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requiring the storage ofO(d) cells. Since each cell has j�j+1 entries,
the space complexity is in O(min(d2j�j log r; d(n � d)j�j log j�j))
bits.

The algorithm requires a sum of j�j numbers and j�j copies per
cell. Since all the numbers have O(min(d log r; (n � d) log j�j))
bits and the table has nd cells, the time complexity is in
O(ndj�jmin(d log r; (n� d) log j�j)).

V. FUTURE WORK

For future work, it would be interesting to find closed-form
expressions and an efficient algorithm to calculate the number of
subsequences of a string when deletions and insertions of symbols are
allowed.
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On Optimal Quantization Rules for Some Problems in
Sequential Decentralized Detection
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Abstract—We consider the design of systems for sequential decentral-
ized detection, a problem that entails several interdependent choices: the
choice of a stopping rule (specifying the sample size), a global decision func-
tion (a choice between two competing hypotheses), and a set of quantiza-
tion rules (the local decisions on the basis of which the global decision is
made). This correspondence addresses an open problem of whether in the
Bayesian formulation of sequential decentralized detection, optimal local
decision functions can be found within the class of stationary rules. We de-
velop an asymptotic approximation to the optimal cost of stationary quan-
tization rules and exploit this approximation to show that stationary quan-
tizers are not optimal in a broad class of settings. We also consider the class
of blockwise-stationary quantizers, and show that asymptotically optimal
quantizers are likelihood-based threshold rules.

Index Terms—Decentralized detection, decision-making under con-
straints, experimental design, hypothesis testing, quantizer design,
sequential detection.

I. INTRODUCTION

Detection is a classical discrimination or hypothesis-testing
problem, in which observations fX1; X2; . . .g are assumed to be
drawn independent and identically distributed (i.i.d.) from the (mul-
tivariate) conditional distribution (� jH) and the goal is to infer the
value of the random variable H , which takes values in f0; 1g. In a
typical engineering application, the case fH = 1g represents the pres-
ence of some target to be detected, whereas fH = 0g represents its
absence. Placing this problem in a communication-theoretic context,
a decentralized detection problem is a hypothesis-testing problem in
which the decision maker is not given access to the raw data points
Xn, but instead must infer H based only on the output of a set of
quantization rules or local decision functions, say fUn = �n(Xn)g,
which map the raw data to quantized values. This basic problem
of decentralized detection has been studied extensively for several
decades [17], [19], [6]; see the overview papers [20], [23], [3], [5],
and references therein, for more background. Of interest in this corre-
spondence is the extension to an-online setting: more specifically, the
sequential decentralized detection problem [19], [21], [12] involves
a data sequence fX1;X2; . . .g, and a corresponding sequence of
summary statistics fU1; U2; . . .g, determined by a sequence of local
decision rules f�1; �2; . . .g. The goal is to design both the local
decision functions and to specify a global decision rule so as to
predict H in a manner that optimally trades off accuracy and delay. In
short, the sequential decentralized detection problem is the commu-
nication-constrained extension of classical formulation of sequential
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centralized decision-making problems (see, e.g., [8], [15], [10]) to the
decentralized setting.

In setting up a general framework for studying sequential decentral-
ized problems, Veeravalli et al. [22] defined five problems, denoted
“Case A” through “Case E,” distinguished from one another by the
amount of information available to the local sensors. In applications
such as power-constrained sensor networks, one cannot assume that
the decision maker and sensors can communicate over a high-band-
width channel, nor that the sensors have unbounded memory. Most
suited to this perspective—and the focus of this correspondence—is
Case A, in which the local decisions are of the simplified form�n(Xn);
i.e., neither local memory nor feedback are assumed to be available.
Noting that Case A is not amenable to dynamic programming and hence
presumably intractable, Veeravalli et al. [22] suggested restricting the
analysis to the class of stationary local decision functions; i.e., local
decision functions �n that are independent of n. They conjectured that
stationary decision functions might actually be optimal in the setting of
Case A (given the intuitive symmetry and high degree of independence
of the problem in this case), even though it is not possible to verify this
optimality via dynamic programming (DP) arguments. This conjecture
has remained open since it was first posed by Veeravalli et al. [22], [21].

The main contribution of this correspondence is to resolve this ques-
tion by showing that stationary decision functions are, in fact, not op-
timal for decentralized problems of type A. Our argument is based on
an asymptotic characterization of the optimal Bayesian risk as the cost
per sample goes to zero. In this asymptotic regime, the optimal cost can
be expressed as a simple function of priors and Kullback–Leibler (KL)
divergences. This characterization allows us to construct counterexam-
ples to the stationarity conjecture, both in an exact and an asymptotic
setting. In the latter setting, we present a class of problems in which
there always exists a range of prior probabilities for which stationary
strategies, either deterministic or randomized, are suboptimal. We note
in passing that an intuition for the source of the suboptimality is easily
provided—it is due to the asymmetry of the KL divergence.

It is well known that optimal quantizers when unrestricted are neces-
sarily likelihood-based threshold rules [19]. Our counterexamples and
analysis imply that optimal thresholds are not generally stationary (i.e.,
the threshold may differ from sample to sample). We also provide a
partial converse to this result: specifically, if we restrict ourselves to
stationary (or blockwise stationary) quantizer designs, then there ex-
ists an optimal design that is a deterministic threshold rule based on
the likelihood ratio. We prove this result by establishing a quasi-con-
cavity result for the asymptotically optimal cost function.

It isworthhighlightingseveral limitationsinourresults.For thesubop-
timality of stationary quantizers, our analysis is applicable only to finite
classes of deterministic quantizers and their convex hull of randomized
quantizers, and under the assumption that the likelihood ratio of the two
hypotheses are bounded from both above and below. Such assumptions
certainlyhold forarbitrarydiscretedistributionswithfinite support. It re-
mains an open problem to consider more general classes of distributions.
For the likelihood-ratio characterization result, our proof works only for
the (possibly infinite) classes of deterministic quantizers with arbitrary
output alphabets, as well as for the class of randomized quantizers with
binary outputs. We conjecture that the same result holds more generally
for randomized quantizers with arbitrary output alphabets.

The remainder of this correspondence is organized as follows. We
begin in Section II with background on the Bayesian formulation of
sequential detection problems, and Wald’s approximation. Section III
provides a simple asymptotic approximation of the optimal cost that
underlies our main analysis in Section IV. In Section V, we establish the
existence of optimal decision rules that are likelihood-based threshold
rules, under the restriction to blockwise stationarity. We conclude with
a discussion in Section VI.

II. BACKGROUND

This section provides background on the Bayesian formulation of
sequential (centralized) detection problems. Of particular use in our
subsequent analysis is Wald’s approximation of the cost of optimal se-
quential test.

Let 0 and 1 represent the distribution of X , when conditioned
on fH = 0g and fH = 1g, respectively. Assume that 0 and 1

are absolutely continuous with respect to one another. We use f0(x)
and f1(x) to denote the respective density functions with respect to
some dominating measure (e.g., Lebesgue for continuous variables, or
counting measure for discrete-valued variables).

Our focus is the Bayesian formulation of the sequential detection
problem [15], [21]; accordingly, we let �1 = (H = 1) and �0 =
(H = 0) denote the prior probabilities of the two hypotheses. Let

X1; X2; . . . be a sequence of conditionally i.i.d. realizations of X . A
sequential decision rule consists of a stopping time N defined with
respect to the sigma field �(X1; . . . ; XN), and a decision function 

measurable with respect to �(X1; . . . ; XN). The cost function is the
expectation of a weighted sum of the sample sizeN and the probability
of incorrect decision—namely

J(N; 
) := fcN + [
(X1; . . . ; XN) 6= H]g (1)

where c > 0 is the incremental cost of each sample. The overall goal
is to choose the pair (N; 
) so as to minimize the expected loss (1).

