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Abstract. Data usually present in heterogeneous sources. When deal-
ing with multiple data sources, existing models often treat them inde-
pendently and thus can not explicitly model the correlation structures
among data sources. To address this problem, we propose a full Bayesian
nonparametric approach to model correlation structures among multiple
and heterogeneous datasets. The proposed framework, first, induces mix-
ture distribution over primary data source using hierarchical Dirichlet
processes (HDP). Once conditioned on each atom (group) discovered in
previous step, context data sources are mutually independent and each
is generated from hierarchical Dirichlet processes. In each specific appli-
cation, which covariates constitute content or context(s) is determined
by the nature of data. We also derive the efficient inference and exploit
the conditional independence structure to propose (conditional) parallel
Gibbs sampling scheme. We demonstrate our model to address the prob-
lem of latent activities discovery in pervasive computing using mobile
data. We show the advantage of utilizing multiple data sources in terms
of exploratory analysis as well as quantitative clustering performance.

1 Introduction

We are entering the age of big data. The challenges are that these data not only
present in massive amount but also co-exist in heterogeneous forms including
texts, hypertexts, images, graphics, videos, speeches and so forth. For exam-
ple, in dealing with social network analysis, data present in network connection
accompanying with users’ profiles, their comments, activities. In medical data
understanding, the patients’ information usually co-exists with medical infor-
mation such as diagnosis codes, demographics, laboratory tests. This deluge of
data requires advanced algorithms for analyzing and making sense out of data.
Machine learning provides a set of methods that can automatically discover low-
dimensional structures in data which can be used for reasoning, making decision
and predicting. Bayesian methods are increasingly popular in machine learning
due to their resilience to over-fitting. Parametric models assume a finite number
of parameters and this number needs to be fixed in advance, hence hinders its
practicality. Bayesian nonparametrics, on the other hand, relax the assumption
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of parameter space to be infinite-dimensional, thus the model complexity, e.g.,
the number of mixture components, can grow with the data1.

Two fundamental building blocks in Bayesian nonparametric models are the
(hierarchical) Dirichlet processes [14] and Beta processes [15]. The former is usu-
ally used in clustering models, whereas the later is used in matrix factorization
problems. Many extensions of them are developed to accommodate richer types
of data [12,16]. However, when dealing with multiple covariates, these models
often treat them independently, hence fail to explicitly model the correlation
among data sources. The presence of rich and naturally correlated covariates
calls for the need to model their correlation with nonparametric models.

In this paper, we aim to develop a full Bayesian nonparametric approach to
the problem of multi-level and contextually related data sources and modelling
their correlation. We use a stochastic process, being DP, to conditionally “index”
other stochastic processes. The model can be viewed as a generalization of the
hierarchical Dirichlet process (HDP) [14] and the nested Dirichlet process (nDP)
[12]. In fact, it provides an interesting interpretation whereas, under a suitable
parameterization, integrating out the topic components results in a nested DP,
whereas integrating out the context components results in a hierarchical DP.
For simplicity, correlated data channels are referred as two categories: content
and context(s). In each application, which the covariates constitute content or
context(s) is determined by the nature of data. For instance, in pervasive com-
puting application, we choose the bluetooth co-location of user as content while
contexts are time and location.

Our main contributions in this paper include: (1) a Bayesian nonparametric
approach to model multiple naturally correlated data channels in different areas
of real-world applications such as pervasive computing, medical data mining,
etc.; (2) a derivation of efficient parallel inference with Gibbs sampling for mul-
tiple contexts; (3) a novel application on understanding latent activities contex-
tually dependent on time and place from mobile data in pervasive applications.

2 Background

A notable strand in both recent machine learning and statistics literature focuses
on Bayesian nonparametric models of which Dirichlet process is the crux. Dirich-
let process and its existence was established by Ferguson in a seminal paper in
1973 [4]. A Dirichlet process DP (α,H) is a distribution of a random probabil-
ity measure G over the measurable space (Θ,B) where H is a base probability
measure and α > 0 is the concentration parameter. It is defined such that, for
any finite measurable partition (Ak : k = 1, . . . ,K) of Θ, the resultant random
vector (G (A1) , . . . , G (Ak)) is distributed according to a Dirichlet distribution
with parameters (H (A1) , . . . , H (Ak)). In 1994, Sethuraman [13] provided an
alternative constructive definition which makes the discreteness property of a
Dirichlet process explicitly via a stick breaking construction. This is useful while
dealing with infinite parametric space and defined as
1 This characteristic is usually called “let the data speak for itself”.
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G =
∞∑

k=1

βkδφk
where φk

iid∼ H, k = 1, . . . ,∞ and β = (βk)∞
k=1 , (1)

βk = vk

∏

s<k

(1 − vs) with vk
iid∼ Beta (1, α) , k = 1, . . . ,∞.

