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Abstract— We develop and analyze a nonparametric
method for estimating the class of f -divergence functionals,
and the density ratio of two probability distributions.
Our method is based on a non-asymptotic variational
characterization of the f -divergence, which allows us to
cast the problem of estimating divergences in terms of
risk minimization. We thus obtain an M -estimator for
divergences, based on a convex and differentiable opti-
mization problem that can be solved efficiently We analyze
the consistency and convergence rates for this M -estimator
given conditions only on the ratio of densities.

I. INTRODUCTION

Given samples from two (multivariate) probability
distributions P and Q, it is frequently of interest to
estimate the values of functionals measuring the diver-
gence between the unknown P and Q. Of particular
interest is the Kullback-Leibler (KL) divergence, but
the approach of this paper applies to the more general
class of Ali-Silvey or f -divergences [1], [6]. An f -
divergence, to be defined formally in the sequel, is of the
form Dφ(P, Q) =

∫

φ(dQ/dP)dP, where φ is a convex
function of the likelihood ratio.

These divergences play fundamental roles in statis-
tics and information theory. In particular, divergences
are often used as measures of discrimination in binary
hypothesis testing and classification applications. Ex-
amples include signal selection [11] and decentralized
detection [14], where f -divergences are used to solve
experimental design problems. The Shannon mutual
information (a particular type of KL divergence), in
addition to its role in coding theorems, is often used as a
measure of independence to be extremized in dimension-
ality reduction and feature selection. In all of these cases,
if divergences are to be used as objective functionals, one
has to be able to estimate them efficiently from data.

There are two ways in which divergences are typically
characterized. The classical characterization is an asymp-

totic one; for example, the KL divergence emerges as the
asymptotic rate of the probability of error in Neyman-
Pearson binary hypothesis testing (a result known as
Stein’s lemma). But it is also possible to provide non-
asymptotic characterizations of the divergences; in par-
ticular, Fano’s lemma shows that KL divergence provides
a lower bound on the error probability for decoding
error [5]. This paper is motivated by a non-asymptotic
characterization of f -divergence in the spirit of Fano’s
lemma, first explicated in our earlier work [14]. This
characterization states that that there is an one-to-one
correspondence between the family of f -divergences and
the family of “surrogate loss functions”, such that the
(optimum) Bayes risk is equal to the negative of the di-
vergence. In other words, any negative f -divergence can
serve as a lower bound of a risk minimization problem.
This variational characterization of divergence, stated
formally in Lemma 1, allows us estimate a divergence
Dφ(P, Q) by solving a binary decision problem. Not
surprisingly, we show how the problem of estimating f -
divergence is intrinsically linked to that of estimating the
likelihood ratio g0 = dP/dQ. Overall, we obtain an M -
estimator, whose optimal value estimates the divergence
and optimizing argument estimates the likelihood ratio.

Our estimator is nonparametric, in that it imposes no
strong assumptions on the form of the densities for P and
Q. We establish consistency of this estimator by exploit-
ing analysis techniques for M -estimators in the setting
of nonparametric density estimation and regression [18],
[20]. At a high level, the key to the proof is suitable
control on the modulus of continuity of the suprema
of two empirical processes, one for each of P and Q,
with respect to a metric defined over density ratios.
This metric turns out to be a surrogate lower bound
of a Bregman divergence defined on a pair of density
ratios. In this way, we not only establish consistency of
our estimator, but also obtain convergence rates. As one



concrete example, when the likehood ratio g0 lies in a
function class G of smoothness α with α > d/2, where
d is the number of data dimensions, our estimator of
the likelihood ratio achieves the optimal minimax rate
n−α/(2α+d) according to the Hellinger metric, while the
divergence estimator also achieves the rate n−α/(2α+d).

