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Abstract—We propose a probabilistic formulation that enables  detection delay can be expressed in terms of Kullback-eeibl
sequential detection of multiple change points in a network divergences defined along edges of the network structure.

setting. We present a class of sequential detection rules for func We provide simulations that demonstrate both statistical a
tionals of change points, and prove their asymptotic optimality - .

properties in terms of expected detection delay time. Drawing COMPutational efficiency of our approach. .
from graphical model formalism, the sequential detection rules Related Work. The rich statistical literature on sequential

can be implemented by a computationally efficient message- analysis tends to focus almost entirely on the inference of a
passing protocol which may scale up linearly in network size and single change point variable [1]. There are recent fornmat
e st ot P M1 for sequentl diagnosis of a single change poin, which may
be associated with multiple causes [7], or multiple segesnc
[8]. Another approach taken in [9] considers a change propa-
gating in a Markov fashion across an array of sensors. These
Classical sequential detection is the problem of detectiage interesting directions but the focus is still on detegti
changes in the distribution of data collected sequent@liyr the onset of a single event. Graphical models have been
time [1]. In a decentralized network setting, the deceizteal considered for distributed learning and decentralizedalimn
sequential detection problem concerns with data sequengesore, but not in the sequential setting [10], [11]. Thipga
aggregaged over the network, while sequential detecti@s rufollows the line of work of [5], [12], but our formulation
are constrained to the network structure (see, e.g., [3], [Based on graphical models is more general, and we impose
[4]). The focus was still on aingle change point variable |ess severe constraints on the amount of information that ca
taking values in (discrete) time. In this paper, our intes¢i® be exchanged across network sites.
in sequential detection in a network setting, where mutipl
change point variables may be simultaneously present. II. GRAPHICAL MODEL FOR MULTIPLE CHANGE POINTS
As an example, quickest detection of traffic jams concerns
with multiple potential hotspots (i.e., change points)tiiy

I. INTRODUCTION

In this section, we shall formulate the multiple change
located across a highway network. A simplistic approach int detection problem, where the change point varialhes a

to treat each change point variables independently, sahbat observed datakare' linked using a grhapr;icarI].th(.jel. Con§ider a
sequential analysis of individual change points can beielqbplse,nsor networ W',tm Sensors, each o W ich is associated
separately. However, it has been shown that accountingnéor $Vith @ random variable\; € N, for j € [d] := {1,2,....d},

statistical dependence among the change point variables #':%Dre_senting ar;ange pointthe time(;at_ ngCh a_senior failseto
provide significant improvement in reducing both false ralar unction properly. We are interested in etecting thesegaa
probability and detection delay time [5] points as accurately and as early as possible, using the data

This paper proposes a general probablistic formulation fg}
the multiple change point problem in a network setting, . R
adopting the perspective of probabilistic graphical medet prior dlstrlputlonw.j(-).' ) ) )
multivariate data [6]. We consider estimating functionafs A Central ingredient in our formalism is the notion of a
multiple change points defined globally and locally acrdees t Stetistical graph denoted a<x = (V, E), which specifies the

network. The probablistic formulation enables the borrgyi ProPabilistic linkage between the change point variables a

of statistical strengh from one network site (associateth Wiobserved data collected in the network. The vertex set of the

a change point variable) to another. We propose a class%#Ph: V' = [d] represents the indices of the change point

sequential detection rules, which can be implemented inva/iables);. The edge se represents pairings of change
nt variables,F = {e = {s1, $2} | s1,$2 € V'}. With each

message-passing and distributed fashion across the mhetwBP' _ )
The computation of the proposed sequential rules scales {fpex and each edge, we associate a sequencksefvation
linearly in both network size and in waiting time, while aryanables,

approximate version scales up constantly in waiting time. X; = (X!, X2 )
The proposed detection rules are shown to be asymptotically / A ’
optimal in a Bayesian setting. Interestingly, the expected Xe=(Xe, Xes.0n), e E, (@)

Bayesian approach, eagh is independently endowed with

Jjev, 1)



where the superscript denotes the time index. Xhemodels would be an interesting direction to study our multiple aj@an

the private information of node, while X, models the point model in such settings.