It can be shown that
∑∞

k=1 βk = 1 with probability one, and as a conven-
tion in [11], we hereafter write β ∼ GEM (α). Due to its discreteness, Dirichlet
processes is used as a prior for mixing proportion in Bayesian mixture models.
Dirichlet processes mixture models (DPM) [1,7] which are nonparametric coun-
terpart of well-known Gaussian mixture models (GMM)2 with the relaxation of
the number of components to be infinite were first introduced by Antoniak [1]
and elaborated efficiently computational aspect by Neal [7].

However, in practice, data usually appear into collections which can be mod-
elled together. From statistical perspective, it is interesting to extend the DP to
accommodate these collections with dependent models. MacEachern [6] intro-
duced framework that induces dependencies over these collections by using a
stochastic process to couple them together. Following this framework, Nested
Dirichlet process [12] induces dependency by using base measure as another
Dirichlet process shared by collections which are modeled by Dirichlet process
mixtures. Another widely used model driven by idea of MacEachern is hierar-
chical Dirichlet process [14] in which dependency is induced by sharing stick
breaking representation of a Dirichlet process. All of these models are supposed
to model single variable in data. In topic modeling, for instance, HDP is used
as a nonparametric counterpart of Latent Dirichlet Allocation (LDA) to model
word distributions over latent topics. In this application, the model ignores other
co-existing variables such as time, authors.

When dealing with multiple covariates, one can treat the covariates as indepen-
dent factors.With such independent assumption, he cannot leverage the correlated
nature of data. There are several works dealing with these situations. Recently,
the work by Nguyen et. al. [8] tried to model secondary data channel (called con-
text) attachedwith primary channel (content). In thismodel, secondary data chan-
nel is collected in group-level, e.g time or author for each document (consisting
of words) or tags in each image. In the case of other data sets, observations are
not at group-level but data point-level. For instance, in pervasive computing, each
bluetooth co-location of eachuser includes several observations such as co-location,
time stamp, location, etc. There is a motivation for modelling in these kind of appli-
cations. Dubey et. al. [2] tried to model topics over time where time are treated
as context. The models can only handle one context while modelling but can not
leverage the multiple correlated data channels. Another work by Wulsin et. al. [16]
proposed the multi-level clustering hierarchical Dirichlet process (MLC-HDP) for
clustering human seizures. In this model, authors assumed that data channels are
clustered into multi-level which may not suitable for aforementioned data sets. In
2 Indeed, DPM models are more general than (infinite) GMM since we can not only use

Gaussian distribution but different kinds of distribution, e.g. Multinomial, Bernoulli,
etc., to model each component.
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consequence, there is the need for nonparametric models to handle naturally corre-
lated data channels with certain dependent assumptions. In this paper, we propose
a model that can model jointly the topic and the context distribution. Our method
assumes a conditional dependence between two sets of stochastic process (content-
context) which are coupled in a fashion similar to nested DP. The content models
the primary observation with HDP and the dependent co-observations are mod-
eled as nested DP with group index provided by the stochastic process from the
content side. The set of DPs from the context side is further linked hierarchically
in the similar fashion to HDP. Since our inference derivations rely on hierarchical
Dirichlet processes, we briefly reviewhierarchicalDirichlet processes and someuse-
ful properties for inference. The justification for these properties can be found in
[1,14, Proposition 3].

Let consider the case when we have a corpus with J documents. With the
assumption that each document is related to several topics, we can model each
document as a mixture of latent topics using Dirichlet process mixture. Though
different documents may be generated from different topics, they usually share
some of topics each others. Hierarchical Dirichlet process (HDP) models this
topic sharing phenomenon. In HDP, the topics among documents are coupled
using another Dirichlet process mixture G0. For each document, a Dirichlet
process Gj , j = 1, . . . , J , is used to model its topic distribution. Formally,
generative representation is as below:

G0 | γ,H ∼ DP (γ,H) Gj | α,G0 ∼ DP (α,G0) (2)
θji | Gj ∼ Gj xji | θji ∼ F (θji).

