Decentralized Detection and Classification using Kernel Methods

XuanL ong Nguyen
Martin J. Wainwright
Michael |. Jordan

XUANLONG@ CS.BERKELEY.EDU
WAINWRIG@EECS.BERKELEY.EDU
JORDAN@ CS.BERKELEY.EDU

Computer Science Division and Department of Statistics, U.C. Berkeley, CA 94720-1776 USA

Abstract

We consider the problem of decentralized detec-
tion under constraints on the number of bits that
can be transmitted by each sensor. In contrast
to most previous work, in which the joint distri-
bution of sensor observations is assumed to be
known, we address the problem when only a set
of empirical samples is available. We propose
a novel algorithm using the framework of em-
pirical risk minimization and marginalized ker-
nels, and analyze its computational and statistical
properties both theoretically and empirically. We
provide an efficient implementation of the algo-
rithm, and demonstrate its performance on both
simulated and real data sets.

1. Introduction

Most of the machine learning literature on classification
is abstracted away from considerations of an underlying
communication-theoretic infrastructure, constraints from
which may prevent an algorithm from aggregating all rel-
evant data at a central site. In many real-life applications,
however, resource limitations make it necessary to transmit
only partial descriptions of data. Examples include sen-
sor networks, in which each sensor operates under power
or bandwidth constraints, and human decision-making, in
which high-level executive decisions must often be based
on lower-level summaries. Assessing losses in classifica-
tion accuracy, and developing methods to mitigate their im-
pact, is essential if machine learning algorithms are to make
inroads in such problem domains.

There is a significant literature on decentralized decision-
making that formally states the problem and characterizes
possible solutions (Tsitsiklis, 1993). It is noteworthy, how-
ever, that this literature focuses almost entirely on the prob-
lem when the relevant probability distributions are known
in advance (Blum et al., 1997). Consider, for example,
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a classification problem (i.e., a binary hypothesis-testing
problem), in which each of a set of S sensors observe a
single component of a vector X. Assume that these sensors
must make a local decision to convert its observation into
the corresponding component of a vector Z, and that a final
decision regarding the value of a binary variable Y is to be
made on the basis of Z. While most of the extant literature
assumes the distribution P(X,Y") is known, it is clearly
of interest to consider decentralized decision-making when
only samples from this distribution are available.*

In this paper, we address this empirically-based de-
centralized decision-making problem from the perspec-
tive of recent developments in the field of kernel meth-
ods (Scholkopf & Smola, 2002). As we will show, kernel
methods are particularly natural for solving this problem.
In particular, a key component of the methodology that
we propose involves the notion of a marginalized kernel,
where the marginalization is induced by the transformation
from measured values X to local decisions Z.

The paper is organized as follows. Section 2 provides a for-
mal statement of the decentralized decision-making prob-
lem. We show how the problem can be cast as a learning
problem in Section 3, and in Section 4, we present a kernel-
based algorithm for solving the problem. We also present
error bounds for our algorithm in Section 4. In Section 5
we present the results of empirical experiments, and in Sec-
tion 6 we present our conclusions.

2. Problem statement

The problem of decentralized classification can be suc-
cinctly stated as follows. Suppose Y is a discrete-valued
random variable, representing a hypothesis about the envi-
ronment, and that a set of S sensors collect observations.
These signals are represented by a S-dimensional random
vector X = (X',...,X%), drawn from the conditional
distribution P(X]Y). In the decentralized setting, each
sensor t = 1...,S transmits a message Z! = ~'(X?)
to the fusion center, which in turn applies some decision
rule v to compute Y = ~(Z',...,Z%). Suppose that

There is also a relationship to discretization algorithms for
classification, which we discuss in Section 5.



each X! is discrete-valued, taking one of M possible val-
ues. The key constraint, giving rise to the decentralized
nature of the problem, is that the messages Z* may take on
only L possible values where I < M. The problem is
to find the decision rules v',...,~+° for each sensor, and
a rule ~ for the fusion center so as to minimize the Bayes
risk P(Y # ~v(Z)). The joint distribution P(X,Y") is un-
known, and we are given n i.i.d. data samples (z;, ;)7 ;.

Xe{l,...,M}s

Ze{l,...,L}

Figure 1. Decentralized detection system with S
4, in which Y is the unknown hypothesis; X

(X*,..., X%) is the vector of sensor observations; and
Z = (Z%,...,Z%) are the quantized messages.