In abstract terms, an f -divergence can be viewed as an
integral functional of a pair of densities. While there are
relatively little work focusing on integral functionals for
pairs of densities (such as the f -divergences of interest
here), there is an extensive literature on the estimation of
an integral functionals of the form

∫

φ(p)p, where p the
density of an unknown probability distribution. Work on
this topic dates back to the 1970s [9], [13]; see also [2],
[3], [12] and the references therein. There are also a
number of papers that focus specifically on the entropy
functional (see, e.g., [7], [10], [8]).

In a separate line of work, Wang et al. [21] proposed
a histogram-based KL estimator, which is based on the
estimation of the likelihood ratio by building partitions
of equivalent (empirical) Q-measure. The estimator was
empirically shown to outperform direct plug-in methods,
but no theoretical convergence rate analysis was given. A
concern with histogram-based methods are their possible
inefficiency, in both statistical and computational terms,
when applied to higher dimensional data. Our prelim-
inary empirical results [15] suggest that our estimator
exhibits comparable or superior convergence rates in a
number of examples.

The remainder of this paper is organized as follows. In
Section II, we describe a general variational character-
ization of f -divergence, and derive an M -estimator for
the KL divergence and the likelihood ratio. Section III is
devoted to the analysis of consistency and convergence
rates. In Section IV we briefly discuss how our analysis
extends to general f -divergences. Additional results and
complete proofs of all theorems can be be found in [15].

II. M -ESTIMATOR FORMULATION

We begin by describing an M-estimator formulation
for KL divergence and the density ratio.

A. Variational characterization of f -divergence

Let X1, . . . , Xn be n i.i.d. random variables drawn
from an unknown distribution P; similarly, let Y1, . . . , Yn

be n random variables drawn from an unknown distribu-
tion Q. Assume that both are absolutely continuous with
respect to Lebesgue measure µ, with positive densities p0

and q0, respectively, on some compact domain X ⊂ Rd.
The KL divergence between P and Q is defined as:

DK(P, Q) =

∫

p0 log(p0/q0) dµ.

The KL divergence is a special case of a broader
class of divergences known as Ali-Silvey distances, or
f -divergences [6], [1]:

Dφ(P, Q) =

∫

p0φ(q0/p0) dµ,

where φ : R → R̄ is a convex function. Different choices
of φ result in many divergences that play important
roles in information theory and statistics, including the
variational distance, Hellinger distance, KL divergence
and so on (see, e.g., [17]).

Since φ is a convex function, by Legendre-Fenchel
convex duality [16] we can write:

φ(u) = sup
v∈R

(uv − φ∗(v)),

where φ∗ is the convex conjugate of φ. As a result,

Dφ(P, Q) =

∫

p0 sup
f

(fq0/p0 − φ∗(f)) dµ

= sup
f

(
∫

f dQ −

∫

φ∗(f) dP

)

,

where the supremum is taken over all measurable func-
tions f : X → R, and

∫

f dP denotes the expectation
of f under distribution P. It is easy to see that equality
in the supremum is attained for functions f such that
q0/p0 ∈ ∂φ∗(f), where q0, p0 and f are evaluated at any
x ∈ X . By convex duality, this is true if f ∈ ∂φ(q0/p0)
for any x ∈ X . Thus, we have proved the following:

Lemma 1. Letting F be any function class in X → R,
there holds:

Dφ(P, Q) ≥ sup
f∈F

∫

f dQ − φ∗(f) dP. (1)

Furthermore, equality holds if F ∩ ∂φ(q0/p0) 6= ∅.

B. An M -estimator of density ratio and KL divergence

Returning to the KL divergence, φ has the form
φ(u) = − log(u) for u > 0 and +∞ for u ≤ 0.
The convex dual of φ is φ∗(v) = supu(uv − φ(u)) =
−1−log(−v) if u < 0 and +∞ otherwise. By Lemma 1,

DK(P, Q) = sup
f<0

∫

f dQ −

∫

(−1 − log(−f)) dP

= sup
g>0

∫

log g dP −

∫

gdQ + 1. (2)

In addition, the supremum is attained at g0 = p0/q0. This
motivates the following estimator of the KL divergence:
Let G be a function class of X → R+, and

∫

dPn and
∫

dQn denote the expectation under empirical measures
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Pn and Qn, respectively, and consider the following
optimization problem:

D̂K = sup
g∈G

∫

log g dPn −

∫

gdQn + 1. (3)

In practice we generally choose G to be a convex
function class, which turns (3) into a convex optimization
problem that can be solved efficiently [15]. Suppose
that the supremum is attained at ĝn. Then ĝn is an M -
estimator of the density ratio g0 = p0/q0.

