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Abstract—We propose a probabilistic formulation that enables
sequential detection of multiple change points in a network
setting. We present a class of sequential detection rules for func-
tionals of change points, and prove their asymptotic optimality
properties in terms of expected detection delay time. Drawing
from graphical model formalism, the sequential detection rules
can be implemented by a computationally efficient message-
passing protocol which may scale up linearly in network size and
in waiting time. The effectiveness of our exact and approximate
inference algorithms are demonstrated by simulations.

I. I NTRODUCTION

Classical sequential detection is the problem of detecting
changes in the distribution of data collected sequentiallyover
time [1]. In a decentralized network setting, the decentralized
sequential detection problem concerns with data sequences
aggregaged over the network, while sequential detection rules
are constrained to the network structure (see, e.g., [2], [3],
[4]). The focus was still on asingle change point variable
taking values in (discrete) time. In this paper, our interests lie
in sequential detection in a network setting, where multiple
change point variables may be simultaneously present.

As an example, quickest detection of traffic jams concerns
with multiple potential hotspots (i.e., change points) spatially
located across a highway network. A simplistic approach is
to treat each change point variables independently, so thatthe
sequential analysis of individual change points can be applied
separately. However, it has been shown that accounting for the
statistical dependence among the change point variables can
provide significant improvement in reducing both false alarm
probability and detection delay time [5].

This paper proposes a general probablistic formulation for
the multiple change point problem in a network setting,
adopting the perspective of probabilistic graphical models for
multivariate data [6]. We consider estimating functionalsof
multiple change points defined globally and locally across the
network. The probablistic formulation enables the borrowing
of statistical strengh from one network site (associated with
a change point variable) to another. We propose a class of
sequential detection rules, which can be implemented in a
message-passing and distributed fashion across the network.
The computation of the proposed sequential rules scales up
linearly in both network size and in waiting time, while an
approximate version scales up constantly in waiting time.
The proposed detection rules are shown to be asymptotically
optimal in a Bayesian setting. Interestingly, the expected

detection delay can be expressed in terms of Kullback-Leibler
divergences defined along edges of the network structure.
We provide simulations that demonstrate both statistical and
computational efficiency of our approach.
Related Work. The rich statistical literature on sequential
analysis tends to focus almost entirely on the inference of a
single change point variable [1]. There are recent formulations
for sequential diagnosis of a single change point, which may
be associated with multiple causes [7], or multiple sequences
[8]. Another approach taken in [9] considers a change propa-
gating in a Markov fashion across an array of sensors. These
are interesting directions but the focus is still on detecting
the onset of a single event. Graphical models have been
considered for distributed learning and decentralized detection
before, but not in the sequential setting [10], [11]. This paper
follows the line of work of [5], [12], but our formulation
based on graphical models is more general, and we impose
less severe constraints on the amount of information that can
be exchanged across network sites.

II. GRAPHICAL MODEL FOR MULTIPLE CHANGE POINTS

In this section, we shall formulate the multiple change
point detection problem, where the change point variables and
observed data are linked using a graphical model. Consider a
sensor network withd sensors, each of which is associated
with a random variableλj ∈ N, for j ∈ [d] := {1, 2, . . . , d},
representing achange point, the time at which a sensor fails to
function properly. We are interested in detecting these change
points as accurately and as early as possible, using the data
that are associated with (e.g., observed by) the sensors. Taking
a Bayesian approach, eachλj is independently endowed with
a prior distributionπj(·).

A central ingredient in our formalism is the notion of a
statistical graph, denoted asG = (V,E), which specifies the
probabilistic linkage between the change point variables and
observed data collected in the network. The vertex set of the
graph, V = [d] represents the indices of the change point
variablesλj . The edge setE represents pairings of change
point variables,E = {e = {s1, s2} | s1, s2 ∈ V }. With each
vertex and each edge, we associate a sequence ofobservation
variables,

Xj = (X1
j ,X2

j , . . . ), j ∈ V, (1)

Xe = (X1
e ,X2

e , . . . ), e ∈ E, (2)



where the superscript denotes the time index. TheXj models
the private information of nodej, while Xe models the
shared information of nodes connected bye. We will use the
notation X

n
j = (X1

j , . . . ,Xn
j ) and similarly for Xn

e ; notice
the distinction betweenXn

j , the observation at timen, versus
bold X

n
j , the observations up to timen, both at nodej. The

aggregate of all the observations in the network is denoted as
X∗ = (Xj , j ∈ V,Xe, e ∈ E). Similarly,Xn

∗ represents all the
observations up to timen. We will also useλ∗ = (λj , j ∈ V ).