3. Minimizing the empirical risk

Although the Bayes-optimal risk can always be achieved by
a deterministic decision rule (Tsitsiklis, 1993), considering
the larger space of stochastic decision rules confers some
important advantages. First, such a space can be compactly
represented and parameterized, and prior knowledge can be
incorporated. Second, the optimal deterministic rules are
often very hard to compute, and a probabilistic rule may
provide a reasonable approximation in practice. Accord-
ingly, we represent the rule for the sensors¢t = 1,...,S
by a conditional probability distribution Q(Z]X). The fu-
sion center makes its decision by computing a determin-
istic function ~(z) of z. The overall decision rule (@,~)
consists of the individual sensor rules and the fusion center
rule.

The decentralization requirement for our detec-
tion/classification system—i.e., that the decision rule
for sensor ¢ must be a function only of the observation
xt—can be translated into the probabilistic statement that
Z', ..., Z"° be conditionally independent given X:

S
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In fact, this constraint turns out to be advantageous from a
computational perspective, as will be clarified in the sequel.

We use Q to denote the space of all factorized conditional
distributions Q(Z|X), and Q, to denote the subset of fac-
torized conditional distributions that are also deterministic.

Let X denote the signal vector (X*,..., X*), and sup-
pose that we have as our training data n pairs (z;,y;) for
i =1,...,n. Note that z; is an S-dimensional signal vec-
tor, z; = (x},...,27). Let P be the unknown underly-
ing probability distribution for (X,Y’). The probabilistic
set-up makes it simple to estimate the optimal Bayes risk,
which is to be minimized. Although our framework can be
applied to general multi-class classification and regression
problems, in this paper we focus on binary classification,
thatis, Y = +1.

For each collection of decision rules made at the sensors
and represented by Q(Z|X), the optimal Bayes risk is de-
fined by:

Ropt = E|P(Y =1|2) - P(Y = —1|2)|.
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Here the expectation is with respect to the probability
distribution P(X,Y,Z) := P(X,Y)Q(Z|X). It is well
known that no decision function made at the fusion cen-
ter (which is a function of z) has Bayes risk smaller than
Rope. In addition, the Bayes risk R,,; can be achieved by
using the decision function

Yopt (2) = sign(P(Y = 1]z) - P(Y = ~1]2)).

Of course, this decision rule cannot be computed, because
P(X,Y) is not known, and Q(Z|X) is to be determined.
Thus, our goal is to determine the rule Q(Z|X) that mini-
mizes an empirical estimate of the Bayes risk based on the
training data (z;,y;),. In Lemma 1, we show that the
following is one such unbiased estimate of the Bayes risk:
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In addition, v, (z) can be estimated by the decision func-
tion Yemp(2) = sign( X1, Q(z|x;)y;). Since Z is a dis-
crete random vector, the optimal Bayes risk can be esti-
mated easily, regardless of whether the input signal X is
discrete or continuous.

Lemmal. (a) Assume that P(z) > 0 for all z. Define

21 Qalai) Iy = 1)
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Then lim,, ,, k(z) = P(Y = 1]2).

K(z) =

(b) As n — 00, Remp and Yemp(2) tend to R,,; and
Yopt (%), respectively.



This lemma? motivates the goal of finding a rule Q(Z|X)
that minimizes R.,,,. It is equivalent, using egn. (2), to
maximize

cQ =y

z
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subject to the natural constraints on a probability distribu-
tion (i.e., Q(z|z) = [T, Q'(x'|z%); . Q1(z']at) = 1;
and Q'(z'|x?) € [0,1]). The major computational diffi-
culty in this optimization problem lies in the summation
over all L° possible values of z. One way to avoid this
obstacle is by maximizing instead the following function:
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where the final line follows after expanding the square and
summing. Note that the constraints (1) on @ allow us to
compute Co(Q) in O(SL) time, as opposed to O(L?).

While this simple strategy is based directly on the empiri-
cal risk, it does not exploit any prior knowledge about the
class of discriminant functions for v(z). As we discuss
in the following section, such knowledge can be incorpo-
rated into the classifier using kernel methods. Moreover,
the kernel-based decentralized detection algorithm that we
develop turns out to have an interesting connection to the
simple approach based on C5(Q).