shared information of nodes connectedyWe will use the o _

notation X" = (X!,...,X7) and similarly forX?; notice B. Communication graph and message passing (MP)

the distinction betweerX, the observation at time, versus  Another ingredient of our formalism is the notion of a

bold X7, the observations up to time, both at nodej. The communication graphepresenting constraints under which the

aggregate of all the observations in the network is denaseddata can be transmitted across network to compute a paticul

X =(X;,j € V.X,, e € E). Similarly, X7 represents all the stopping rule, say-;. In general, such a rule depends on all

observations up to time. We will also use\. = ();,7 € V). the aggregated dat§”. We are primarily interested in those
The joint distribution of\. andX? is given by a graphical rules that can be implemented in a distributed fashion by

model, passing messages from one sensor only to its neighbors in the

o) n n communication graph. Although, conceptually, the stiatit

P(Ax X) Hﬂj )H PX512) H PX A5 As2) graph and communication graphs play two distinct roles,

3) they usually coincide in practice and this will be assumed

throughout this paper. See Fig. 1 for an illustration.

JjeV JEV e€E

Given \; = k, we assumeX},.. Xk ! to be i.i.d. with
density g; and X;;7Xj}’_c+1,.” to be ||d with density ;. 1. ASYMPTOTICALLY OPTIMAL MP RULES

Given (\s,, As, ), we assume that the distribution & only We suspect that it is not feasible to derive strictly optimal
depends on\. := A A A, the minimum of the two sequential stopping rules in closed from (say by stochastic
change points; hence we often wrife(X7|)\.) instead of dynamic programming) for the multiple change point problem
P(X2| Ay, Asy). Given . =k, X},..., XF~1 are i.i.d. with introduced earlier. More crucially, even if such rules are
densityg. and X%, X*¥+1 . arei.i.d. with densityf.. Allthe obtained, they are not computationally tractable for large
densities are assumed to be with respect to some underlyfiegworks, due to the exponential complexity of the staszep
measureu. These specifications can be summarized as, In this section, we shall present a class of detection rules
n that scale linearly in the size of the network, and can be
P(X7|);) H g; (X1 H £i(Xh) (4) implemented in a distributed fashion by message passing.
Consider the following posterior probabilities

and similarly fprP.(XQ|>\e). We will assume the prior on; AM(k) = POs = k | X1, @)
to be geometric with parametgy € (0,1), i.e.7;(k) := (1— "
pi)¥~1p;, for k € N. Note that these change point variables v§[n] :=P(As <n|X})= Zyg(k), (8)

are dependent a posteriori, despite being independenba. pri

A. Sequential rules and optimality We propose to stop at the first timg}[n] goes above a
Although our primary interest is in sequential estimatién ghreshold,
the change pointa.. = (;), we are in general interested in
the following functionals,
. where « is the maximum tolerable false alarm. It is easily
= = \g 1= Yy o
b= ¢(h) s ©) verified that these rules have a false alarm at most

s =inf{n e N: 4¢[n] > 1—a} 9)

for some subse8 C [d]. Examples include a single changg emma 1. For ¢ = s, the rulers € Ag(a).
point 8 = {j}, the earliest among a pa8 = {i,j} and .
the earliest in the entire netwok = [d]. Let F,, = o(X") More mterestmgly, we will show thats is asymptotically
be theo-algebra induced by the sequenk#. A sequential optimal for detect|r?g>\g.. To do SO, let us extend the edge
detection rule fors is formally a stopping time- with respect S€t 0 E := EU{{j} : j € V'}. This allows us to treat the
to filtration (F,,),0. To emphasize the subs&twe will use private data associated with noglei.e. X, as (shared) data
75 to denote a rule when the functional= \s. For example @associated with a self-loop in the gragih E) For anye € E,

7, is a detection rule foh, andry, is a rule for\;y = A ANy, 1€t Le == [ felog L= 4y be the KL divergence betweefy and

In choosingr, there is a trade-off between the false alarrfie- F0r¢ As, let

probability (T < ¢) and the detection deld§(r—¢).. Here, I Z 7
we adopt the Neyman-Pearson setting to consider all stgppin ¢ ¢

rules for ¢, having false alarm at most, N
where the sum runs over all € £ which are subsets .
= . < < . - .
Agla) ={r: P(r < ¢) < o}, ©) For example, for a chain graph df1,2,3} with node2 in
and pick a rule inA,4 that has minimum detection delay. Itthe middle,E = {{1,2},{2,3}, {1}, {2}, {3}} and we have
is worth mentioning that there are non-Bayesian optimalitdy,, := I1 + Iz + ;2 wWhile I,, := I + I5. (Here, we abuse
criteria for the single change point problem, e.g. [13], &nd notation to write/;, instead of/; »; and so on.)