The joint distribution ofλ∗ andX
n
∗ is given by a graphical

model,

P (λ∗,X
n
∗ ) =

∏

j∈V

πj(λj)
∏

j∈V

P (Xn
j |λj)

∏

e∈E

P (Xn
e |λs1

, λs2
).

(3)

Given λj = k, we assumeX1
j , . . . ,Xk−1

j to be i.i.d. with
density gj and Xk

j ,Xk+1
j , . . . to be i.i.d. with densityfj .

Given (λs1
, λs2

), we assume that the distribution ofX
n
e only

depends onλe := λs1
∧ λs2

, the minimum of the two
change points; hence we often writeP (Xn

e |λe) instead of
P (Xn

e |λs1
, λs2

). Given λe = k, X1
e , . . . ,Xk−1

e are i.i.d. with
densityge andXk

e ,Xk+1
e , . . . are i.i.d. with densityfe. All the

densities are assumed to be with respect to some underlying
measureµ. These specifications can be summarized as,

P (Xn
j |λj) =

k−1∏

t=1

gj(X
t
j)

n∏

t=k

fj(X
t
j) (4)

and similarly forP (Xn
e |λe). We will assume the prior onλj

to be geometric with parameterρj ∈ (0, 1), i.e. πj(k) := (1−
ρj)

k−1ρj , for k ∈ N. Note that these change point variables
are dependent a posteriori, despite being independent a priori.

A. Sequential rules and optimality

Although our primary interest is in sequential estimation of
the change pointsλ∗ = (λj), we are in general interested in
the following functionals,

φ := φ(λ∗) := λS := min
j∈S

λj . (5)

for some subsetS ⊂ [d]. Examples include a single change
point S = {j}, the earliest among a pairS = {i, j} and
the earliest in the entire networkS = [d]. Let Fn = σ(Xn

∗ )
be theσ-algebra induced by the sequenceX

n
∗ . A sequential

detection rule forφ is formally a stopping timeτ with respect
to filtration (Fn)n≥0. To emphasize the subsetS, we will use
τS to denote a rule when the functionalφ = λS. For example
τ1 is a detection rule forλ1 andτ12 is a rule forλ12 = λ1∧λ2.

In choosingτ , there is a trade-off between the false alarm
probabilityP(τ ≤ φ) and the detection delayE(τ−φ)+. Here,
we adopt the Neyman-Pearson setting to consider all stopping
rules forφ, having false alarm at mostα,

∆φ(α) := {τ : P(τ ≤ φ) ≤ α}, (6)

and pick a rule in∆φ that has minimum detection delay. It
is worth mentioning that there are non-Bayesian optimality
criteria for the single change point problem, e.g. [13], andit

would be an interesting direction to study our multiple change
point model in such settings.

B. Communication graph and message passing (MP)

Another ingredient of our formalism is the notion of a
communication graphrepresenting constraints under which the
data can be transmitted across network to compute a particular
stopping rule, sayτj . In general, such a rule depends on all
the aggregated dataXn

∗ . We are primarily interested in those
rules that can be implemented in a distributed fashion by
passing messages from one sensor only to its neighbors in the
communication graph. Although, conceptually, the statistical
graph and communication graphs play two distinct roles,
they usually coincide in practice and this will be assumed
throughout this paper. See Fig. 1 for an illustration.

III. A SYMPTOTICALLY OPTIMAL MP RULES

We suspect that it is not feasible to derive strictly optimal
sequential stopping rules in closed from (say by stochastic
dynamic programming) for the multiple change point problem
introduced earlier. More crucially, even if such rules are
obtained, they are not computationally tractable for large
networks, due to the exponential complexity of the state-space.
In this section, we shall present a class of detection rules
that scale linearly in the size of the network,d, and can be
implemented in a distributed fashion by message passing.