4. A kernel-based algorithm

In this section, we shall apply Mercer kernels (Scholkopf &
Smola, 2002) to our decentralized classification problem,
focusing on the case of binary labels Y = +1. Kernel-
based methods for discrimination entail choosing a dis-
criminant function f from within a function class F de-
fined by a feature space {®(x)}. This space is equipped
with an inner product K (z,z') = (®(x), ®(z’)), which
defines the kernel function K. As a reproducing kernel
Hilbert space, any function f € F expressed as an in-
ner product f(xz) = (w,®(x)), where w has the form
w=> ", a;P(x;). Equivalently, we can write f as a lin-
ear combination of kernel functions as follows:

f@) = aiKy (i, x) 4
=1

In the framework of empirical risk minimization, the pa-
rameters «; are chosen so as to minimize a cost func-
tion given by the sum of the empirical ¢-risk E¢(Y f(X))

2Proofs of this and other technical results are presented in the
long version of the paper (Nguyen et al., 2004).

with a suitable regularization term (e.g., £>-regularization),
where ¢ denotes an appropriate loss function. The function
¢ is typically a convex surrogate for the 0-1 loss. The final
decision rule is then given by 3 := sign(f(z)). It has been
shown (Zhang, 2004; Bartlett et al., 2003) that a function
f with small ¢-risk E¢(Y f(X)) also has small Bayes risk
P(Y # sign(f(X))).

4.1. Fusion center and marginalized kernels

With this background, we first consider how to design
the decision rule ~y at the fusion center for a fixed setting
Q(Z]X) of the sensor decision rules. Since the fusion cen-
ter rule can only depend on z = (2!, ..., 2%), our starting
point is a feature space {®’(z)} with associated kernel .
We consider fusion center rules defined by taking the sign
of linear discriminants (z) := (w, ®'(z)). We then link
the performance of ~ to another kernel-based discriminant
function f that acts directly on = = («!,..., 2%), where
the associated kernel K, is defined as a marginalized ker-
nel in terms of Q(Z|X) and K.

The relevant optimization problem is to minimize (as a
function of w) the following regularized form of the em-
pirical ¢-risk associated with the discriminant ~

min 33 6 ()QeI) + Sl ©

z =1

where A > 0 is a regularization parameter. In its current
form, the objective function (5) is intractable to compute
(because it involves summing over all L possible values
of z of a loss function that is generally non-decomposable).
However, exploiting the convexity of ¢ allows us to com-
pute it exactly for deterministic rules in Qg, and also leads
to a natural relaxation for an arbitrary decision rule Q € Q,
as formalized in the following:

Proposition 2. Define the quantities

Do) = 3 QI (2), f@:Q) = (w, Do(a)).
’ ©)

For any convex ¢, the optimal value of the following opti-
mization problem is a lower bound on the optimal value in
problem (5):

min Y0 f@a Q)+ 5wl )

Moreover, the relaxation is tight for any deterministic rule

Q(Z]X).

Proof. Applying Jensen’s inequality to the function ¢
yields ¢(yif(zi;Q)) < >, d(yiv(2))Q(2|x;) for each
i =1,...n, from which the lower bound follows. Equality
for deterministic Q € Q, is immediate. O



A key point is that the modified optimization problem (7)
involves an ordinary regularized empirical ¢-loss, but
in terms of a linear discriminant function f(z;Q) =
(w, ®g(z)) in the transformed feature space {®¢ ()} de-
fined in egn. (6). Moreover, the corresponding marginal-
ized kernel function takes the form:

=3 QInQ( )

z,2!

where K.(z,2') = (®'(z), ®'(2)) is the kernel in
{®’(z)}-space. From a computational point of view, we
have converted the marginalization over loss function val-
ues to a marginalization over kernel functions. While the
former is intractable, the latter marginalization can be car-
ried out in many cases (see Section 4.2) by exploiting the
structure of the conditional distributions Q(Z|X). From
the modeling perspective, it is interesting to note that the
class of marginalized kernels, exemplified by egn. (8), un-
derlie much recent work that aims to combine the advan-
tages of graphical models and kernel methods (Jaakkola &
Haussler, 1999; Tsuda et al., 2002).