It is well known that the optimal solution of the sequential decision
problem can be characterized recursively using DP arguments [1], [25],
[15], [2]. Although useful in classical (centralized) sequential detec-
tion, the DP approach is not always straightforward to apply to de-
centralized versions of sequential detection [21]. In the remainder of
this section, we describe an asymptotic approximation of the optimal
sequential cost, originally due to Wald (cf. [16]), valid as c ! 0. To
sketch out Wald’s approximation, we begin by noting the optimal stop-
ping rule for the cost function (1) takes the form

N = inf n � 1 jLn(X1; . . . ; Xn) :=

n

i=1

log
f1(Xi)

f0(Xi)
=2 (a; b)

(2)
for some real numbers a < b. Given this stopping rule, the optimal
decision function has the form


(LN) =
1; if LN � b

0; if LN � a:
(3)

Consider the two types of error

� = 0(
(LN) 6= H) = 0(LN � b)

� = 1(
(LN) 6= H) = 1(LN � a):

As c ! 0, it can be shown that the optimal choice of a and b satisfies
a ! �1; b ! 1, and the corresponding �; � satisfy � + � ! 0.
Ignoring the overshoot of LN upon the optimal stopping time N (i.e.,
instead assuming LN attains precisely the value a or b) we can express
a; b; N; and the cost function J in terms of � and � as follows [24]:

a � log
�

1� �
and b � log

1� �

�
(4)

0[LN ] � (1� �)a+ �b (5)

1[LN ] � (1� �)b+ �a: (6)

Now define the KL divergences

D1 = 1 log
f1(X1)

f0(X1)
= D(f1 jj f0)

D0 = � 0 log
f1(X1)

f0(X1)
= D(f0 jj f1):
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With a slight abuse of notation, we shall also use D(�; �) to denote a
function in [0; 1]2 ! such that

D(�; �) := � log
�

�
+ (1� �) log

1� �

1� �
:

With the above approximations, the cost function J of the decision rule
based on envelopes a and b can be written as

J = �1 1(cN + [LN � a]) + �0 0(cN + [LN � b]) (7)

= c�1
1LN
D1

+ c�0
0LN
�D0

+ �0�+ �1� (8)

� c�0
D(�; 1� �)

D0
+ c�1

D(1� �; �)

D1
+ �0�+ �1� (9)

where the last approximation follows from Wald’s equation [24]. Let
~J(�; �) denote approximation (9) of J .

Let J� denote the cost of an optimal sequential test

J� = inf
a;b

J: (10)

A useful result due Chernoff [7] states that under certain assumption
(to be elaborated on in the next section), J� has the following form:

J� �
�0

D0
+

�1

D1
c log c�1(1 + o(1)): (11)

III. CHARACTERIZATION OF OPTIMAL STATIONARY QUANTIZERS

Turning now to the decentralized setting, the primary challenge lies
in the design of the quantization rules �n applied to data Xn. When
Xn is univariate, a deterministic quantization rule �n is a function that
maps X to the discrete space U = f0; . . . ; K � 1g for some natural
number K . For multivariate Xn with d dimensions arising in the mul-
tiple-sensor setting, a deterministic quantizer �n is defined as a map-
ping from the d-dimensional product spaceX toU = f0; . . . ; K�1gd.
In the decentralized problem defined as Case A by Veeravalli et al. [22],
the function�n is composed of d separate quantizer functions, one each
for each dimension. A randomized quantizer �n is obtained by placing
a distribution over the space of deterministic quantizers.

Any fixed set of quantization rules �n yields a sequence of com-
pressed data Un = �n(Xn), to which the classical theory can be ap-
plied. We are thus interested in choosing quantization rules �1; �2; . . .
so that the error resulting from applying the optimal sequential test to
the sequence of statistics U1; U2; . . . is minimized over some space �
of quantization rules. For a given quantizer �n we use

f i� (u) := i(�n(Xn) = u); for i = 0; 1

to denote the distributions of the compressed data, conditioned on the
hypothesis. In general, when randomized quantizers are allowed, the
vector (f0� ( � ); f1� ( � )) ranges over a convex set, denoted conv�,
whose extreme points correspond to deterministic quantizers based on
likelihood-ratio threshold rules [18].

We say that a quantizer design is stationary if the rule �n is in-
dependent of n; in this case, we simplify the notation to f1� and f0� .
In addition, we define the KL divergences D1

� := D(f1� jj f
0
�) and

D0
� := D(f0�jjf

1
�). Moreover, let J� and J�� denote the analogues

of the functions J in (7) and J� in (10), respectively, defined using
Di
�, for i = 0; 1. In this scenario, the sequence of compressed data

U1; . . . ; Un; . . . are drawn i.i.d. from either f0� or f1� . Thus, we can use
the approximation (11) to characterize the asymptotically optimal sta-
tionary quantizer design. This is stated formally in the lemma to follow.

We begin by stating the assumptions underlying the lemma. For a
given class of quantizers �, we assume that the KL divergences are
uniformly bounded away from zero

D f1�jjf
0
� > 0; D f0�jjf

1
� > 0; for all � 2 � (12)

and, moreover, that the variance of the log-likelihood ratios are
bounded

sup
�2�

max Varf log f1�=f
0
� ;Varf log f1�=f

0
� <1: (13)

Lemma 1:
(a) Under assumptions (12) and (13), the optimal stationary cost

takes the form

J�� =
�0

D0
�

+
�1

D1
�

c log c�1 (1 + r�) (14)

where jr�j = o(1) as c ! 0.
(b) If

sup
�2�

maxflog(f1�=f
0
�); log(f

0
�=f

1
�)g < M

for some constant M , then (14) holds with sup�2� jr�j = o(1) as
c ! 0.

Proof:
(a) This part is immediate from a combination of Theorems 1 and 2

of Chernoff [7].
(b) We begin by bounding the error in the approximation (9). By

definition of the stopping time N , we have either i) b � LN � b +
M or ii) a � M � LN � a. By standard arguments due to Wald
[24], it is simple to obtain eb� � 1� � � eb+M�, or equivalently,
b � b(�; �) = log 1��

�
� b+M . Similar reasoning for case ii) yields

a �M � a(�; �) = log �

1��
� a. Now, note that

0LN = � 0[LN jLN � b] + (1� �) 0[LN jLN � a]:

Conditioning on the eventLN 2 [b; b+M ], we have jLN�b(�; �)j �
M . Similarly, conditioning on the event LN 2 [a �M; a], we have
jLN � b(�; �)j � M . This yields j 0LN � (�D(�; 1� �))j � M .
Similar reasoning yields j 1LN � D(1 � �; �)j � M . Let ~J�(a; b)
denote the approximation (9) of J�. We obtain

jJ� � ~J�(�; �)j � 2cM:

Note that the approximation error bound is independent of �. Thus,
it suffices to establish the asymptotic behavior (14) for the quantity
inf�;� ~J�(�; �), where the infimum is taken over pairs of realizable
error probabilities (�; �). Moreover, we only need to consider the
asymptotic regime � + � ! 0, since the error probabilities � and �
vanish as c ! 0. It is simple to see that

D(1� �; �) = log(1=�)(1 + o(1))

and

D(1� �; �) = log(1=�)(1+ o(1)):

Hence, inf�;� ~J�(�; �) can be expressed as

inf
�;�

�0�+ �1� + c�0
log(1=�)

D0
�

+ c�1
log(1=�)

D1
�

(1 + o(1)):

(15)
This infimum, taken over all positive (�; �), is achieved at

�� =
c�1

D1
��

0
and �� =

c�0

D0
��

1
:



3288 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 7, JULY 2008

Plugging the quantities �� and �� into (15) yields (14). Note that the
asymptotic quantity o(1) in (14) is absolutely bounded by �� + �� !
0 uniformly for all quantizer �, because D1