Similar to DPs, stick breaking representation of HDP is described as follows

β = β1:∞ ∼ GEM(γ) G0 =
∞∑

k=1

βkδφk
πj = πj1:j∞ ∼ DP (α, β)

Gj =
∞∑

k=1

πjkδφk
zij ∼ πj φk ∼ H(λ) xji ∼ F (φzji

). (3)

Given the HDP model as described in Equation (3) and θj1, . . . θjNj
be i.d.d

samples from Gj for all j = 1, . . . , J . All of these samples of each group Gj are
grouped into M j factors ψj1, . . . , ψjMj . These factors from all groups can be
grouped into K sharing atoms φ1, . . . , φK . Then the posterior distributions stick
breaking of G0(denoted as β = (β1, . . . , βK , βnew) is

(β1, . . . , βK , βnew) ∼ Dir (m1, . . . ,mK , γ) , (4)

where mk =
∑J

j=1

∑Mj

i=1 1 (ψji = φk) .
Another useful property for posterior of number of cluster K of a Dirichlet

process is that if G ∼ DP (α,H) and θ1, . . . , θN be N i.i.d samples from G . These
θ’s values can be grouped into K clusters where 1 ≤ K ≤ N . The conditional
probability of K given α and N is

p(K = k | α,N) = αk Γ (α)
Γ (α + N)

s(N, k), (5)

where s(N, k) is the unsigned Stirling number of the first kind.
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3 Framework

3.1 Context Sensitive Dirichlet Processes

Model Description: Suppose we have J documents in our corpus, and each has
Nj words of which observed values are xji’s. From topic modeling perspective,
there are a (specified or unspecified) number of topics among documents in
corpus where each document may relate to several topics. We have an assumption
that each of these topics is correlated with a number of realizations of context(s)3

(e.g. time). To link the context with topic models we view context as distributions
over some index spaces, governed by the topics discovered from the primary data
source (content), and model both content and contexts jointly. We impose a
conditional structure in which contents provide the topics, upon which contexts
are conditionally distributed. Loosely speaking, we use a stochastic process to
model content, being DP, and to conditionally “index” other stochastic processes
which models contexts.

In details, we model the content side with a HDP, where xji’s are given in J
groups. Each of group is modeled by a random probability distribution Gj , which
shares a global random G0 probability distribution. G0 is draw from a DP with
a base distribution H and concentration parameter γ. The distribution G0 plays
as a base distribution in a DP with concentration parameter α to construct Gj ’s
for groups. The specification for this HDP is similar to Equation (2) in which
the θji’s are grouped into global atoms φk(k = 1, 2, . . .).

For each observation xji, there is an associated context observation sji which
is assumed to depend on the topic atom θji of xji. Furthermore, the context
observations of a given topic Sk = {sji | θji = φk} are assumed to be distributed
a mixture Qk. Given the number of topics K, there are the same number of
context groups. Now to link these context groups, we again use the hierarchical
structure that have the similar manner with HDP [14] where Qk’s share the
global random probability distribution Q0. Formally, generative specification for
conditional independent context is as follows

Q0 ∼ DP (η,R) Qk ∼ DP(ν,Q0) (6)
ϕji ∼ Qk, s.t θji = φk sji ∼ Y (· | ϕji) .

The stick breaking construction for content side is similar to the HDP, how-
ever, for the context size we have to take into account of the partition as induced
by the content atoms. The stick breaking construction for context is

ε ∼ GEM (η) τk ∼ DP(ν, ε) ψ ∼ R

Q0 =
∞∑

m=1

εmδψm
Qk =

∞∑

m=1

τkmδψm
lji ∼ τzji

sji ∼ Y
(
ψlji

)
(7)

The graphical model for generative representation is depicted in Figure (1a).
Inference: we illustrate the auxiliary conditional approach using stick break-

ing scheme for inference. We briefly describe inference result of model. We also
3 For simplicity, we will consider one context and generalize to multiple contexts.
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assume conjugacy between F and H for content distributions as well as Y and
R for context distributions since the conjugacy allows us to integrate out the
atoms φk and τm. The sampling state space now consists of {z,β, l, ε}. Further-
more, we endow Gamma distributions as priors for hyperparameters {γ, α, η, ν}
and sample through each Gibbs iteration. During sampling iterations, we main-
tain the following counting variables: njk - the number of content observations
in document j belong to content topic k, the marginal counts are denoted as
nj. =

∑
k njk, and n.k =

∑
j njk; wkm - the number of context observations

given the topic k belong to context m. The marginal counts are denoted simi-
larly to njk. Sampling equations for content side are described below.