K.(z,7), (8)

As a standard kernel-based formulation, the optimization
problem (7) can be solved by the usual Lagrangian dual for-
mulation (Scholkopf & Smola, 2002), thereby yielding an
optimal weight vector w. This weight vector defines the de-
cision rule for the fusion center by v(z) := (w, ®'(2)). By
the Representer Theorem, the optimal solution w to prob-
lem (7) has an expansion of the form

w = Z azyzq)Q xz Z Z azyz

i=1 i=1 2z’

(2']z:) @' ('),

where « is an optimal dual solution, and the second equal-
ity follows from the definition of ®4(z) given in eqgn. (6).
Substituting this decomposition of w into the definition of
~ yields

Zzazyz "rz (szl)- C))

z! =1

Note that there is an intuitive connection between the dis-
criminant functions f and ~. In particular, using the
definitions of f and Kg, it can be seen that f(x)
E[v(Z)|z], where the expectation is taken with respect to
Q(Z|X = x). The interpretation is quite natural: when
conditioned on some x, the average behavior of the dis-
criminant function ~(Z), which does not observe z, is
equivalent to the optimal discriminant f(z), which does
have access to x.

4.2. Computation of marginalized kernels

When Q(Z|X) is not deterministic, the computation of
Kq(z,2") entails marginalizing over Z, resulting gener-
ally in O(L®) computational cost. In such a case, we have

to resort to an approximation of K. However, when the ker-
nel function K ,(z, 2’) is decomposed into local functions,
the computation becomes feasible. Here we provide a few
examples of computationally tractable kernels.

Perhaps the simplest example is the linear kernel
K.(z,72) = Zt | 242", for which it is straightforward
to derive Ko (z,2') = Y5, E[z'|2"] E[2"|2’!]. A second
example, natural for applications in which X* and Z* are
multinomial, is the count kernel. Each multinomial value
u s represented as a vector (0,...,1,...,0), whose u-th
coordinate takes value 1. If we define the first-order count
kernel K.(z,2') := Y25, I[z" = 2], then the resulting
marginalized kernel takes the form

s
Kg(z,2') = ZP(zt:z’t\aﬁt,x’t)

A natural generalization is the second-order count kernel
K.(z,2") = 32, I[z" = 2"]I[z" = 2'"] that accounts
for the pairwise interaction between coordinates z* and
z". For this example, the associated marginalized kernel
Kq(z,2') takes the form:

2 Z Pzt =22t 2 P(z" = 2" |2", 2'"). (10)

1<t<r<S

Remarks: First, note that even for a linear base kernel
K., the kernel function K inherits additional (non-linear)
structure from the marginalization over Q(Z|X). Asa con-
sequence, the associated discriminant functions (i.e., v and
f) are certainly not linear. Second, our formulation allows
any available prior knowledge to be incorporated into K¢
in at least two possible ways: (i) The base kernel repre-
senting a similarity measure in the quantized space of z
can reflect the structure of the sensor network, or (ii) More
structured decision rules Q(Z|X) can be considered, such
as chain or tree-structured decision rules.

4.3. Joint optimization

Our next task is to perform joint optimization of both the
fusion center rule, defined by w or equivalently « (as in
eqn. (9)), and the sensor rules ). Observe that the cost
function (7) can be re-expressed as a function of both w

and @ as follows:
1 1
= 3 X ot X QA e ) 5l

Of interest is the joint minimization of the function G in
both w and @. It can be seen easily that (a) G is convex in
w with Q fixed; and (b) moreover, G is convex in Q!, when
both w and all other {Q",r # ¢} are fixed. These observa-
tions motivate the use of blockwise coordinate descent to
perform the joint minimization.



Optimization of w: As described in Section 4.1, when
Q is fixed, then min,, G(w; @) can be computed efficiently
by a standard dual reformulation. Specifically, using stan-
dard results from convex duality (Rockafellar, 1970), we
can show that a dual reformulation of min,, G(w; @) is
given by

max{ — % Zl O (—Aa;) — %QT [(ny) OKQ}Q}’ (12)

acR”
where ¢*(u) := sup,ep {u-v — ¢(v)} is the conjugate
dual of ¢; [Kqli; := Kqg(xi,x;) is the empirical kernel
matrix; and o denotes Hadamard product (Nguyen et al.,
2004). Any optimal solution « to problem (12) defines
the optimal primal solution w(Q) to min,, G(w; Q) via
w(Q) = X1 aiyiPo(w;).