Consider the following posterior probabilities

γn
S (k) := P(λS = k | Xn

∗ ), (7)

γn
S [n] := P(λS ≤ n | Xn

∗ ) =
n∑

k=1

γn
S (k). (8)

We propose to stop at the first timeγn
S
[n] goes above a

threshold,

τS = inf{n ∈ N : γn
S [n] ≥ 1 − α} (9)

where α is the maximum tolerable false alarm. It is easily
verified that these rules have a false alarm at mostα.

Lemma 1. For φ = λS, the ruleτS ∈ ∆φ(α).

More interestingly, we will show thatτS is asymptotically
optimal for detectingλS. To do so, let us extend the edge
set to Ẽ := E ∪ {{j} : j ∈ V }. This allows us to treat the
private data associated with nodej, i.e. Xj , as (shared) data
associated with a self-loop in the graph(V, Ẽ). For anye ∈ Ẽ,
let Ie :=

∫
fe log fe

ge
dµ be the KL divergence betweenfe and

ge. For φ = λS, let

Iφ :=
∑

e⊂S

Ie (10)

where the sum runs over alle ∈ Ẽ which are subsets ofS.
For example, for a chain graph on{1, 2, 3} with node 2 in
the middle,Ẽ = {{1, 2}, {2, 3}, {1}, {2}, {3}} and we have
Iλ12

:= I1 + I2 + I12 while Iλ13
:= I1 + I3. (Here, we abuse

notation to writeI12 instead ofI{1,2} and so on.)
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Fig. 1. Left panel illustrates a statistical graph, which induces a graphical model in the middle panel. Right panel illustrates statistical messages passed at
time n along some edges in a communication graph (which coincides withstatistical graph in this case).

Recall the geometric prior onλj (with parameterρj) and
the definition of φ = λS as the minimum ofλj , j ∈ S.
Then, φ is geometrically distributed a priori with parameter
1 − e−qφ := 1 −

∏
j∈S

(1 − ρj). We can now state our main
result on asymptotic optimality.

Theorem 1. Assume| log fe

ge
| ≤ M for all e ∈ Ẽ. Then,τS

is asymptotically optimal forφ = λS; more specifically, as
α → 0,

E
[
τS − φ | τS ≥ φ

]
=

| log α|

qφ + Iφ

(1 + o(1))

= inf
τ̃ ∈∆φ(α)

E
[
τ̃ − φ | τ̃ ≥ φ

]
.

Remark 1.A notable feature of this result is the decompo-
sition (10) of information along the edges of the graph. For
example, in the case of a paired delayφ = λ12, for which the
informationIφ = I1 +I2 +I121{{1,2}∈E} increases (hence the
asymptotic delay decreases) if there is an edge between nodes
1 and2. This has no counterpart in the classical theory where
one looks at change points independently.
Remark 2.Another feature of the result is observed for a single
delay, sayφ = λ1, where one hasIφ = I1 regardless of
whether there is an edge between nodes 1 and 2. Thus, the
asymptotic delay for the threshold rule which bases its decision
on the posterior probability ofλ1 given all the data in the
network (Xn

∗ ) is the same as the one which bases its decision
on the posterior given only private data of node1 (Xn

1 ). Al-
though this rather counter-intuitive result holds asymptotically,
the simulations show that even for moderately low values ofα,
having access to extra information inXn

12 does indeed improve
performance as one expects. (cf. Section VI).

IV. EXACT MESSAGE PASSING ALGORITHM

It is relatively simple to adapt the well-established belief
propagation algorithm, also known as sum-product, to the
graphical model (3). The algorithm produces exact values of
the posteriorγn

S
, as defined in (7), in the cases whereG is a

polytree (and provides a reasonable estimate otherwise.) In this
section, we provide the details forS = {j} or S = {i, j} ∈ E.

One issue in adapting the algorithm is the possible infinite
support of γn

S
. Thanks to a “constancy” property of the

likelihood, it is possible to lump all the states aftern when
computingγn

S
[n].

Lemma 2. Let {i1, i2, . . . , ir} ⊂ [d] be a distinct collection
of indices. The function

(k1, k2, . . . , kr) 7→ P (Xn
∗ |λi1 = k1, λi2 = k2, . . . , λir

= kr)

is constant over{n + 1, n + 2, . . . }r.