� and D0
� are uniformly

bounded away from zero due to the lemma’s assumption.
It remains to show that error probabilities (��; ��) can be approx-

imately realized by using a sufficiently large threshold b > 0 and
small threshold a < 0 while incurring an approximation cost of order
O(c) uniformly for all �. Indeed, let us choose thresholds a0 and b0

such that e�(b +M)=2 � �� � e�b , and ea �M=2 � �� � ea .
Let �0 and �0 be the corresponding errors associated with these two
thresholds. As before, we also have �0 2 (e�(b +M)=2; e�b ) and
�0 2 (ea �M=2; ea ). Clearly, j�� � �0j � e�b (1 � e�M=2) =
O(��) = O(c). Similarly, j�� � �0j = O(c). By the mean value the-
orem

j log(1=��)� log(1=�0)j � j�� � �0jeb +M

� 2eM(1� e�M=2) = O(1): (16)

Similarly, log(1=��)� log(1=�0) = O(1). Hence, the approximation
of (��; ��) by the realizable (�0; �0) incurs a cost at most O(c). Fur-
thermore, the constant in the asymptotic bound O(c) is independent of
quantizer � 2 �.

Remarks: i) If � is a finite class of quantizers, or a convex hull of a
finite class of quantizers, the assumption in Part b of Lemma 1 holds.
It also holds in the case of discrete distributions and continuous dis-
tributions with bounded support. However, it would be interesting to
relax this assumption so as to cover distributions with unbounded sup-
port. ii) The preceding approximation of the optimal cost essentially
ignores the overshoot of the likelihood ratio LN . While it is possible to
analyze this overshoot to obtain a finer approximation (cf. [11], [16],
[10], [14]), we see that this is not needed for our purpose. Lemma 1
shows that given a fixed prior (�0; �1), among all stationary quantizer
designs in �; � is optimal for sufficiently small c if and only if � min-
imizes what we shall call the sequential cost coefficient

G� :=
�0

D0
�

+
�1

D1
�

:

iii) As a consequence of Lemma 7 to be proved in the sequel, if we
consider the class � of all binary randomized quantizers, then sequen-
tial cost coefficient G� is a quasi-concave function with respect to
(f0�( � ); f

1
�( � )). (A functionF is quasi-concave if and only if for any �,

the level set fF (x) � �g is a convex set; see Boyd and Vandenberghe
[4] for further background). The minimum of a quasi-concave function
lies in the set of extreme points in its domain. For the set conv�, these
extreme points can be realized by deterministic quantizers based on
likelihood ratios [20]. Consequently, we conclude that for quantizers
with binary outputs, the optimal cost is not decreased by considering
randomized quantizers. We conjecture that this statement also holds
beyond the binary case.

Section V is devoted to a more detailed study of asymptotically op-
timal stationary quantizers. In the meantime, we turn to the question
of whether stationary quantizers are optimal in either finite-sample or
asymptotic settings.

IV. SUBOPTIMALITY OF STATIONARY DESIGNS

It was shown by Tsitsiklis [19] that optimal quantizers �n take the
form of threshold rules based on the likelihood ratio f1(Xn)=f0(Xn).
Veeravalli et al. [22], [21] asked whether these rules can always be
taken to be stationary, a conjecture that has remained open. In this sec-
tion, we resolve this question with a negative answer in both the fi-
nite-sample and asymptotic settings.

A. Suboptimality in Exact Setting

We begin by providing a numerical counterexample for which sta-
tionary designs are suboptimal. Consider a problem in which X 2
X = f1; 2; 3g and the conditional distributions take the form

f0(x) = [ 8
10

1999
10000

1
10000

] and f1(x) = [ 1
3

1
3

1
3
] :

Suppose that the prior probabilities are �1 = 8
100

and �0 = 92
100

, and
that the cost for each sample is c = 1

100
.

If we restrict to binary quantizers (i.e., U = f0; 1g), by the sym-
metric roles of the output alphabets, there are only three possible de-
terministic quantizers.

1) Design A: �A(Xn) = 0 () Xn = 1. As a result, the cor-
responding distribution for Un is specified by f0� (un) = [ 4

5
1
5
]

and f1� (u) = [ 1
3

2
3
].

2) Design B: �B(Xn) = 0 () Xn 2 f1; 2g. The corre-
sponding distribution for Un is given by f0� (u) = [ 9999

10000
1

10000
]

and f1� (u) = [ 2
3

1
3
].

3) Design C: �C(Xn) = 0 () Xn 2 f1; 3g. The corre-
sponding distribution for Un is specified by f0� � [ 8001

10000
1999
10000

]
and f1� (u) = [ 2

3
1
3
].

Now consider the three stationary strategies, each of which uses only
one fixed design, A, B, or C. For any given stationary quantization rule
�, we have a classical centralized sequential problem, for which the op-
timal cost (achieved by a sequential probability ratio test) can be com-
puted using a dynamic-programming procedure [25], [1]. Accordingly,
for each stationary strategy, we compute the optimal cost function J
for 106 points on the p-axis by performing 300 updates of Bellman’s
equation (cf. [2]). In all cases, the difference in cost between the 299th
and 300th updates is less than 10�6. Let JA; JB and JC denote the
optimal cost function for sequential tests using all A’s, all B’s, and all
C’s, respectively. When evaluated at �1 = 0:08, these computations
yield JA = 0:0567; JB = 0:0532; and JC = 0:08.

Finally, we consider a nonstationary rule obtained by applying de-
sign A for only the first sample, and applying design B for the re-
maining samples. Again, using Bellman’s equation, we find that the
cost for this design is

J� = minfminf�1; 1� �1g

c+ JB(P (H = 1ju1 = 0))P (u1 = 0)

+ JB(P (H = 1ju1 = 1))P (u1 = 1)g = 0:052767

which is better than any of the stationary strategies.
In this particular example, the cost J� of the nonstationary quan-

tizer yields a slim improvement (0:0004) over the best stationary rule
JB . This slim margin is due in part to the choice of a small per-sample
cost c = 0:01; however, larger values of c do not yield a counterex-
ample when using the particular distributions specified above. A more
significant factor is that our nonstationary rule differs from the optimal
stationary ruleB only in its treatment of the first sample. This fact sug-
gests that one might achieve better cost by alternating between using
design A and design B on the odd and even samples, respectively. Our
analysis of the asymptotic setting in the next section confirms this in-
tuition.

B. Asymptotic Suboptimality for Both Deterministic and Randomized
Quantizers

We now prove that in a broad class of examples, there is a range
of prior probabilities for which stationary quantizer designs are sub-
optimal. Our result stems from the following observation: Lemma 1
implies that in order to achieve a small cost we need to choose a quan-
tizer � for which the KL divergences D0

� := D(f0�jjf
1
�) and D1

� :=
D(f1�jjf

0
�) are both as large as possible. Due to the asymmetry of the

KL divergence, however, these maxima are not necessarily achieved by
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a single quantizer �. This suggests that one could improve upon sta-
tionary designs by applying different quantizers to different samples,
as the following lemma shows.

Lemma 2: Let �1 and �2 be any two quantizers. If the following
inequalities hold:

D0

� < D0

� and D1

� > D1

� (17)

then there exists a nonempty interval (U; V ) � (0;+1) such that as
c ! 0

J�� � J�� ;� � J�� ; if
�0

�1
� U

J�� ;� < minfJ�� ; J�� g ��(c log c�1); if
�0

�1
2 (U; V )

J�� � J�� ;� � J�� ; if
�0

�1
� V

where J�� ;� denotes the optimal cost of a sequential test that alter-
nates between using �1 and �2 on odd and even samples respectively.

