))|

≤ (Eξm(j)2)1/2
(
E(η(j) − ηm(j))2

)1/2

+ (Eη(j)2)1/2
(
E(ξ(j) − ξm(j))2

)1/2

. (43)

Note that, by stationarity,Dm(j, 1) =d Dm(j, n+ 1) =d ‖Dm(j, 1)‖αZ(1), and hence

Eξm(j)2 = Eηm(j)2 = E

(
log2 ‖Dm(j, 1)‖α + log2 Z(1)

)2

.

We similarly have that

Eξ(j)2 = Eη(j)2 = E

(
log2 ‖D(j, 1)/2j/α‖α + log2 Z(1)

)2

.

Therefore, the inequalities (39), (40) and (41) imply thatsupj∈N Eξm(j)2 = supj∈N Eηm(j)2 andsupj∈N Eξ(j)2 =
supj∈N Eη(j)2 are finite, for all sufficiently largem. Indeed, this follows from the inequality| log2(x)| ≤
log2(e)(x+ 1/x), valid for all x > 0. Thus, by (43), for all sufficiently largem, we have

sup
j∈N

|Eξ(j)η(j) − Eξm(j)ηm(j)| ≤ constsup
j∈N

(
E(ξ(j) − ξm(j))2

)1/2

= constsup
j∈N

(
E(log2(D(j, 1)/2j/α) − log2Dm(j, 1))

)1/2

. (44)

Note thatDm(j, 1) andD̃m(j, 1) are independent since they involve maxima of non–overlapping ranges of
Z(k)’s (see (36) and (37)). Thus, in view of (35), Lemma 7.2, applied to the r.h.s. of (44) implies that

sup
j∈N

|Eξ(j)η(j) − Eξm(j)ηm(j)| ≤ constsup
j∈N

(‖D̃m(j, 1)‖α

‖Dm(j, 1)‖α

)α/4

≤ const
(∑

k∈Z
a(k)α1{|k|>(m−1)}∨

k∈Z
a(k)α1{|k|≤(m−1)}

)α/4

=: constR(m), (45)

where the last inequality follows from (40).
Similarly, by using the triangle inequality and the fact that E|X| ≤ (EX2)1/2, we get

sup
j∈N

|Eξ(j)Eη(j) − Eξm(j)Eηm(j)| ≤ constR(m), (46)

for all sufficiently largem ∈ N, whereR(m) is as in (45). Now, by combining relations (45) and (46), we obtain
that

sup
j∈N

|Cov(ξ(j), η(j))| ≤ sup
j∈N

|Cov(ξm(j), ηm(j))| + constR(m)

= sup
j∈N

|Cov(log2Dm(j, n+ 1), log2Dm(j, 1))| + constR(m). (47)

SinceR(m) =
(
(
∑

|k|>(m−1) a(k)
α)/(

∨
|k|≤(m−1) a(k)

α)
)α/4

→ 0, asm → ∞, one can make the second

term in the r.h.s. of (47) arbitrarily small, for all sufficiently largem’s. However, sinceDm(j, 1) andDm(j, n+1)
are independent, for alln > 2m, and for anyj ∈ N, the first term in the r.h.s. of (47) vanishes for alln > 2m.
This implies that (14) holds and completes the proof of the theorem.2
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