The algorithm is invoked at each time stepn, by passing
messages between nodes according to the following protocol:
a node sends a message to one of its neighbors (inG) when
and only when it has received messages from all its other
neighbors. Message passing continues until any node can be
linked to any other node by a chain of messages, assuming
a connected graph. For a tree, this is usually achieved by
designating a node as root and passing messages from the
root to the leaves and then backwards.

The message that nodej sends to its neighbori, at timen,
is denoted asmn

ji = [mn
ji(1), . . . ,mn

ji(n + 1)] ∈ R
n+1 and

computed as

mn
ji(k) =

n+1∑

k′=1

{
π̃j(k

′)P (Xn
j |k

′)P (Xn
ij |k ∧ k′)

∏

r∈∂j\{i}

mn
rj(k

′)
}

for k ∈ [n+1], whereπ̃j(k) := πj(k) for k ∈ [n] andπ̃j(n+
1) := πj [n]c =

∑∞
k=n+1 πj(k), and ∂j is the neighborhood

set ofj. Once the message passing ends,γn
j andγn

ij are readily
available. We have

γn
j (k) ∝ π̃j(k)P (Xn

j |k)
∏

r∈∂j

mn
rj(k), k ∈ [n]. (11)

It also holds fork = n+1 if the LHS is interpreted asγn
j [n]c.

Similarly, when {i, j} ∈ E, P (λi = k1, λj = k2|X
n
∗ ) is

proportional to

π̃i(k1)π̃j(k2)P (Xn
i |k1)P (Xn

j |k2)P (Xn
ij |k1 ∧ k2)

×
∏

r∈∂i\{j}

mn
ri(k1)

∏

r∈∂j\{i}

mn
rj(k2)

for (k1, k2) ∈ [n]2, from which γn
ij can be computed.

Lemma 3. WhenG is a tree, the message passing algorithm
produces correct values ofγn

j and γn
ij at time stepn, with

computational complexityO((|V | + |E|)n).

V. FAST APPROXIMATION ALGORITHM

We now turn to an approximate message passing algo-
rithm which, at each time step, has computational complexity
O(|V | + |E|). Let us define binary variables

Zn
j = 1{λj ≤ n}, Zn

∗ = (Zn
1 , . . . , Zn

d ). (12)
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Fig. 2. Examples of posterior paths,n 7→ γn[n], obtained by exact (MP)
and approximate (APPROX) message passing.

The idea is to computeP (Zn
∗ |X

n
∗ ) = P (Zn

∗ |X
n
∗ ,Xn−1

∗ )
recursively based onP (Zn−1

∗ |Xn−1
∗ ). The former is propor-

tional (in Zn
∗ ) to P (Zn

∗ ,Xn
∗ |X

n−1
∗ ) and we have

P (Zn
∗ ,Xn

∗ |X
n−1
∗ ) = (13)

∏

j∈V

P (Xn
j |Z

n
j )

∏

{i,j}∈E

P (Xn
ij |Z

n
i , Zn

j )P (Zn
∗ |X

n−1
∗ ).

Let ue(z; ξ) := [ge(ξ)]
1−z[fe(ξ])

z for e ∈ Ẽ, z ∈ {0, 1}.
Then, P (Xn

j |Z
n
j ) = uj(Z

n
j ;Xn

j ), and P (Xn
ij |Z

n
i , Zn

j ) =
uij(Z

n
i ∨ Zn

j ;Xn
ij). It remains to expressP (Zn

∗ |X
n−1
∗ ) in

terms ofP (Zn−1
∗ |Xn−1

∗ ). This is possible at a cost ofO(2|V |),
but we omit the details for brevity. To obtain a fast algorithm
(i.e., O(poly(|V |))), we instead approximate

P (Zn
∗ |X

n−1
∗ ) ≈

∏

j∈V

P (Zn
j |X

n−1
∗ ) =

∏

j∈V

ν(Zn
j ; γn−1

j [n]),

(14)

where ν(z;β) := βz(1 − β)1−z. By constancy Lemma 2,
Bayes rule and algebra, we get the recursion

γn−1
j [n] =

πj(n)

πj [n − 1]c
+

πj [n]c

πj [n − 1]c
γn−1

j [n − 1].