Sampling z: the sampling of zji have to take into account of influence from
the context apart from cluster assignment probability and likelihood.

p(zji = k | z−ji, l, x, s) ∝ p(zji = k | z−ji).

p(xji = k | zji = k, z−ji, x−ji)p(lji | zji = k, l−ji). (8)
The first term of above equation in the RHS is the predictive likelihood of

prior at the content side similar to HDP in [14] while the second term indicates
the predictive likelihood of the observation for content topic k (except xji),
denoted as f

−xji

k (xji) . The last term is the context predictive likelihood given
the content topic k. As a result, conditional sampling for zji is

p(zji = k | z−ji, l, x, s) =

{(
n−ji

.k + αβk

)
wkm+νεm

wk.+ν
f
−xji

k (xji) if k previously used

αβnewεmf
−xji
new (xji) if k = knew

Sampling β: we use the posterior stick breaking of HDP in Equation (4).
In order to sample m, we use the result from Equation (5), i.e. mjk ∝

(αβk)m
s (njk,m) for m = 1 . . . njk where s (njk,m) is the unsigned Stirling

number of the first kind and compute mk =
∑J

j1 mjk.
Next, we present sampling derivations for context variables.
Sampling l: given the cluster assignment of content observations (z), con-

text observations are grouped into K groups of context. Let sk be the set
of context observations indexed by the same content cluster k. i.e. sk �
{sji : zji = k, ∀j, i}, while s−ji

k is the same set as sk but excluding sji. The
posterior probability of lji is computed as follows

p (lji = m | l−ji, z, s, ν, ε) ∝ p (lji = m | l−ji, zji = k, ε) .

p (sji | lji = m, l−ji, zji = k, s−ji) . (9)
The first term is the conditional Chinese restaurant process given content

cluster k while the second term, denoted as y
−sji

k,m (sji), is recognized to be
a form of predictive likelihood in a standard Bayesian setting of which like-
lihood function is Y , conjugate prior S and a set of observation s−ji

k (m) �{
sj′ i′ : lj′ i′ = m, zj′ i′ = k, j

′ �= j, i
′ �= i

}
. The sampling equation for lji is

p (lji = m | l−ji, z, s, ν, ε) =

{
(wkm + νεm) y

−sji

k,m (sji) if mpreviously used

εnewy
−sji

k,mnew
(sji) if m = mnew
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(a) Generative view for pro-
posed model with single
context

(b) Generative view for pro-
posed model with C con-
texts

(c) The stick breaking
view for the proposed
model C contexts

Fig. 1. Graphical representation for the proposed model. (a) & (b) Generative view
for single and multiple contexts which conditional independent given content topic. (c)
Stick breaking view with C contexts, for single context, one can set C = 1.

Sampling ε: different from HDP, sampling ε requires more works as it is
dependent on both z and l. Let isolate context variables lkji’s generated by the
same topic zji = k into one group lk � {lji : zji = k,∀j, i}, context obser-
vations are also isolated in the similar way sk � {sji : zji = k,∀j, i}. Now
the context side is modeled with the structure similar to HDP in which the
observations related Qk are sk. We can sample ε as follows (ε1, . . . , εM , εnew) ∼
Dir (h.1, . . . , h.M , η) where h.m, m = 1 . . . M are auxiliary variables which rep-
resent number of active context factors associated with atom m. Similar to
sampling m, the value of each h.m will be computed using samples hkm ∝
(νεm)h

s (wkm, h) for h = 1 . . . wkm and summed up as h.m =
∑K

k=1 hkm.
Moreover, there are four hyper-parameters in our model: α, γ, ν, η. Sam-

pling α and γ is identical to HDP and therefore we refer to [14] for details.
Sampling other hyperparameters is also doable, one can refer to [10] for details.

3.2 Context Sensitive Dirichlet Processes with Multiple Contexts

Model Description. When multiple contexts exist for a topic, the model can
easily be extended to accommodate this. The generative and stick breaking spec-
ifications for content side remain the same as in Equation (2) and (3). The spec-
ification for multiple contexts will be duplicated from one context in Equation
(6). Figure (1) depicts the graphical model for context sensitive Dirichlet process
with multiple contexts. The generative model is

Qc
0 ∼ DP(ηc, Rc) Qc

k ∼ DP(νc, Qc
0) ϕc

ji ∼ Qc
k, where θji = φk

xji ∼ F (· | θji) sc
ji ∼ Y c

(· | ϕc
ji

)
for all c = 1, . . . , C.