As a particular example, consider the case of hinge loss
function ¢(u) := (1 — u)y, as used in the SVM algo-
rithm (Scholkopf & Smola, 2002). A straightforward cal-
culation yields

ey Ju if u e [—1,0]
¢"(w) = {—!—oo otherwise.

Substituting this formula into (12) and yields the familiar
dual formulation for the SVM:

- 1
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Optimization of @): The second step is to minimize G
over Q*, with w and all other {Q",r # t} held fixed. Our
approach is to compute the derivative (or more generally,
the subdifferential) with respect to @Q?, and then apply a
gradient-based method. A challenge to be confronted is
that G is defined in terms of feature vectors ®'(z), which
are typically high-dimensional quantities. Indeed, although
itis intractable to evaluate the gradient at an arbitrary w, the
following result establishes that it can always be evaluated
at the point (w(Q), @) forany @ € Q.

Lemma 3. Let w(Q) be the optimizing argument of

min,, G(w; @), and let « be an optimal solution to the dual
problem (12). Then the following element

A Y we Q) 2EE) it = 3 1 = )

tlt
(Z,J)(Z,Z’) Q(Z |x’L)
is an element of the subdifferential 3 Ot (st|z+)G evaluated

at (w(Q), Q)-

Observe that this representation of the (sub)gradient in-
volves marginalization over Q of the kernel function K,

3For the case of differentiable ¢ (e.g., logistic loss ¢(u) :=
log[1 + exp(—u)]), the subdifferential reduces to a single gradi-
ent.

and therefore can be computed efficiently in many cases,
as described in Section 4.2.

Overall, the blockwise coordinate descent algorithm takes
the following form:

(@) With @ fixed, compute the optimizing w(Q) by solv-
ing the dual problem (12).

(b) For some index ¢, fix w(Q) and {Q", r # t} and take
a gradient step in Q* using Lemma 3.

Remarks. It is interesting to note that if we fix w such
that all «; are equal to 1, and the base kernel K, is a
constant—and thus uninformative—Kkernel, then the opti-
mization of G with respect to @ reduces to the optimization
problem underlying the simple algorithm in Section 3.

4.4. Estimation error bounds

We now turn to the analysis of the statistical properties of
our algorithm. In particular, we relate bounds on the ¢-risk
Eop(Y~(Z)) to the ¢-risk E¢(Y f(X) for functions f € F
(and f € Fy) that are computed by our algorithm. The lat-
ter quantities are well-studied objects in statistical learning
theory. In general, the ¢-risk for a function f in some class
F is bounded by the empirical ¢-risk plus a complexity
term that captures the richness of F.

We first need to isolate the class of functions over which
we optimize. Define, for a fixed @@ € Q, the function space
Fo as

{x = (w, Pg(x)) = ZaiyiKQ(xwi) | s.t. JJw|| < B}.

Note that F¢ is simply the class of functions associ-
ated with the marginalized kernel K. We then define
F = UgeoFq, which corresponds to the function class
over which our algorithm optimizes. Finally, we let F; de-
note Uge o, Fg, corresponding to the union of the function
spaces defined by marginalized kernels with deterministic
Q. Of particular interest in the current context is the growth
in the complexity of F and F, with respect to the number
of training samples n, as well as the number of quantization
levels L and M.

Any discriminant function f, defined by a vector «, induces
an associated discriminant function ¢ via eqn. (9). Rele-
vant to the performance of the classifier ~; is the expected
¢-loss E¢(Y v, (Z)) (or its empirical version), whereas the
algorithm actually minimizes (the empirical version of)
Eo(Y f(X)). The relationship between these two quan-
tities is expressed in the following proposition.

Proposition 4.
(@) We have Ep(Yv,(Z)) > Eo(Y f(X)), with equality
when Q(Z|X) is deterministic.



(b) Moreover, there holds

inf Eo(Y7(2) < inf Eg(Yf(X) (13
inf E6(Yy;(2)) = inf Eo(Y(X)). (130)

The same statement also holds for empirical expectations.