Proof: According to Lemma 1, for i = 0; 1

J�� =
�0

D0

�

+
�1

D1

�

c log c�1(1 + o(1)): (18)

Now consider the sequential test that applies quantizers �1 and �2 al-
ternately to odd and even samples. Furthermore, let this test consider
two samples at a time. Let f0� � and f1� � denote the induced condi-
tional probability distributions, jointly on the odd–even pairs of quan-
tized variables. From the additivity of the KL divergence and assump-
tion (17), there holds

D f0� � jjf
1

� � = D0

� +D0

� > 2D0

� (19a)

D f1� � jjf
0

� � = D1

� +D1

� < 2D1

� : (19b)

Clearly, the cost of the proposed sequential test is an upper bound for
J�� ;� . Furthermore, the gap between this upper bound and the true
optimal cost is no more than O(c). Hence, as in the proof of Lemma 1,
as c ! 0, the optimal cost J�� ;� can be written as

2�0

D0

� +D0

�

+
2�1

D1

� +D1

�

c log c�1(1 + o(1)): (20)

From (18) and (20), simple calculations yield the claim with

U =
D0

� D1

� �D1

� D0

� +D0

�

D1

� D1

� +D1

� D0

� �D0

�

< V =
D0

� D1

� �D1

� D0

� +D0

�

D1

� D1

� +D1

� D0

� �D0

�

: (21)

Example: Let us return to the example provided in the previous
subsection. Note that the two quantizers �A and �B satisfy assump-
tion (17), since D(f0� jjf 1� ) = 0:4045 < D(f0� jjf 1� ) = 0:45
and D(f1� jjf 0� ) = 2:4337 > D(f1� jjf 0� ) = 0:5108. Further-
more, both quantizers dominate �C in terms of KL divergences:
D(f0� jjf 1� ) = 0:0438; D(f0� jjf 1� ) = 0:0488. As a result, there
exist a range of priors for which a sequential test using stationary
quantizer design (either �A; �B or �C for all samples) is not optimal.

Theorem 3:
(a) Suppose that � is a finite collection of quantizers, and that there

is no single quantizer � that dominates all other quantizers in � in the

sense that

D0

� � D0

� and D1

� � D1

� ; for all�0 2 �: (22)

Then there exists a nonempty range of prior probabilities for which no
stationary design based on a quantizer in � is optimal.

(b) For any nondeterministic � in the randomized class conv�, there
exists a nonstationary quantizer design that has strictly smaller sequen-
tial cost coefficient than that of a stationary design based on � for any
choice of prior probabilities.

Proof:
(a) Since there are a finite number of quantizers in � and no quan-

tizer dominates all others, the interval (0;1) is divided into at least
two adjacent nonempty intervals, each of which corresponds to a range
of prior probability ratios �0=�1 for which a quantizer is strictly op-
timal (asymptotically) among all stationary designs. Let them be (�1; �)
and (�; �2), for two quantizers, namely, �1 and �2. In particular, �
is the value for �0=�1 for which the sequential cost coefficients are
equal—viz. G� = G� —which happens only if assumption (17)
holds. Some calculations verify that

� =
D0

� D0

� D1

� �D1

�

D1

� D1

� D0

� �D0

�

: (23)

By Lemma 2, a nonstationary design obtained by alternating between
�1 and �2 has smaller sequential cost than both �1 and �2 for �0=�1 2
(U; V ), where U and V are given in (21). Since it can be verified that
� as defined (23) belongs to the interval (U; V ), we conclude that for
�0=�1 2 (U; V )\ (�1; �2), this nonstationary design has smaller cost
than any stationary design using � 2 �.

(b) Let � 2 conv � be a randomized quantizer (i.e., at each
step choose with nonzero probabilities w1; . . . ; wk from quantizers
�1; . . . ; �k 2 �, respectively, where k

i=1
wi = 1). Clearly, the den-

sity induced by � satisfies f0� = k

i=1
wif

0

� and f1� = k

i=1
wif

1

� .
Due to strict convexity of the KL divergence functional with respect
jointly to the two density arguments [9], by Jensen’s inequality we
have D0

� < k

i=1
wiD

0

� and D1

� < k

i=1
wiD

1

� . Since D0

�

and D1

� are bounded from above uniformly for all �i 2 �, it is
possible to approximate (w1; . . . ; wk) by rational numbers of the
form (q1=N; q2=N; . . . ; qk=N) for some natural numbers q1; . . . ; qk
and N satisfying k

i=1
qi = N such that

D0

� <

k

i=1

qiD
0

� =N

D1

� <

k

i=1

qiD
1

� =N:

Now consider the nonstationary quantizer that applies �1 for q1 steps,
then �2 for q2 steps, and so on, up to �k for qk steps, yielding a total
of N steps, and then repeats this sequence starting again at step N +1.
By construction, this nonstationary quantizer has a smaller cost than
that of quantizer � for any choice of prior.

Remarks: i) It is worth emphasizing the assumption that the class �
is finite is crucial in Part (a) of the theorem. We do not know if this re-
sult can be extended to the case in which � is infinite. ii) Part (b) shows
that any stationary randomized quantizer is always dominated by some
nonstationary one. Actually, a stronger result can be proved at least for
binary quantizers (see Corollary 8): for any given choice of prior proba-
bility, any stationary randomized quantizer is dominated by a stationary
deterministic quantizer. iii) It is interesting to contrast the Bayesian for-
mulation of the problem of quantizer design with the Neyman–Pearson
formulation. Our results on the suboptimality of stationary quantizer
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design in the Bayesian formulation repose on the asymmetry of the
KL divergence, as well as the sensitivity of the optimal quantizers on
the prior probability. We note that Mei [12 (see p. 58)] considered the
Neyman–Pearson formulation of this problem. In this formulation, it
can be shown that for all sequential tests for which the Type 1 and Type
2 errors are bounded by � and �, respectively, then as �+ � ! 0, the
expected stopping time 0N under hypothesis H = 0 is asymptoti-
cally minimized by applying a stationary quantizer �� that maximizes
D(f0�jjf

1
�). Similarly, the expected stopping time 1N under hypoth-

esis H = 1 is asymptotically minimized by the stationary quantizer
��� that maximizes D(f1�jjf

0
�) [12]. In this context, the example in

Subsection IV-A provides a case in which the asymptotically minimal
KL divergences �� and ��� are not the same, due to the asymmetry,
which suggests that there may not exist a stationary quantizer that si-
multaneously minimizes both 1N and 0N .

C. Asymptotic Suboptimality in Multiple-Sensor Setting

Our analysis thus far has established that with a single sensor per
time step (d = 1), applying multiple quantizers to different samples
can reduce the sequential cost. As pointed out by one of the referees, it
is natural to ask whether the same phenomenon persists in the case of
multiple sensors (d > 1). In this section, we show that the phenomenon
does indeed carry over, more specifically by providing an example in
which stationary strategies are still suboptimal in comparison to non-
stationary ones. The key insight is that we have only a fixed number of
dimensions, whereas as c ! 0 we are allowed to take more samples,
and each sample can act as an extra dimension, providing more flexi-
bility for nonstationary strategies.