The stick breaking construction for the context side is duplicated the speci-
fications of context side in Equation (7) for C contexts which is provided below
for all c = 1, . . . , C:
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Algorithm 1. Multiple Context CSDP Gibbs Sampler
1: procedure mCSDPGibbsSampler(D) � D: input including xij and sc

ij

2: repeat � J: the number of groups

3: for j ← 1, J ; i ← 1, Nj do � Nj : the number of data in j-th group

4: Sample zji using Equation (10) � Sampling content side

5: for c ← 1, C do � Sampling context side (can be parallised)

6: Sample lcji using Equation (9)
7: end for
8: end for
9: Sample β and ε using Equation (4) and hyperparameters

10: until Convergence
11: return z, l1:C , β, ε � return learned parameters of model

12: end procedure

εc ∼ GEM (η) τ c
k ∼ DP(ν, ε) ψc ∼ Rc

Qc
0 =

∞∑

m=1

εc
mδψc

m
Qk =

∞∑

m=1

τ c
kmδψc

m
lcji ∼ τ c

zji
sc

ji ∼ Y c
(
ψc

lcji

)
.

Inference: using the same routing and assumptions on conjugacy of H and
F , Rc and Y c, we derive the sampling equations for variables as follows

Sampling z: in multiple context setting, the sampling equation of zji involves
the influence from multiple context rather than one:

p(zji = k | z−ji, l, x, s) ∝ p(zji = k | z−ji). (10)

p(xji = k | zji = k, z−ji, x−ji)
C∏

c=1

p(lcji = mc | zji = k, lc
−ji).

It is straightforward to apply the result for one context case. The final sam-
pling equation for zji is

p(zji = k | z−ji, l, x, s) =

{(
n−ji

.k + αβk

)
f
−xji

k (xji)
∏C

c=1

wc
kmc+νcεc

mc

wc
k.+νc if k used

αβnewf
−xji

knew
(xji)

∏C
c=1 εc

mc if k = knew.

Sampling derivation of β is unchanged compared with one context.
Sampling equations of l1...C , ε1...C are similar to one context case where each

set of context variables {lc, εc} is dependent given sampled values of z. We can
perform sampling for each context in parallel thus the computation complexity
in this case should remain the same as in the single context case given enough
number of core processors to execute in parallel. We summarize sampling pro-
cedure for the model in Algorithm 1.

4 Experiments

In this section we demonstrate the application of our model to discover latent
activities from social signals which is a challenging task in pervasive comput-
ing. We implemented model using C# and ran on Intel i7-3.4GHz machine with
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installed Windows 7. We then used Reality Mining, a well-known data set col-
lected at MIT Media Lab [3] to discover latent group activities. The model
not only improves grouping performance but also reveals when and where these
activities happened. In the following sections, we briefly describe data set, data
preparation, parameter settings for the model and exploratory results as well as
clustering performance using our proposed model.

4.1 Reality Mining Data Set

Reality Mining [3] is a well-known mobile data set collected by MIT Media
Lab on 100 users over 9 months (approximately 450.000 hours). The collected
information includes proximity using Bluetooth devices, cell tower IDs, call logs,
application usage, and phone status. To illustrate the capability of proposed
model, we extract proximity data recorded by Bluetooth devices and users’
location via cell tower IDs. In order to compare with the results from [9], we
preprocessed to filter users whose affiliations are missing or who do not share
affiliation with others and then sampled proximity data for every 10 minutes. In
the end we had 69 users. For each user, at every 10 minutes, we obtained a data
point of 69-dimension which represents co-location information with other users.
Each data point is an indicator binary vector of which i-th element set to 1 if
the i-th user is co-located and 0 otherwise (self-presence set to 1). In addition,
we also obtain the time stamp and cell ID data vectors. As a consequence, we
have 69-user data groups. Each data point in group includes three observations:
co-location vector, time stamp, cell tower ID.

4.2 Experimental Settings and Results

In proposed model, one data source will be chosen as content, the rest will be
considered as contexts. We use two different settings in our experiment.