Proof. Applying Jensen’s inequality to the convex function
¢ yields

Eo(Ys(2)) =

ExyE[p(Yv,(2))|XY]
Exy¢(E[Y~,(2)|XY])

where we have used the conditional independence of Z
and Y given X. This establishes part (a), and the lower
bound (13b) follows directly. Moreover, part (a) also im-
plies that inf ;e 7, E¢(Yv4(2)) = infrex, ES(Y f(X)),
and the upper bound (13a) follows since Fy C F. O

Y

Our next step is to relate the empirical ¢-risk for f (i.e.,
E(Y f(X))) to the true ¢-risk (i.e., E(Y f(X))). Recall
that the Rademacher complexity of the function class F is
defined (van der Vaart & Wellner, 1996) as

= E sup — ZU’

Ry (F)
feF iz

where o4,...,0, are independent and uniform on
{-1,+1}, and X3,..., X, are i.i.d. samples selected ac-
cording to distribution P. In the case that ¢ is Lipschitz
with constant ¢, the empirical and true risk can be re-
lated via the Rademacher complexity (Koltchinskii &
Panchenko, 2002) as follows. With probability at least 1—¢
with respect to training samples (X, Y;)?_,, drawn accord-
ing to the empirical distribution P, there holds

;ggIIEnqb(Yf(X))qus(Yf(Xm < 2R, (F)+ 111(2271/5).
(14)

Moreover, the same bound applies to Fp.

Combining the bound (14) with Proposition 4 leads to
the following theorem, which provides generalization er-
ror bounds for the optimal ¢-risk of the decision function
learned by our algorithm in terms of the Rademacher com-
plexities R,,(Fy) and R, (F):

Theorem 5. Given n i.i.d. labeled data samples
(x4, yi);l:l, with probability at least 1 — 24,

In(2/4)
2n
< mf IEQS(Y’yf(Z)) <

In(2/0)

inf —Z(b yif(x;)) + 20R, (Fo) + o

= Eo(Y f(X)),

To make use of this result, we need to derive upper bounds
on the Rademacher complexity of the function classes F
and Fy. The following proposition derives such bounds
for Fo, exploiting the fact that the number of 0-1 condi-
tional probability distributions Q(Z|X) is a finite number
(LM*S). While this rate is not tight in terms of the number
of data samples n, the bound is nontrivial and is relatively
simple (depending directly on the kernel function K and
n, L, S, and M).

Proposition 6.

2B =
R, (Fo) < —[IEJ sup Y Kq(Xi, X))

n QEQo

i=1

1/2

+2(n—1)y/n/2sup K.(z,2')\/2M Slog L

z,2’!

We can also provide a more general and possibly tighter up-
per bound on the Rademacher complexity based on entropy
numbers. In general, define the covering number N (¢, S, p)
for a set S to be the minimum number of balls of diame-
ter e that completely cover S according to a metric p. The
e-entropy number of S is then log N (e, S, p). It is well
known (van der Vaart & Wellner, 1996) that for some ab-
solute constant C', there holds:

F) SC/ \/ng(é’fn’L?(P”))de.
0

Of particular interest is the increase of the entropy num-
ber for F over the supremum of the entropy number for a
restricted function class F.

(15)

Proposition 7.

log N(e, F, La(Py,)) < sup log N(e/2, Fq, La(P,))

QeQ
2L5 sup |||y sup, . K- (2, 2")

+(L —1)MSlog

€

Moreover, the same bound holds for F.

This proposition guarantees that the increase in the entropy
number is only O((L — 1)M Slog(L® /¢)), which results
inonly an O([M S2(L — 1)log L/n]?) increase in the up-
per bound (15) for R, (F) (respectively R, (Fy)). The
Rademacher complexity increases with the square root of
Llog L of the number L of quantization levels.

5. Experimental Results

We evaluated our algorithm by testing with both simulated
sensor networks and real-world data sets. We consider
three types of sensor network configurations:



Naive Bayesnetworks: Inthis example, the observations
X1t ..., X% are independent conditional on Y, as illus-
trated in Figure 1. We consider networks with 10 sen-
sors (S = 10), each of which receive signals with 8 levels
(M = 8). We applied the algorithm to compute decision
rules for L = 2. In all cases, we generate n = 200 training
samples, and the same number for testing. We performed
20 trials on 20 randomly generated models P(X,Y").