In the case of KL divergence estimation, we need to
analyze the behavior of |D̂K − DK(P, Q)| as n → ∞.
In the case of density ratio estimation, we also need a
performance measure. Since g0 = p0/q0 can be viewed
as a density function with respect to Q measure, a natural
metric is the Hellinger distance:

h2
Q(g, g0) :=

1

2

∫

(g1/2 − g
1/2
0 )2 dQ. (4)

As we shall see, this distance measure is weaker than
|D̂K −DK(P, Q)|, with the advantage of allowing us to
obtain guarantees under milder assumptions.

III. CONSISTENCY AND CONVERGENCE RATES

In this section we shall present consistency results and
obtain convergence rates for our estimators. Throughout
the paper, we impose the following conditions on the
distributions P, Q and the function class G.

(i) DK(P, Q) < ∞; and
(ii) G is sufficiently rich so that g0 ∈ G.
To analyze the overall error, we define the approxima-

tion error E0(G) and estimation error E1(G) as follows:

E0(G) = DK(P, Q) − sup
g∈G

∫

(log g dP − g dQ + 1) ≥ 0

E1(G) = sup
g∈G

∣

∣

∣

∣

∫

log g d(Pn − P) − gd(Qn − Q)

∣

∣

∣

∣

.

Combining with (2) and (3) it is easy to see that:

−E1(G) − E0(G) ≤ D̂K − DK(P, Q) ≤ E1(G).

Since we have imposed condition (ii), the approximation
error E0(F) vanishes, so that this paper focuses on
estimation error E1(G) only. If (ii) does not hold, we
obtain instead a lower bound on the KL divergence.

A. Set-up and some basic inequalities

We begin by stating a few basic inequalities used
throughout our analysis of consistency and convergence

rates. We bound E1(G) in terms of the following empir-
ical processes:

vn(G) = sup
g∈G

∣

∣

∣

∣

∫

log
g

g0
d(Pn−P)−

∫

(g−g0)d(Qn−Q)

∣

∣

∣

∣

.

wn(g0) =

∣

∣

∣

∣

∫

log g0 d(Pn − P) − g0d(Qn − Q)

∣

∣

∣

∣

.

Note that by construction, we have:

E1(G) ≤ vn(G) + wn(g0). (5)

Our first lemma deals with the term wn:

Lemma 2. We have the almost-sure convergence
wn(g0)

a.s.
−→ 0.

Note that in this lemma and other theorems, all “a.s.
convergence” statements can be understood with respect
to either P or Q because of the mutual absolute conti-
nuity. Next, we relate vn(G) to the Hellinger distance.
This link is made via an intermediate term that is also a
(pseudo) distance between g0 and g:

d(g0, g) =

∫

(g − g0)dQ −

∫

log
g

g0
dP. (6)

Lemma 3. (i) d(g0, g) ≥ 2h2
Q(g, g0) for any g ∈ G.

(ii) If ĝn is the estimate of g0, then d(g0, ĝn) ≤ vn(G).

Lemma 3 asserts that the Hellinger distance between
ĝn and g0 is bounded by the suprema of empirical
processes vn(G). One difficulty with the function class
{log(g/g0)} is that it can be unbounded when g takes
value ∞ or 0. The following lemma borrows an idea due
to Birgé and Massart (cf. [18]), considering functions
log g0+g

2g0

, which are always bounded from below.