Thus, at timen, the RHS of (14) is known based on values
computed at timen − 1 (with initial value γ0

j [0] = 0, j ∈ V ).
Inserting this RHS into (13) in place ofP (Zn

∗ |X
n−1
∗ ), we

obtain a graphical model in variablesZn
∗ (instead ofλ∗) which

has the same form as (3) withν(Zn
j ; γn−1

j [n]) playing the role
of the priorπ(λj).

Hence, we can apply a message passing algorithm similar to
that described in Section IV, to marginalize this approximate
version of P (Zn

∗ ,Xn
∗ |X

n−1
∗ ), providing approximate values

of γn
j [n] = P (Zn

j = 1|Xn
∗ ) and γn

ij [n]. The message update
equations are similar to those of Section IV and are omitted.
The difference is that the messages are now binary and do
not grow in size withn. Fig. 2 shows examples of posterior
tracking by approximate algorithm. Theoretical analysis of the
algorithm will appear in a longer version of this paper.

VI. SIMULATIONS

We present simulation results as depicted in Fig. 3. The
setting is that of graphical model (3) ond = 4 nodes, where
the statistical graph is a star with node2 in the middle. Condi-
tioned onλ∗, all the data sequences,X∗, are assumed Gaussian
of variance1, with pre-change mean1 and post-change mean
zero. All priors are geometric with parametersρj = 0.1. Fig. 3
shows plots of expected delay over| log α|, against| log α|, for
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Fig. 3. Plots of the slope 1
− log α

E[τS − φ|τS ≥ φ] against− log α

for message-passing algorithm (MP), approximate algorithm (APPROX) and
SINGLE algorithm which disregards shared information. The graph is the
star graph of4 nodes with node2 in the center. Estimates of both single and
paired change points (λj andλij ) are shown together with theoretical limit of
Theorem 1. (The casee = (4, 2) is omitted to conserve space; it looks very
similar toe = (1, 2), (3, 2)). False alarm toleranceα ranges in[0.5, 10−13].

three methods: the message-passing algorithm of Section IV
(MP), approximate algorithm of Section V (APPROX) and
the method which bases its inference on posteriors calculated
based only on each node’s private information (SINGLE).
This latter method estimates a single change pointλj by
τ̂j := inf{n : P (λj ≤ n|Xn

j ) ≥ 1 − α} and a paired
λij = λi ∧ λj by τ̂i ∧ τ̂j . Also shown in the figure is the
limiting value of the normalized expected delay as predicted by
Theorem 1. All plots are generated by Monte Carlo simulation
over 5000 realizations.

In estimating single change points, MP, which takes shared
information into account, has a clear advantage over SINGLE,
for high to relatively low false alarm values (even, say, around
α ≈ e−5); though, both methods seem to converge to the same
slope in theα → 0 limit, as suggested by Theorem 1. (The
particular value is(− log 0.9 + 0.5)−1 = 1.6519.) Also note
that the advantage of MP over SINGLE is more emphasized
for node 2, as expected by its access to shared information
from all the three nodes. We also note that APPROX does
a reasonable job at approximating MP, with delays between
those of SINGLE and MP, getting closer to MP asα → 0.

For paired change points, the advantage of MP and AP-
PROX over SINGLE is more emphasized. It is also interesting
to note that while MP seems to converge to the expected
theoretical limit(−2 log 0.9 + 3 · 0.5)−1 = 0.5845, SINGLE



seems to converge to a higher slope (with a reasonable guess
being1.6519 as in the case of single change points).

In regard to false alarm probability, nonzero values were
only observed for the first few values ofα considered here,
and those were either below or very close to the specified
tolerance.

APPENDIX A
PROOF SKETCH OFTHEOREM 1

We provide a proof sketch for the cased = 2 here (the full
proof is quite technical, and can be found in [14]). Fix some
φ = τS and consider the likelihood ratio

Dk
φ(Xn

∗ ) :=
P (Xn

∗ | φ = k)

P (Xn
∗ | φ = ∞)

.