Suppose that the observation vector Xn at time n is d-dimensional,
with each component corresponding to a sensor in a typical decentral-
ized setting. Suppose that the observations from each sensor are as-
sumed to be i.i.d. according to the conditional distributions defined in
our earlier example (see Section IV-A). Of interest are the optimal de-
terministic binary quantizer designs for all d sensors. Although there
are three possible choices �A; �B ; and �C for each sensor, the quan-
tizer �C is dominated by the other two, so each sensor should choose
either �A and �B . Suppose that among these sensors, a subset of size
k choose �A and whereas the remaining d� k sensors choose �B for
0 � k � d. We thus have d + 1 possible stationary designs to con-
sider. For each k, the sequential cost coefficient corresponding to the
associated stationary design takes the form

Gk :=
�0

kD0
� + (d� k)D0

�

+
�1

kD1
� + (d� k)D1

�

: (24)

Now consider the following nonstationary design: the first sensor
alternates between decision rules �A and �B , while the remaining d�
1 sensors simply apply the stationary design based on �B . For this
design, the associated sequential cost coefficient is given by

G :=
2�0

D0
� + (2d� 1)D0

�

+
2�1

D1
� + (2d� 1)D1

�

: (25)

Consider the interval (U; V ), where the interval has endpoints

U =
D1
� �D1

�

D0
� �D0

�

D0
� + (2d� 1)D0

�

D1
� + (2d� 1)D1

�

�
D0
�

D1
�

< V =
D1
� �D1

�

D0
� �D0

�

�
D0
� + (2d� 1)D0

�

D1
� + (2d� 1)D1

�

D0
� + (d� 1)D0

�

D1
� + (d� 1)D1

�

: (26)

Straightforward calculations yield that for any prior likelihood
�0=�1 2 (U; V ), the minimal cost over stationary designs
mink=0;...;dGk is strictly larger than the sequential cost G of
the nonstationary design, previously defined in (25).

V. ON ASYMPTOTICALLY OPTIMAL BLOCKWISE STATIONARY DESIGNS

Despite the possible loss in optimality, it is useful to consider some
form of stationarity in order to reduce computational complexity of
the optimization and decision process. In this section, we consider the
class of blockwise stationary designs, meaning that there exists some
natural number T such that �T+1 = �1; �T+2 = �2; and so on. For
each T , let CT denote the class of all blockwise stationary designs
with period T . We assume throughout the analysis that each decision
rule �n (n = 1; . . . ; T ) satisfies conditions (12) and (13). Thus, as T
increases, we have a hierarchy of increasingly rich quantizer classes
that will be seen to yield progressively better approximations to the
optimal solution.

For a fixed prior (�0; �1) and T > 0, let (�1; . . . ; �T ) denote a
quantizer design in CT . As before, the cost J�� of an asymptotically
optimal sequential test using this quantizer design is of order c log c�1

with the sequential cost coefficient

G� =
T�0

D0
� + � � �+D0

�

+
T�1

D1
� + � � �+D1

�

: (27)

G� is a function of the vector of probabilities introduced by the quan-
tizer (f0�( � ); f

1
�( � )). We are interested in the properties of a quantiza-

tion rule � that minimizes G�.
It is well known that there exist optimal quantizers—when unre-

stricted—that can be expressed as threshold rules based on the log-like-
lihood ratio (LLR) [19]. Our counterexamples in the preceding sections
imply that the thresholds need not be stationary (i.e., the threshold may
differ from sample to sample). In the remainder of this section, we ad-
dresses a partial converse to this issue: specifically, if we restrict our-
selves to stationary (or blockwise stationary) quantizer designs, then
there exists an optimal design consisting of LLR-based threshold rules.

It turns out that the analysis for the case T > 1 can be reduced to an
analysis that is closely related to our earlier analysis for T = 1. Indeed,
consider the sequential cost coefficient for the time step n = 1, where
the rules for the other time steps are held fixed. From (27) we have

G� =
T�0

D0
� + s0

+
T�1

D1
� + s1

for nonnegative constants s0 and s1. As we will show, our earlier anal-
ysis of the sequential cost coefficient, in which s0 = s1 = 0, carries
through to the case in which these values are nonzero. This allows us
to provide (in Theorem 9) a characterization of the optimal blockwise
stationary quantizer.

Definition 4: The quantizer design function � : X ! U is said
to be a likelihood-ratio threshold rule if there are thresholds d0 =
�1 < d1 < . . . < dK = +1, and a permutation (u1; . . . ; uK)
of (0; 1; . . . ; K�1) such that for l=1; . . . ; K , with 0-probability 1,
we have

�(X) = ul; if dl�1 � f1(X)=f0(X) � dl:

When f1(X)=f0(X) = dl�1, set �(X) = ul�1 or �(X) = ul with
0-probability 1.1

Previous work on the extremal properties of likelihood-ratio-based
quantizers guarantees that the KL divergence is maximized by an LLR-
based quantizer [18]. In our case, however, the sequential cost coeffi-
cient G� involves a pair of KL divergences, D0

� and D1
�, which are re-

lated to one another in a nontrivial manner. Hence, establishing asymp-

1This last requirement of the definition is termed the canonical likelihood
ratio quantizer by Tsitsiklis [18]. Although one could consider performing addi-
tional randomization when there are ties, our later results (in particular, Lemma
7) establish that in this case, randomization will not further decrease the optimal
cost J .
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totic optimality of LLR-based rules for this cost function does not
follow from existing results, but rather requires further understanding
of the interplay between these two KL divergences.

The following lemma concerns certain “unnormalized” variants of
the KL divergence. Given vectors a = (a0; a1) and b = (b0; b1),
we define functions ~D0 and ~D1 mapping from 4

+ to the real line as
follows:

~D0(a; b) := a0 log
a0
a1

+ b0 log
b0
b1

(28a)

~D1(a; b) := a1 log
a1
a0

+ b1 log
b1
b0
: (28b)

These functions are related to the standard (normalized) KL divergence
via the relations ~D0(a; 1 � a) � D(a0; a1), and ~D1(a; 1 � a) �
D(a1; a0).

Lemma 5: For any positive scalars a1; b1; c1; a0; b0; c0 such that
a

a
< b

b
< c

c
, at least one of the two following conditions must

hold:

(i) ~D0(a; b+ c) > ~D0(b; c+ a) and (29a)
~D1(a; b+ c) > ~D0(b; c+ a) (29b)

(ii) ~D0(c; a+ b) > ~D0(b; c+ a) and (29c)
~D1(c; a+ b) > ~D0(b; c+ a): (29d)

This lemma implies that under certain conditions on the ordering
of the probability ratios, one can increase both KL divergences by
re-quantizing. This insight is used in the following lemma to establish
that the optimal quantizer � behaves almost like a likelihood-ratio rule.
To state the result, recall that the essential supremum is the infimum of
the set of all � such that f(x) � � for 0-almost all x in the domain,
for a measurable function f .

Lemma 6: If � is an asymptotically optimal quantizer, then for all
pairs (u1; u2) 2 U ; u1 6= u2, there holds

f1(u1)

f0(u1)
=2 ess inf

x:�(x)=u

f1(x)

f0(x)
; ess sup

x:�(x)=u

f1(x)

f0(x)
:

Note that a likelihood-ratio rule guarantees something stronger: For
0-almost all x such that �(x) = u1; f

1(x)=f0(x) takes a value either
to the left or to the right, but not to both sides, of the interval specified
above.

Lemma 7 stated below essentially guarantees quasi-concavity of G�

for the case of binary quantizers. To state the result, letF : [0; 1]2 ! R
be given by

F (a0; a1) =
c0

D(a0; a1) + d0
+

c1
D(a1; a0) + d1

: (30)

Lemma 7: For any nonnegative constants c0; c1; d0; d1, the function
F defined in (30) is quasi-concave.

We provide a proof of this result in the Appendix. An immediate
consequence of Lemma 7 is that LLR-based quantizers exist for the
class of randomized quantizers with binary outputs.

Corollary 8: Restricting to the class of (blockwise) stationary binary
quantizers, there exists an asymptotically optimal quantizer � that is a
(deterministic) likelihood-ratio threshold rule.

Proof: Let � is a (randomized) binary quantizer. The sequential
cost coefficient can be written as G� = F (f0�(0); f

1
�(0)). The set of

f(f0�(0); f
1
�(0)g for all � is a convex set whose extreme points can be

realized by deterministic likelihood ratio threshold rules (see Proposi-
tion 3.2 of [18]). Since the minimum of a quasi-concave function must

lie at one such extreme point [4], the corollary is immediate as a con-
sequence of Lemma 7.