Chain-structured dependency: While widely used, the
conditional independence assumption underlying the naive
Bayes set-up is often unrealistic. For instance, consider the
problem of detecting a random signal in noise (van Trees,
1990), in which Y = 1 represents the hypothesis that a cer-
tain random signal is present in the environment, whereas
Y = —1 represents the hypothesis that only i.i.d. noise
is present. Under these assumptions X!, ..., X* will be
conditionally independent given Y = —1, since all sensors
receive i.i.d. noise. However, conditionedonY = +1 (i.e.,
in the presence of the random signal), the observations at
spatially adjacent sensors will be dependent, with the de-
pendence decaying with distance. In a 1-D setting, this
set-up can be modeled with a chain-structured dependency;,
and the use of a count kernel to account for the interaction
among sensors. More precisely, we consider a set-up in
which five sensors are located in a line such that only adja-
cent sensors interact with each other, i.e., X;_; and X;14
are independent given X; and Y (see Figure 2). We imple-
mented KQ with both first- and second-order count kernels.
The loss function used is the hinge loss as in the SVM al-
gorithm. The second-order kernel is specified in eqn. (10)
but with the sum taken over only ¢, r such that |t — r| = 1.

Xl
X2
XS

X4

X5
(@) (b)
Figure 2. Examples of graphical models P(X,Y") of our

simulated sensor networks. (a) Chain-structured depen-
dency. (b) Fully connected (not all connections shown).

Spatially-dependent sensors.  As a third example, we
consider a 2-D layout in which, conditional on the random
target being present (Y = +1), all sensors interact but with

the strength of interaction decaying with distance. Thus
P(X|Y = 1) is of the form:

o< exp { Y hualu(X)+ D O L (X, (X7) )

t#£r;uv

Here the parameter h represents observations at individual
sensors, whereas ¢ controls the dependence among sen-
sors. The distribution P(X|Y = —1) can be modeled in
the same way with observations 4/, and setting 6’ = 0 so
that the sensors are conditionally independent. In simula-
tions, we generated 6y, ~ N(1/d;,0.1), where dy,. is
the distance between sensor ¢ and r, and the observations
h and h’ are randomly chosen in [0,1]°. We consider a
sensor network with 9 nodes (i.e., S = 9), arrayed in the
3 x 3 lattice illustrated in Figure 2(b). Since computation of
this density is intractable for moderate-sized networks, we
generated an empirical data set (z;, y;) by Gibbs sampling.

Naive Bayes sensor network Chain-structured sensor network
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Figure 3. Scatter plots of the test error of the LT versus
KQ methods. (a) naive Bayes network. (b) Chain model
with 1st-order kernel. (c), (d) Chain model with 2nd order
kernel. (d) Fully connected model.

We compare the results of our algorithm to an alternative
decentralized classifier based on performing likelihood-
ratio (LR) test at each sensor. Specifically, for each sensor

t, the estimates % foru = 1,..., M of the
likelihood-ratio are sorted and grouped evenly into L bins.
Given the quantized input signal and label Y, we then con-
struct a naive Bayes classifier at the fusion center. This
choice of decision rule provides a reasonable comparison,
since thresholded likelihood ratio tests are optimal in many

cases (Tsitsiklis, 1993).

As we show in Figure 3, the kernel-based quantization
(KQ) algorithm developed in Section 4 generally yields



better classification results than the likelihood-ratio based
algorithm. The figure provides scatter plots of LR versus
KQ test error for four different set-ups, using L = 2 lev-
els of quantization. Panel (a) shows the naive Bayes set-
ting and the KQ method with first-order count kernel. Note
that the KQ error is below the LR error for the large ma-
jority of examples. Panels (b) and (c) show the case of
chain-structured dependency, as illustrated in Figure 2(a),
using a first- and second-order count kernel respectively.
Again, the KQ error improves significantly on the LR error.
Finally, panel (d) shows the fully-connected case of Fig-
ure 2(b) with a first-order kernel. The performance of KQ
is somewhat better than LR, although by a smaller amount
than the other cases.