In the first setting, co-location data source is modelled as content which
is (69-dimension) Multinomial distribution (corresponding to F distribution in
model), time and cell tower IDs are modelled as Gaussian and Multinomial
distributions respectively (corresponding to Y 1 and Y 2 distribution in model).
We use the conjugate prior H as Dirichlet distribution, while R1 and R2 are
GaussianGamma and Dirichlet distributions, respectively. We run the data set
with 4 different settings for comparison: HDP - standard use of HDP on co-
location observations (similar to [9]); CSDP-50% time - co-location and 50%
time stamp data (supposing 50% missing) used for CSDP; CSDP-time - similar
to CSDP-50% time, except that whole time stamp data are used; CSDP-celltower
- resembling to CSDP-time but additional cell tower ID observations are used.

When modelling withHDP as in [9], the model merely discovered hidden activ-
ities of users. It fails to answer more refined questions such aswhen and where these
activities happened? Our proposed model can naturally be used to model the addi-
tional data sources to address these questions. InFigure (2a), the topic 1 (sloan stu-
dents) usually happened at specific time on Monday, Tuesday and Thursday while
topic 5 (master frosh students) mainly gathered on Monday and Friday (less often
on the other days). Similarly, when we modelled cell tower IDs data, the results
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(a) Top 7 topics explored with CSDP-time

(b) Top 7 topics explored with CSDP-celltower

Fig. 2. Corresponding top 7 topics discovered by proposed model

revealed a deeper understanding on latent activities. In Figure (2b), we can observe
the places (cell phone tower IDs)4 where the activities took place. For topic 1 - sloan
student group activities, apart from Sloan School building (cell no.1 or 40 ), they
sometimes gathered at the restaurants (cell no. 44 ).

When using more contextual information, it does not only provide more
exploratory information but also help the classification to be more discriminated.
When using only time as context in Figure (2a), the user no. 94 is (confusingly)
recognized in both topic 2 and 6. But when location data is incorporated into our
proposed model, the user no. 94 is now dominantly classified into topic 6. To quan-
titatively evaluate proposed model when using more context data, we use the same
setting with the work in [9]. First, we ran the data model to discover the latent
activities among users. We then used the Affinity Propagation (AP) algorithm [5]
to perform clustering among users with similar activities. We evaluated cluster-
ing performance using popular metrics: F-measure, cluster purity, rand index (RI)
and normalized mutual information (NMI). As it can be clearly seen in Table 1,
with more contexts we observed, CSDP achieves better clustering results. Purity
andNMI are significantly improved when more contextual data are observed while
other metrics slightly improved when modelling with contextual data.
4 Since Reality Mining does not provide exact information about these cell towers how-

ever we can infer information about some of them by using users’ descriptions. For
example, cell no.1 and 40 are MIT Lab and Sloan School of Management which are
two adjacent buildings. While cell no. 35 is located near Student Center and cell no.
44 is around some restaurants outside MIT campus.
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Table 1. Clustering performance improved when more contextual data used in the
proposed model

Purity NMI RI F-measure

HDP 0.7101 0.6467 0.9109 0.7429

CSDP-50% time 0.7391 0.6749 0.9186 0.7651

CSDP-100% time 0.7536 0.6798 0.9169 0.7503

CSDP-celltower 0.7826 0.6953 0.9186 0.7567

In the second setting, we model time as content and the rest (co-locations,
cell towers) as contexts. The conjugate pairs are remained the same in previous
setting. In Figure (3), we demonstrate top 4 time topics including Friday, Thurs-
day (upper row), Tuesday, and Monday (lower row) which are Gaussian forms.
The groups of users who gathered in that time stamp are depicted under each
Gaussian. It is easy to notice that the group with user 27, 58 usually gathered
on Friday and Monday whereas other groups met on all four time slots.

Fig. 3. Top 4 time topics and their corresponding conditional user-IDs groups discov-
ered by proposed model

5 Conclusions

We propose a full Bayesian nonparametric approach to model explicit corre-
lation structures in heterogeneous data sources. Our key contribution is the
development of a context sensitive Dirichlet processes, its Gibbs inference and
its parallelability. We have further demonstrated the proposed model to discover
latent activities from mobile data to answer who (co-location), when (time) and
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where (cell-tower ID) – a central problem in context-aware computing appli-
cations. With its expressiveness, our model not only discovers latent activities
(topics) of users but also reveals time and place information. Qualitatively, it was
shown that better clustering performance than without them. Finally, although
the building block of our proposed model is the Dirichlet process, based on HDP,
it is straightforward to apply other stochastic processes such as nested Dirich-
let processes or hierarchical Beta processes to provide alternative representation
expressiveness for data modelling tasks.
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