It turns out that the same statement can also be proved for determin-
istic quantizers with arbitrary output alphabets.

Theorem 9: Restricting to the class of (blockwise) stationary and
deterministic decision rules, then there exists an asymptotically optimal
quantizer � that is a likelihood-ratio threshold rule.

We present the full proof of this theorem in the Appendix. The proof
exploits both Lemmas 6 and 7.

VI. DISCUSSION

In this correspondence, we have studied the problem of sequential
decentralized detection. For quantizers with neither local memory nor
feedback (Case A in the taxonomy of Veeravalli et al. [22]), we have es-
tablished that stationary designs need not be optimal in general. More-
over, we have shown that in the asymptotic setting (i.e., when the cost
per sample goes to zero), there is a class of problems for which there
exists a range of prior probabilities over which stationary strategies are
suboptimal.

There are a number of open questions raised by the analysis in this
correspondence. First, our analysis has established only that the best
stationary rule chosen from a finite set of deterministic quantizers
need not be optimal. Is there a corresponding example with an infinite
number of deterministic stationary quantizer designs for which none
is optimal? Second, Corollary 8 establishes the optimality of likeli-
hood-ratio rules for randomized decision rules that produce binary
outputs. This proof was based on the quasi-concavity of the function
G� that specifies the asymptotic sequential cost coefficient. Is this
function G� also quasi-concave for quantizers other than binary ones?
Such quasi-concavity would extend the validity of Theorem 9 for the
general class of randomized quantizers.

APPENDIX

Proof of Lemma 5

By renormalizing, we can assume without loss of generality
(w.l.o.g.) that a1 + b1 + c1 = a0 + b0 + c0 = 1. Also w.l.o.g, assume
that b1 � b0. Thus, c1 > c0 and a1 < a0. Replacing c1 = 1�a1� b1
and c0 = 1 � a0 � b0, the inequality c1=c0 > b1=b0 is equivalent to
a1 < a0b1=b0 � (b1 � b0)=b0.

We fix values of b, and consider varying a 2 A, whereA denotes the
domain for (a0; a1) governed by the following equality and inequality
constraints: 0 < a1 < 1� b1; 0 < a0 < 1� b0; a1 < a0 and

a1 < a0b1=b0 � (b1 � b0)=b0: (31)

Note that the third constraint (a1 < a0)) is redundant due to the other
three constraints. In particular, constraint (31) corresponds to a line
passing through ((b1� b0)=b1;0) and (1� b0; 1� b1) in the (a0; a1)
coordinates. As a result, A is the interior of the triangle defined by this
line and two other lines given by a1 = 0 and a0 = 1� b0 (see Fig. 1).

Since both ~D0(a; 1 � a) and ~D1(a; 1 � a) correspond to KL
divergences, they are convex functions with respect to (a0; a1). In
addition, the derivatives with respect to a1 are a �a

a (1�a )
< 0 and

log a (1�a )
a (1�a )

< 0, respectively. Hence, both functions can be (strictly)
bounded from below by increasing a1 while keeping a0 unchanged,
i.e., by replacing a1 by a01 so that (a0; a

0

1) lies on the line given
by (31), which is equivalent to the constraint c1=c0 = b1=b0. Let
c01 = 1� b1 � a01; then c01=c0 = b1=b0. Our argument has established
inequalities (a) and (b) in the following chain of inequalities:

~D1(a; b+ c) (32a)
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Fig. 1. Illustration of the domain A.

(a)
> a01 log

a01
a0

+ (b1 + c01) log
b1 + c01
b0 + c0

(32b)

(b)
= a01 log

a01
a0

+ c01 log
c01
c0

+ b1 log
b1
b0

(32c)

(c)

� (a01 + c01) log
a01 + c01
a0 + c0

+ b1 log
b1
b0

(32d)

= ~D1(a+ c; b) (32e)

and inequality (c) follows from an application of the log-sum in-
equality [9]. A similar conclusion holds for ~D0(a; b+ c).

Proof of Lemma 6

Suppose the opposite is true, that there exist two sets S1; S2 with
positive 0-measure such that �(X) = u2 for any X 2 S1 [ S2, and

f1(S1)

f0(S1)
<

f1(u1)

f0(u1)
<

f1(S2)

f0(S2)
: (33)

By reassigning S1 or S2 to the quantile u1, we are guaranteed to have
a new quantizer �0 such that D0

� > D0
� and D1

� > D1
� , thanks to

Lemma 5. As a result, �0 has a smaller sequential cost J�� , which is a
contradiction.

Proof of Lemma 7

The proof of this lemma is conceptually straightforward, but the al-
gebra is involved. To simplify the notation, we replace a0 by x; a1 by
y; the function D(a0; a1) by f(x; y); and the function D(a1; a0) by
g(x; y). Finally, we assume that d0 = d1 = 0; the proof will reveal
that this case is sufficient to establish the more general result with ar-
bitrary nonnegative scalars d0 and d1. We have

f(x; y) = x log(x=y) + (1� x) log[(1� x)=(1� y)]

and

g(x; y) = y log(y=x) + (1� y) log[(1� y)=(1� x)]:

Note that both f and g are convex functions and are nonnegative in
their domains, and moreover that we have F (x; y) = c0=f(x; y) +
c1=g(x; y). In order to establish the quasi-concavity of F , it suffices
to show that for any (x; y) in the domain of F , for any vector h =
[h0 h1] 2

2 such that hTrF (x; y) = 0, there holds

hTr2F (x; y)h < 0 (34)

(see Boyd and Vandenberghe [4]). Here we adopt the standard notation
of rF for the gradient vector of F , and r2F for its Hessian matrix.
We also use Fx to denote the partial derivative with respect to variable
x; Fxy to denote the partial derivative with respect to x and y;, and so
on.

We have rF = � c rf

f
� c rg

g
. Thus, it suffices to prove relation

(34) for vectors of the form

h = �
c f

f
�

c g

g

c f

f
+ c g

g

T :

It is convenient to write h = c0v0 + c1v1, where v0 =
[�fy=f

2 fx=f
2]T and v1 = [�gy=g

2 gx=g
2]T .

The Hessian matrix r2F can be written as r2F = c0H0 + c0H1,
where

H0 = �
1

f3
fxxf � 2f2x fxyf � 2fxfy
fxyf � 2fxfy fyyf � 2f2y

and

H1 = �
1

g3
gxxg � 2g2x gxyg � 2gxgy
gxyg � 2gxgy gyyg � 2g2y

:

Now observe that

hTr2Fh = (c0v0 + c1v1)
T (c0H0 + c1H1)(c0v0 + c1v1)

which can be simplified to

hTr2Fh = c30v
T
0 H0v0 + c31v

T
1 H1v1

+c20c1 2vT0 H0v1 + vT0 H1v0 + c0c
2
1 2vT0 H1v1 + vT1 H0v1 :

This function is a polynomial in c0 and c1, which are restricted to be
nonnegative scalars (at least one of which is assumed to be nonzero).
Therefore, it suffices to prove that all the coefficients of this polynomial
(with respect to c0 and c1) are strictly negative. In particular, we shall
show that

(i) vT0 H0v0 � 0 and
(ii) 2vT0 H0v1 + vT0 H1v0 � 0

where in both cases equality occurs only if x = y, which is outside
of the domain of F . The strict negativity of the other two coefficients
follows from entirely analogous arguments.