UCI repository datasets.  We also applied our algorithm
to several data sets from the UCI repository. In contrast to
the sensor network setting, in which communication con-
straints must be respected, the problem here can be viewed
as that of finding a good quantization scheme that retains
information about the class label. Thus, the problem is sim-
ilar in spirit to work on discretization schemes for classifi-
cation (Dougherty et al., 1995). However, in our case, we
assume that the data have already been crudely quantized
(to M = 8 levels) and we retain no information on the rel-
ative magnitudes of the levels, thus rendering classical dis-
cretization algorithms inapplicable. The problem is one of
hierarchical decision-making, in which a second-level de-
cision follows a first-level set of decisions concerning the
features.

Data || L =2 4 6 NB CK
Pima 0.212 | 0.217 | 0.212 | 0.223 | 0.212

lono 0.091 | 0.034 | 0.079 | 0.056 | 0.125
Bupa 0.368 | 0.322 | 0.345 | 0.322 | 0.345
Ecoli 0.082 | 0.176 | 0.176 | 0.235 | 0.188
Yeast 0.312 | 0.312 | 0.312 | 0.303 | 0.317
Wdbc 0.083 | 0.097 | 0.111 | 0.083 | 0.083

Table 1: Experimental results for UCI data sets.

We used 75% of the data set for training and the remain-
der for testing. The results for L = 2,4,6 quantization
levels are shown in Table 1. Note that in several cases the
quantized algorithm actually outperforms a naive Bayes al-
gorithm (NB) with access to the real-valued features. This
result may be due in part to the fact that our quantizer is
based on a discriminative classifier, but it is worth noting
that similar improvements over naive Bayes have been re-
ported in earlier empirical work using classical discretiza-
tion algorithms (Dougherty et al., 1995).

6. Conclusions

We have presented a new approach to the problem of de-
centralized decision-making under constraints on the num-

ber of bits that can be transmitted by each of a distributed
set of sensors. In contrast to most previous work in an ex-
tensive line of research on this problem, we assume that
the joint distribution of sensor observations is unknown,
and that only a set of data samples is available. We have
proposed a novel algorithm based on kernel methods, and
shown that it is quite effective on both simulated and real-
world data sets.

This line of work can be extended in a number of directions.
First, although we have focused on discrete observations
X, it is natural to consider continuous signal observations.
Doing so would require considering parameterized distri-
butions Q(Z|X). Second, our kernel design so far makes
use of only rudimentary information from the sensor ob-
servation model, and could be improved by exploiting such
knowledge more thoroughly.

References

Bartlett, P., Jordan, M. I., & McAuliffe, J. D. (2003). Convexity,
classifi cation and risk bounds (Technical Report 638). Depart-
ment of Statistics, UC Berkeley.

Blum, R. S., Kassam, S. A., & Poor, H. V. (1997). Distributed de-
tection with multiple sensors: Part ll—advanced topics. Pro-
ceedings of the |EEE, 85, 64-79.

Dougherty, J., Kohavi, R., & Sahami, M. (1995). Supervised and
unsupervised discretization of continuous features. Proceed-
ings of the ICML. San Mateo, CA: Morgan Kaufmann.

Jaakkola, T., & Haussler, D. (1999). Exploiting generative models
in discriminative classifiers. NIPS11. Cambridge, MA: MIT
Press.

Koltchinskii, V., & Panchenko, D. (2002). Empirical margin dis-
tributions and bounding the generalization error of combined
classifiers. Annals of Statistics, 30, 1-50.

Nguyen, X., Wainwright, M. J., & Jordan, M. |. (2004). De-
centralized detection and classifi cation using kernel methods
(Technical Report 658). Dept. of Statistics, UC Berkeley.

Rockafellar, G. (1970). Convex analysis. Princeton: Princeton
University Press.

Scholkopf, B., & Smola, A. (2002). Learning with kernels. Cam-
bridge, MA: MIT Press.

Tsitsiklis, J. N. (1993). Decentralized detection. In Advancesin
statistical signal processsing, 297-344. JAI Press.

Tsuda, K., Kin, T., & Asai, K. (2002). Marginalized kernels for
biological sequences. Bioinformatics, 18, 268-275.

van der Vaart, A. W., & Wellner, J. (1996). Weak convergence and
empirical processes. New York, NY: Springer-Verlag.

van Trees, H. L. (1990). Detection, estimation and modulation
theory. Melbourne, FL: Krieger Publishing Co.

Zhang, T. (2004). Statistical behavior and consistency of classifi-
cation methods based on convex risk minimization. Annals of
Satistics, 52, 56-134.