Lemma 4. If ĝn is the estimate of g0, then:

1

8
h2

Q(g0, ĝn) ≤ 2h2
Q(g0,

g0 + ĝn

2
) ≤

−

∫

ĝn − g0

2
d(Qn −Q) +

∫

log
ĝn + g0

2g0
d(Pn −P).

B. Consistency results

Our analysis relies on results from empirical process
theory. We first introduce several standard notions of
entropy of a function class [20]. For each δ > 0, a
covering for function class G using metric Lr(Q) is a
collection of functions which cover entire G using Lr(Q)
balls of radius δ. Let Nδ(G, Lr(Q)) be the smallest
cardinality of such a covering, then Hδ(G, Lr(Q)) :=
log Nδ(G, Lr(Q)) is called the entropy for G using
Lr(Q) metric. A related notion is entropy with brack-
eting. Let NB

δ (G, Lr(Q)) be the smallest value of N for
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which there exist N pairs of functions {gL
j , gU

j } such that
‖gU

j −gL
j ‖Lr(Q) ≤ δ, and such that for each g ∈ G there

is a j such that gL
j ≤ g ≤ gL

j . Then HB
δ (G, Lr(Q)) :=

log NB
δ (G, Lr(Q)) is called the entropy with bracketing

of G. Define the envelope functions:

G0(x) = sup
g∈G

|g(x)|; G1(x) = sup
g∈G

| log
g(x)

g0(x)
|.

Proposition 5. Assume the envelope conditions

(a)

∫

G0dQ < ∞, and (b)

∫

G1dP < ∞, (7)

and suppose that for all δ > 0 there holds:

1

n
Hδ(G − g0, L1(Qn))

Q
−→ 0, (8a)

1

n
Hδ(log G/g0, L1(Pn))

P
−→ 0. (8b)

Then, vn(G)
a.s.
−→ 0. As a result, E1(G)

a.s.
−→ 0, and

hQ(g0, ĝn)
a.s.
−→ 0.

Envelope condition (7)(b) is quite severe, because
it essentially requires all functions in G be bounded
from both above and below. To ensure the Hellinger
consistency of the estimation for g0, however, we can
essentially drop envelope condition (7)(b) and replace
entropy condition (8)(b) by a milder entropy condition.

Proposition 6. Assume that (7)(a) and (8a) hold, and

1

n
Hδ(log

G + g0

2g0
, L1(Pn))

P
−→ 0, (9)

then hQ(g0, ĝn)
a.s.
−→ 0.

It can be shown that both entropy conditions (8a)
and (9) can be deduced from a single condition—namely,
that for all δ > 0, the bracketing entropy is bounded as
HB

δ (G, L1(Q)) < ∞.
As a concrete illustration, let us consider:

Example: (Sobolev classes W α
2 ) For x ∈ Rd, and a d-

dimensional multi-index κ = (κ1, . . . , κd) (all κi are
natural numbers), write xκ =

∏d
i=1 xκi

i , and |κ| =
∑d

i=1 κi. Let Dκ denote the differential operator:

Dκg(x) =
∂|κ|

∂xκ1

1 . . . ∂xκd

d

g(x1, . . . , xd).

Let Wα
2 (X ) denote the Sobolev space of functions f :

X → R, where ||f ||2Lα

2
(X ) =

∑

|κ|=α

∫

|Dκf(x)|2 dx

is bounded by a constant M2. If G is restricted to a
subspace of W α

2 (X ) such that G is uniformly bounded
from above, then all conditions in Prop. 6 can be shown
to hold. If, in addition, all functions in G is also bounded
from below, then all conditions in Prop. 5 hold.

C. Convergence rate of density ratio estimation

We can obtain the convergence rate of our estimator
ĝn using the Hellinger metric. Our result is based on
Lemma 4, which bounds the Hellinger metric in terms of
the supremum of empirical processes, and the modulus
of continuity of this supremum. We shall assume that:

sup
g∈G

‖g‖∞ < K2, (10)

in addition to an entropy condition on the function class
Ḡ := {((g +g0)/2)

1/2, g ∈ G}: In particular, we assume
that for some constant 0 < γḠ < 2, there holds for any
δ > 0,

HB
δ (Ḡ, L2(Q)) = O(δ−γḠ ). (11)

Theorem 7. Under conditions (10) and (11), then
hQ(g0, ĝn) = OP(n−1/(γḠ+2)), where OP is w.r.t. P.