First, some straightforward algebra shows that inequality (i) is equiv-
alent to the relation

fxxf
2
y + fyyf

2
x � 2fxfyfxy:

But note that f is a convex function, so fxxfyy � f2xy . Hence, we have

fxxf
2
y + fyyf

2
x

(a)

� 2 fxxfyyjfxfyj
(b)

� 2fxfyfxy

thereby proving (i). (In this argument, inequality (a) follows from the
fact that a2 + b2 � 2ab, whereas inequality (b) follows from the strict
convexity of f . Equality occurs only if x = y.) Regarding (ii), some
further algebra reduces it to the inequality

G1 +G2 �G3 � 0 (35)

where
G1 = 2(fygyfxx + fxgxfyy � (fygx + fxgy)fxy)

G2 = f2ygxx + f2xgyy � 2fxfygxy

G3 =
2

g
(fygx � fxgy)

2:

At this point in the proof, we need to exploit specific information
about the functions f and g, which are defined in terms of KL diver-
gences. To simplify notation, we let u = x=y and v = (1�x)=(1�y).
Computing derivatives, we have

fx(x; y) = log(x=y)� log((1� x)=(1� y)) = log(u=v)

fy(x; y) = (1� x)=(1� y)� x=y = v � u

gx(x; y) = (1� y)=(1� x)� y=x = 1=v � 1=u

gy(x; y) = log(y=x)� log((1� y)=(1� x)) = log(v=u)

r2f(x; y) =
1

x(1�x)
� 1

y(1�y)

� 1
x(1�x)

1�x
(1�y)

+ x

y

r2g(x; y) =
1�y

(1�x)
+ y

x
� 1

x(1�x)

� 1
x(1�x)

1
y(1�y)

:
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Noting that fx = �gy; gxy = �fxx; fxy = �gyy , we see that (35) is
equivalent to

2(fxgxfyy+fygxgyy)�f2xgyy+f2y gxx � 2

g
(fygx�fxgy)

2: (36)

To simplify the algebra further, we shall make use of the inequality
(log t2)2 � (t� 1=t)2, which is valid for any t. This implies that

fygx = (v � u)(1=v� 1=u) � fxgy = �(log(u=v))2

= �f2x = �g2y � 0:

Thus, �f2xgyy � fygxgyy and

2

g
(fygx � fxgy)

2 � 2

g
fygx(fygx � fxgy):

As a result, (36) would follow if we can show that

2(fxgxfyy+fygxgyy)+fygxgyy+f2ygxx� 2

g
fygx(fygx�fxgy):

For all x 6= y, we may divide both sides by �fy(x; y)gx(x; y) > 0.
Consequently, it suffices to show that

�2fxfyy=fy � fygxx=gx � 3gyy � 2

g
(fxgy � gxfy)

or, equivalently

2 log(u=v)
v

u� 1
+

u

1� v
+

u

1� x
+

v

x

� 3

y(1� y)
� 2

g

(u� v)2

uv
� log

u

v

2

or, equivalently

2 log(u=v)
(u� v)(u+ v � 1)

(u� 1)(1� v)
+

(u� v)2(u+ v � 4uv)

uv(u� 1)(1� v)

� 2

g

(u� v)2

uv
� log

u

v

2

: (37)

Due to the symmetry, it suffices to prove (37) for x < y. In particular,
we shall use the following inequality for logarithm mean [13], which
holds for u 6= v:

3

2
p
uv + (u+ v)=2

<
log u� log v

u� v
<

1

(uv(u+ v)=2)1=3
:

We shall replace log(u=v)
u�v

in (37) by appropriate upper and lower
bounds. In addition, we shall also bound g(x; y) from below, using the
following argument. When x < y, we have u < 1 < v, and

g(x; y)=y log
y

x
+(1�y) log 1�y

1�x
>

3y(y�x)
2
p
xy+(x+y)=2

+
(1�y)(x�y)

[(1�x)(1�y)(1�(x+y)=2)]1=3

=
3(1�v)(1�u)

(u�v)(2pu+ u+1
2

)
+

(u�1)(1�v)
(u�v)(v(v+1)=2)1=3

>0:

Let us denote this lower bound by q(u; v).
Having got rid of the logarithm terms, (37) will hold if we can prove

the following:

6(u� v)2(u+ v � 1)

(2
p
uv + (u+ v)=2)(u� 1)(1� v)

+
(u� v)2(u+ v � 4uv)

uv(u� 1)(1� v)

� 2

q(u; v)

(u� v)2

uv
� 9(u� v)2

(2
p
uv + (u+ v)=2)2

or equivalently,

6(u+ v � 1)

(2
p
uv + (u+ v)=2)

+
(u+ v � 4uv)

uv

� 3

(v � u) 2
p
u+ u+1

2

� 1

(v � u)(v(v+ 1)=2)1=3

� 2
1

uv
� 9

(2
p
uv + (u+ v)=2)2

(38)

which is equivalent to

(u+ v � 2
p
uv)((u+ v)=2 + 3

p
uv + 4uv)

(2
p
uv + (u+ v)=2)uv

� 3(v(v+ 1)=2)1=3� (2
p
u+ (u+ 1)=2)

(v � u)(2
p
u+ (u+ 1)=2)(v(v+ 1)=2)1=3

� (u+ v � 2
p
uv)((u+ v)=2 + 5

p
uv)

uv(2
p
uv + (u+ v)=2)2

(39)

and also equivalent to

((u+ v)=2 + 2
p
uv)((u+ v)=2 + 3

p
uv + 4uv)

� [3(v(v + 1)=2)1=3 � (2
p
u+ (u+ 1)=2)]

� (2
p
u+ (u+ 1)=2)(v(v+ 1)=2)1=3

� ((u+ v)=2 + 5
p
uv)(v� u): (40)

It can be checked by tedious but straightforward calculus that inequality
(40) holds for any u � 1 � v, and equality holds when u = 1 = v,
i.e., x = y.

Proof of Theorem 9

Suppose that � is not a likelihood-ratio rule. Then there exist pos-
itive 0-probability disjoint sets S1; S2; S3 such that for any X1 2
S1; X2 2 S2; X3 2 S3

�(X1) = �(X3) = u1 (41a)

�(X2) = u2 6= u1 (41b)

f1(X1)

f0(X1)
<

f1(X2)

f0(X2)
<

f1(X3)

f0(X3)
: (41c)

Define the probability of the quantiles as

f0(u1) := 0(�(X) = u1);

f0(u2) := 0(�(X) = u2);

f1(u1) := 1(�(X) = u1);

f1(u2) := 1(�(X) = u2):

Similarly, for the sets S1; S2; and S3, we define

a0 = f0(S1); b0 = f0(S2); and c0 = f0(S3)

a1 = f1(S1); b1 = f1(S2); and c1 = f1(S3):

Finally, let p0; p1; q0; and q1 denote the probability measures of the
“residuals”

p0 = f0(u2)� b0; p1 = f1(u2)� b1;

q0 = f0(u1)� a0 � c0; q1 = f1(u1)� a1 � c1:

Note that we have a
a

< b
b

< c
c

. In addition, the sets S1 and S3 were
chosen so that a

a
� q

q
� c

c
. From Lemma 6, there holds

p1 + b1
p0 + b0

=
f1(u2)

f0(u2)
=2 a1

a0
;
c1
c0

:
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We may assume w.l.o.g. that p +b

p +b
� a

a
. Then, p +b

p +b
< b

b
, so

p

p
< p +b

p +b
. Overall, we are guaranteed to have the ordering

p1
p0

<
p1 + b1
p0 + b0

�
a1
a0

<
b1
b0

<
c1
c0
: (42)

Our strategy will be to modify the quantizer � only for those X for
which �(X) takes the values u1 or u2, such that the resulting quantizer
is defined by a LLR-based threshold, and has a smaller (or equal) value
of the corresponding cost J�

� . For simplicity in notation, we use A to
denote the set with measures under 0 and 1 equal to a0 and a1; the
sets B; C;P; and Q are defined in an analogous manner. We begin by
observing that we have either a

a
� q +a

q +a
< b

b
or b

b
< q +c

q +c
�

c

c
. Thus, in our subsequent manipulation of sets, we always bundleQ

with either A or C accordingly without changing the ordering of the
probability ratios. Without loss of generality, then, we may disregard
the corresponding residual set corresponding to Q in the analysis to
follow.