(10)
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Fig. 1. Left panel illustrates a statistical graph, whicdunes a graphical model in the middle panel. Right panel itibss$ statistical messages passed at
time n along some edges in a communication graph (which coincidess#tistical graph in this case).

Recall the geometric prior on; (with parameterp;) and Lemma 2. Let {iy,i2,...,i,} C [d] be a distinct collection
the definition of¢ = Ag as the minimum of);,j € 8. of indices. The function
ThenngS is geometrically distributed a priori with parame;er(khk% k) o P(XT Ay = R A, = Koy Aa = F)
1—e 9% :=1-]];s(1 - p;). We can now state our main "
result on asymptotic optimality. is constant ovef{n + 1,n+2,...}".

Theorem 1. Assume log L= The algorithm is invoked at each time step by passing
is asympto“ca”y Opumalgfow — )\Sv more Spec|f|ca"y as messages between nodes aCCOI‘dIng to the fO”OW|ng pr0t0C0|

a—0, a node sends a message to one of its neighbor&)iwhen
and only when it has received messages from all its other
E[TS | s> ¢] | log Oé\ (1+ o(1)) r)eighbors. Message passing contir}ues until any node can be
qe + 1y linked to any other node by a chain of messages, assuming
= _inf ]E[?-— |7 > ¢], a connected graph. For a tree, this is usually achieved by
TEAG () designating a node as root and passing messages from the

. : root to the leaves and then backwards.
Remark 1.A notable feature of this result is the decompo- 11,4 message that nogesends to its neighbat, at timen,

sition (10) of information along the edges of the graph. FOL yanoted asn?, = [m7(1),...,m%(n + 1)] € R™+! and
example, in the case of a paired delay= Ao, for which the computed as 7 7

informationly, = I + I+ 12141, 2}eE) increases (hence the .

asymptotic delay decreases) if there is an edge betweers nodeL _ ~ . i n

1 and2. This has no counterpart in the classical theory Where“( )= Z; {Wj(k )P K P(X5 1k A K H e

one looks at change points independently. M=t redite}
Remark 2Another feature of the result is observed for a sing®r & € [n+ 1], wherer; (k) := ; (k) for k € [n] andm; (n +
delay, say¢ = )i, where one had, = I; regardless of 1) = m;[n]° = 3777, . m;(k), anddj is the neighborhood
whether there is an edge between nodes 1 and 2. Thus, $8ECf/. Once the message passing engsand~;; are readily
asymptotic delay for the threshold rule which bases itssieci available. We have

on the posterior probability of\; given all the data in the v (k) o 75 (k) P(X7 k) Hm:}j(k)’ ke [n]. (11)
network (X7) is the same as the one which bases its decision oy

on the posterior given only private data of nod€X?’). Al-
though this rather counter-intuitive result holds asyrtip&dly,
the simulations show that even for moderately low values,of
having access to extra informationX, does indeed improve

It also holds fork = n+1 if the LHS is interpreted ag7 [n]°.
Similarly, when {i,j} € E, P(\; = ki,\; = ko|X7) is
proportional to

performance as one expects. (cf. Section VI). 7i(k1)7; (ko) P (X’-‘\kl) (X7 ko) P(X7 k1 A k2)
H my (ky) H my; (ka)

IV. EXACT MESSAGE PASSING ALGORITHM D (i} redj\{i}
It is relatively simple to adapt the well-established Heligfor (ki1,k2) € [n]?, from which~}% can be computed.

mma 3. WhendG is a tree, the message passing algorithm
oduces correct values of; and ~;; at time stepn, with
computational complexﬂ@((\V\ + |E\) ).