Let P
k
φ = P( · | φ = k). Our asymptotic analysis hinges on

the asymptotic behavior of1
n

log Dk
φ(Xn

∗ ), asn → ∞, under
probability measurePk

φ. In particular, building on the results
of [15], it is straightforward to derive the following sufficient
condition. LetPm1,m2

λ1,λ2
be the probability measure conditioned

on λ1 = m1 and λ2 = m2. Also, let πk
φ(m1,m2) :=

P
k
φ(λ1 = m1, λ2 = m2). Suppose that for all(m1,m2)

with positive probability underπk
φ(m1,m2), we can show the

“concentration inequality”

P
m1,m2

λ1,λ2

(∣∣∣
1

n
log Dk

φ(Xn
∗ ) − Iφ

∣∣∣ > ε
)
≤ q(n) exp(−c1nε2)

for all n ≥ 1
ε
p(m1,m2, k) for polynomialsp(·) andq(·). Then,

if both πk
φ(·, ·) andP(φ = ·) have finite polynomial moments,

which is the case for our geometric priors, conclusions of
Theorem 1 hold forφ. We say that|n−1 log Dk

φ(Xn
∗ )−Iφ| ≤ ε

holds with high probability, abbreviated w.h.p.
Next, we defineRn

p (e) := Rn
p (Xe) :=

∏n
t=p

fe(Xe)
ge(Xe) if e ∈

Ẽ andp ≤ n, andRn
p (Xe) = 1 otherwise. Similarly letIe be

defined as in (10) ife ∈ Ẽ and Ie = 0 otherwise. We note
that

Dk
φ(Xn

∗ ) =

∑
k1,k2

πk
φ(k1, k2)Rn

k1
{1}Rn

k1
{2}Rn

k1∧k2
{12}

∑
k1,k2

π∞
φ (k1, k2)Rn

k1
{1}Rn

k1
{2}Rn

k1∧k2
{12}

,

with some abuse of notation. In addition, for a collectionE =
{e1, . . . , eJ}, define

Sq,n
m (E) =

q∑

p=m

Ae−βp
∏

e∈E

Rn
p (e)

for someA, β > 0, and letIE :=
∑

e∈E
Ie.

We will say thatan

ε
≍ bn if |an − bn| ≤ ε for n ≥ c0

ε
. This

relation is transitive and stable under addition, subtraction and
taking maximum. Furthermore,

n−1 log(an + bn)
ε
≍ max{n−1 log an, n−1 log bn}. (15)

At the heart of the proof are two concentration inequalities:

1

n
log Rn

m(e)
ε
≍ Ie,

1

n
log Sn,n

m (E)
ε
≍ IE, (16)

where the first holds conditioned onλe ≤ m w.h.p. and the
second conditioned onλe ≤ m for all e ∈ E, w.h.p.

Let us focus on the caseφ = λ12. Fork < ∞, πk
φ(k1, k2) ∝

ρk1

1 ρk2

2 1{k1∧k2=k} whereρj := 1 − ρj . Let

T1 := Rn
k{1}[S

n,n
k+1{2} + Q2,n],

where Q2,n :=
∑

k2>n πk
φ(k, k2) ∝ ρn

2 (symmetrically
for T2 with roles of 1 and 2 reversed) andT0 :=
πk

φ(k, k)Rn
k{1}R

n
k{2}. Then, Dk

φ(Xn
∗ ) = Rn

k{12}
∑2

i=0 Ti.

Now, condition onλ1 = k andλ2 = r ≥ k so thatλ12 = k.
(The other case with roles of1 and 2 reversed follows by
symmetry.) By (15),

n−1 log Dk
φ(Xn

∗ )
ε
≍ n−1 log Rn

k{12} + max
i=0,1,2

n−1 log Ti

ConsiderT1 and note thatn−1 log T1
ε
≍ n−1 log Rn

k{1} +

max{ 1
n

log S
n,n
k+1{2}, log ρ2} where the first term is

ε
≍ I1

w.h.p. by (16). Similarly,n−1 log S
n,n
k+1{2} equals

n−1 log
(
S

r,r
k+1{2}R

n
r {2} + S

n,n
r+1{2}

) ε
≍ I2

and sincelog ρ1 < 0, we haven−1 log T1
ε
≍ I1 + I2. Other

terms are dealt with similarly, and we get, w.h.p.
1

n
log Dk

φ(Xn
∗ )

ε
≍ I12 + max{I1 + I2, I2 + I1, I1 + I2}.

The caseφ = λ1 follows along similar lines.
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