In the remainder of the proof, we shall show that either one of the
following two modifications of the quantizer � will improve (decrease)
the sequential cost J�

� .
(i) Assign A;B and C to the same quantization level u1, and leave
P to the level u2; or

(ii) Assign P;A and B to the same level u2, and leave c to the level
u1.

It is clear that this modified quantizer design respects the likelihood-
ratio rule for the quantization indices u1 and u2. By repeated applica-
tion of this modification for every such pair, we are guaranteed to arrive
at a likelihood-ratio quantizer that is optimal, thereby completing the
proof.

Let a00; b
0
0; c

0
0; p

0
0 be normalized versions of a0; b0; c0; p0, respec-

tively (i.e., a00 = a0=(p0 + a0 + b0 + c0), and so on). Similarly,
let a01; b

0
1; c

0
1; p

0
1 be normalized versions of a1; b1; c1; p1, respectively.

With this notation, we have the relations

D0

� =
u 6=u ;u

f0(u) log
f0(u)

f1(u)

+ (p0 + b0) log
p0 + b0
p1 + b1

+ (a0 + c0) log
a0 + c0
a1 + c1

= A0 + (f0(u1) + f0(u2))

� (p00 + b00) log
p00 + b00
p01 + b01

+ (a00 + c00) log
a00 + c00
a01 + c01

= A0 + (f0(u1) + f0(u2)) ~D
0(p0 + b0; a0 + c0);

D1

� =
u6=u ;u

f1(u) log
f1(u)

f0(u)

+ (p1 + b1) log
p1 + b1
p0 + b0

+ (a1 + c1) log
a1 + c1
a0 + c0

= A1 + (f1(u1) + f1(u2)) ~D
1(p0 + b0; a0 + c0)

where we define

A0 :=
u6=u ;u

f0(u) log
f0(u)

f1(u)

+ (f0(u1) + f0(u2)) log
f0(u1) + f0(u2)

f1(u1) + f1(u2)
� 0

A1 :=
u6=u ;u

f1(u) log
f1(u)

f0(u)

+ (f1(u1) + f1(u2)) log
f1(u1) + f1(u2)

f0(u1) + f0(u2)
� 0

due to the nonnegativity of the KL divergences.
Note that from (42) we have

p01
p00

<
p01 + b01
p00 + b00

�
a01
a00

<
b01
b00

<
c01
c00

in addition to the normalization constraints that p00 + a00 + b00 + c00 =
p01 + a01 + b01 + c01 = 1. It follows that

p01 + b01
p00 + b00

<
p01 + a01 + b01 + c01
p00 + a00 + b00 + c00

= 1:

Let us consider varying the values of a01; b
0
1, while fixing all other

variables and ensuring that all the above constraints hold. Then, a01 +
b01 is constant, and both ~D0(p0 + b0; a0 + c0) and ~D1(p0 + b0; a0 + c0)
increase as b01 decreases and a01 increases. In other words, if we define
a000 = a00; b

00
0 = b00 and a001 and b001 such that

a001
a00

=
b001
b00

=
1� p01 � c01
1� p00 � c00

then we have

~D0(p0 + b0; a0 + c0) � ~D0(p0 + b00; a00 + c0) and
~D1(p0 + b0; a0 + c0) � ~D1(p0 + b00; p00 + c0): (43)

Now note that vector (b000 ; b
00
1 ) in 2 is a convex combination of

(0; 0) and (a000 + b000 ; a
00
1 + b001 ). It follows that (p00 + b000 ; p

0
1 + b001 ) is a

convex combination of (p00; p
0
1) and (p00 + a000 + b000 ; p

0
1 + a001 + b001 ) =

(p00 + a00 + b00; p
0
1 + a01 + b01). By (43), we obtain

G� =
�0

A0 + (f0(u1) + f0(u2)) ~D0(p0 + b0; a0 + c0)

+
�1

A1 + (f1(u1) + f1(u2)) ~D1(p0 + b0; a0 + c0)

�
�0

A0 + (f0(u1) + f0(u2)) ~D0(p0 + b00; a00 + c0)

+
�1

A1 + (f1(u1) + f1(u2)) ~D1(p0 + b00; a00 + c0)

=
�0

A0 + (f0(u1) + f0(u2))D(p00 + b000 ; p
0
1 + b001 )

+
�1

A1 + (f1(u1) + f1(u2))D(p01 + b001 ; p
0
0 + b000 )

:

Applying the quasi-concavity result in Lemma 7

G��min
�0

A0+(f0(u1) + f0(u2))D(p00; p
0
1)

+
�1

A1+(f1(u1)+f1(u2))D(p01; p
0
0)
;

�0

A0+(f0(u1)+f0(u2))D(p00+a
0
0 + b00; p

0
1+a

0
1+b

0
1)

+
�1

A1+(f1(u1)+f1(u2))D(p01+a
0
1+b

0
1; p

0
0+a

0
0+b

0
0)

:

But the two arguments of the minimum are the sequential cost coeffi-
cient corresponding to the two possible modifications of �. Hence, the
proof is complete.
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Myopic Coding in Multiterminal Networks

Lawrence Ong, Student Member, IEEE, and
Mehul Motani, Member, IEEE

Abstract—This correspondence investigates the interplay between coop-
eration and achievable rates in multiterminal networks. Cooperation refers
to the process of nodes working together to relay data toward the destina-
tion. There is an inherent tradeoff between achievable information trans-
mission rates and the level of cooperation, which is determined by how
many nodes are involved and how the nodes encode/decode the data. We
illustrate this tradeoff by studying information-theoretic decode–forward-
based coding strategies for data transmission in multiterminal networks.
Decode-forward strategies are usually discussed in the context of omni-
scient coding, in which all nodes in the network fully cooperate with each
other, both in encoding and decoding. In this correspondence, we investi-
gate myopic coding, in which each node cooperates with only a few neigh-
boring nodes. We show that achievable rates of myopic decode–forward
can be as large as that of omniscient decode–forward in the low signal-to-
noise ratio (SNR) regime. We also show that when each node has only a
few cooperating neighbors, adding one node into the cooperation increases
the transmission rate significantly. Furthermore, we show that myopic de-
code–forward can achieve nonzero rates as the network size grows without
bound.

Index Terms—Achievable rates, decode–forward, multiple-relay
channel, multiterminal network, myopic coding.

I. INTRODUCTION

A. Wireless Networks

Wireless networks have been receiving much attention recently by
both researchers and industry. The main advantage of wireless tech-
nology to users is the seamless access to the network whenever and
wherever they are; to service providers, easier deployment, as no cable
laying is required. Examples of wireless networks include cellular mo-
bile networks, Wi-Fi networks, and sensor networks. A large amount
of research has been carried out recently on various aspects of wireless
networks, including power saving [1], [2], routing [3]–[5], transport ca-
pacity [6], [7], and connectivity [8]. In this correspondence, we focus
on transmission rates in multiterminal wireless networks.

Analyzing transmission rates in multiterminal networks is not easy.
Consider the single-relay channel [9], [10], a channel consisting of one
source, one relay, and one destination. Even for this simple three-ter-
minal network, the capacity is not known except for a few special cases,
e.g., the degraded relay channel [9]. This hints at the difficulty of ana-
lyzing multiterminal networks. We attempt to investigate an excerpt of
the multiterminal network by looking at data transmission from a single
source to a single destination, from multiple sources to a single destina-
tion, and from a single source to multiple destinations, with the help of
relay(s). Appropriate models for these types of networks are the mul-
tiple-relay channel [11], [12] (an extension of the single-relay channel),
the multiple-access relay channel [13], [14], and the broadcast relay
channel [15], respectively. The reason for using relays, which have no
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