propagation algorithm, also known as sum-product, to th
graphical model (3). The algorithm produces exact values ?
the posterioryg, as defined in (7), in the cases whereis a
polytree (and provides a reasonable estimate otherwis#)d
section, we provide the details f8r= {j} or 8§ = {i,j} € E. V. FAST APPROXIMATION ALGORITHM

One issue in adapting the algorithm is the possible infinite We now turn to an approximate message passing algo-
support of v¢. Thanks to a “constancy” property of therithm which, at each time step, has computational complexit
likelihood, it is possible to lump all the states afterwhen O(|V|+ |E|). Let us define binary variables

computingy§ n]. 7=\ <n}, 20 =(Z0,...Z0).  (12)
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Fig. 2. Examples of posterior paths,— ~"[n], obtained by exact (MP) 14 AN o =7
and approximate (APPROX) message passing. T s 0 m ey
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. . 1 24\ i=3 ~+= APPROX| 247 = ~ 4= APPROX
The idea is to compute?(Z}'|X}) = P(Z}|X],XI1) ol | umir
. ‘ 2by .
recursively based o®(Z~1|X"~1). The former is propor- A L
. . 1 \
tional (in Z7) to P(Z, X|X7~ 1) and we have 1_8‘\\\6\‘_(} 1.3‘\‘\\6
N LoP— 'o-é-o-é-o-.o_’ e X900 06-6-0-o-
P(Z2, X2X1) = (13) Nt M
H P(X;llZ;’L) H P(XZIZZL7Z;’L) P(Z;CL|X,:_1) 5 10 15 20 25 30 5 10 15 20 25 30
jev {i,j}eE 25 = € = SINGLE 25 = € = SINGLE
«‘ e=(12 —e—wmpP o Q e=(32) —e—MpP .
~ ~ 4= APPROX ~ 4= APPROX
Let ue(z’f) = [ge(g)]l_z[fe(f])z for e € E, z € {O 1} 2 ‘& LM 2" LmIT
Then, P(X}'Z}) = u;(Z}; X}), and P(X[5|Z1, Z27) = 15l P00 0-00-0 ;| *0-0-04-00-0-0
ui (ZP v Z7; X[%). It remains to expres?(Z"\X" 1) in 4 y
terms of P(Z~1|X"~1). This is possible at a cost 61(2/V), e b b AT ab b o e b db
but we omit the details for brevity. To obtain a fast algamith 0° 0%
(i.e., O(poly(|V7]))), we instead approximate 5 0 15 220 25 3 5 10 15 20 25 30
P(Z7X" 1Y P(Z7 X" 1 y n— 1 n Fig. 3.  Plots of the slope———E[rs — ¢|Ts > ¢| against—loga
(221X H ( J X H ,’Y] D, for message-passing algorlthm P) approximate algoritARPROX) and
jev jev SINGLE algorithm which disregards shared information. Thapd is the

(14) star graph oft nodes with node in the center. Estimates of both single and
paired change points\( and;;) are shown together with theoretical limit of

where v(z;8) = 3*(1 — 3)}~*. By constancy Lemma 2, Theorem 1. (The case = (4,2) is omitted to conserve space; it looks very
Bayes rule and algebra, we get the recursion similar toe = (1, 2), (3, 2)). False alarm tolerance ranges in0.5, 10~ 13].
,yn 1[n] _ j (n) Ty [n]c nfl[n o 1]
! miln—1]¢ " miln — 1]V three methods: the message-passing algorithm of Section IV

Thus, at timen, the RHS of (14) is known based on value§MP), approximate algorithm of Section V (APPROX) and

computed at timex — 1 (with initial value 9[0] = 0,5 € V). the method which bases its inference on posteriors catmllat

Inserting this RHS into (13) in place aP(z”|X"~!), we based only on each node’s private information (SINGLE).

obtain a graphical model in variablég' (instead of\.) which ~ This latter method estimates a single change paintby

has the same form as (3) with Z?;+7~'[n]) playing the role 7; := inf{n : P(}; < n|X}) > 1 —aj} and a paired

of the priorm();). Aij = Ai AXj by 7, AT Also shown in the figure is the
Hence, we can apply a message passing algorithm similafigiting value ‘of the normalized expected delay as predittg

that described in Section IV, to marginalize this approxiana Theorem 1. All plots are generated by Monte Carlo simulation

version of P(Z", X|X"~1), providing approximate values over 5000 realizations.

of v7[n] = P(Z} = 1|X7) and~}j[n]. The message update In estimating single change points, MP, which takes shared

equat|0ns are similar to those of Section IV and are omitte@formation into account, has a clear advantage over SINGLE

The difference is that the messages are now binary and f@e high to relatively low false alarm values (even, say s

not grow in size withn. Fig. 2 shows examples of posteriorx ~ e~°); though, both methods seem to converge to the same

tracking by approximate algorithm. Theoretical analydithe slope in thea: — 0 limit, as suggested by Theorem 1. (The

algorithm will appear in a longer version of this paper.  particular value is(—1og0.9 + 0.5)~" = 1.6519.) Also note
that the advantage of MP over SINGLE is more emphasized
VI. SIMULATIONS for node 2, as expected by its access to shared information

We present simulation results as depicted in Fig. 3. THeom all the three nodes. We also note that APPROX does
setting is that of graphical model (3) ah= 4 nodes, where a reasonable job at approximating MP, with delays between
the statistical graph is a star with no2lén the middle. Condi- those of SINGLE and MP, getting closer to MP as- 0.
tioned on\,, all the data sequencex,,, are assumed Gaussian For paired change points, the advantage of MP and AP-
of variancel, with pre-change meah and post-change meanPROX over SINGLE is more emphasized. It is also interesting
zero. All priors are geometric with parameters= 0.1. Fig. 3 to note that while MP seems to converge to the expected
shows plots of expected delay ovésg «|, against log f, for  theoretical limit(—21og0.9 + 3 - 0.5)~! = 0.5845, SINGLE



seems to converge to a higher slope (with a reasonable guedset us focus on the case= A\;5. Fork < oo, w(’;(kl, ko) o
being1.6519 as in the case of singl_e_ change points). ﬁ]flﬁlzczl{kwkz:k} wherep; := 1 — p;. Let
In regard to false alarm probability, nonzero values were T BRIV 9
only observed for the first few values af considered here, 1= R {1380 {2} + Q.
and those were either below or very close to the specifiethere Q2,, = >, ., wg(k,kg) x py (symmetrically
tolerance. for 7, with roles of 1 and 2 reversed) andil’20 =
k n n k ny __ n i
APPENDIX A g (k. k)RE{1}Ri{2}. Then, DE(XY) = Rp{12} 35, T
Now, condition on\; = k and A\, = r > k so that\;y = k.

. PROOF SKETCH OFTHEOREM 1 (The other case with roles of and 2 reversed follows by
We provide a proof sketch for the cage= 2 here (the full symmetry.) By (15),

proof is quite technical, and can be found in [14]). Fix some B
¢ = 15 and consider the likelihood ratio n~'log D5(X}) = n~'log Rp{12} + max, n~tlog T;
1=U,1,

PXY o=k

P(X: | ¢ = OO) . 1 — - - £

. o max{,-log 5;"\1{2}, logp,} where the first term is< I
Let P§ = P(- | ¢ = k). Our asymptotic analysis hinges ony.h.p."by (16). Similarly;~" log Sp {2} equals
the asymptotic behavior O}L log D(’;(X’j), asn — oo, under . . . . R
probability measuré®%. In particular, building on the results n~tlog (S {2} RI{2} + 5771 {2)) = I2
of [15], it is straightforward to derive the following suffent 4 sincelog, < 0, we haven—'log T, < I, + I,. Other
condition. LetP}"'\™* be the probability measure conditioneqerms are dealt with similarly, and we get, w.h.p.
on \; = my; and Ay = moy. Also, let W(}Z(ml,mg) = 1 .
PE(A = mi, A2 = my). Suppose that for allm;,msy) o log D} (X7) = Iip + max{ly + Io, I, + I, I + Ix}.
with positive probability undeﬁ(’;(ml, ms), we can show the 1o caseh — A\,
“concentration inequality”

DL(XT) = ConsiderT; and note that:'logT; = n~'log RP{1} +

follows along similar lines.
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