Remarks: To follow up on our earlier example, if G is
a Sobolev class with smoothness α, and g0 is bounded
from below, then it is known [4] that γḠ = d/α. In
this particular case, we obtain the rate n−α/(2α+d). It
is worthwhile comparing to the optimal minimax rates
w.r.t Hellinger metric. More precisely, the minimax rate
is defined as:

rn := inf
ĝn∈G

sup
P,Q

EPhQ(g0, ĝn).

Here the infimum is taken with respect to all estimators
ĝn ∈ G, where G is a Sobolev class with smoothness α.
First, note that rn ≥ inf ĝn∈G supP Ehµ(g0, ĝn), where
we have fixed Q = µ as the Lebesgue measure on X .
Thus, we have lower bounded the minimax rate by that
of a nonparametric density estimation problem.1 Thus,
we obtain the following:

Proposition 8. When the likelihood ratio lies in the
Sobolev class of smoothness α, the optimal minimax rate
rn = Ω(n−α/(2α+d)) is achieved by our estimator.

D. Convergence rates of divergence estimation

We now turn to the convergence rate of our estimator
for the KL divergence. We assume that all functions in
G are bounded from above and below:

0 < K1 ≤ ‖g‖∞ ≤ K2 for all g ∈ G. (12)

Theorem 9. Under conditions (12) and (11), we have
∣

∣

∣
D̂K − DK(P, Q)

∣

∣

∣
= OP(n−1/(γḠ+2)).

1There is a small technical aspect here: the space G ranges
over smooth functions that need not be valid probability densities.
Nonetheless, a standard hypercube argument is still directly applicable.
(See [19], Sec. 24.3, for such an argument).

4



Proof: We provide only a sketch here. From
equations (2) and (3), we can bound |D̂K − DK(P, Q)|
from above by the sum A+B+C of three terms, where

A :=
˛

˛

Z

log ĝn/g0d(Pn − P) −

Z

(ĝn − g0)d(Qn − Q)
˛

˛

B :=

˛

˛

˛

˛

Z

log ĝn/g0dP −

Z

(ĝn − g0)dQ

˛

˛

˛

˛

C :=

˛

˛

˛

˛

Z

log g0d(Pn − P) −

Z

g0d(Qn − Q)

˛

˛

˛

˛

.

We have C = OP (n−1/2) by the central limit theorem.
Using assumption (12),

B ≤

∫

|ĝn − g0|
K2

K1
dQ| +

∫

|ĝn − g0|dQ

≤ (K2/K1 + 1)‖ĝn − g0‖L2(Q)

≤ (K2/K1 + 1)K
1/2
2 4hQ(g0, ĝn)

(a)
= OP(n−1/(2+γḠ)),

where equality (a) is due to Theorem 7.
Finally, to bound A, we apply a modulus of continu-

ity result on the suprema of empirical processes w.r.t.
functions (g − g0) and (log g − log g0). From (12), the
bracket entropy for both function classes G and log G has
the same order as that of Ḡ, as given in (11). Applying
Lemma 5.13 from van de Geer [18], we obtain that for
δn = n−1/(2+γḠ), there holds:

A = OP(n−1/2‖ĝn−g0‖
1−γḠ/2

L2(Q) ∨δ2
n) = OP(n−2/(2+γḠ)).

Overall, we have established that the sum A + B + C is
upper bounded by OP(n−1/(2+γḠ)).

IV. OTHER RESULTS

In [15], we provide several further results that cannot
be presented here due to space limitations. At a high
level, these results include the following:
M -estimation of Dφ and ∂φ(q0/p0): Although we
have focused primarily here on the KL divergence,
our approach is applicable to the estimation of any f -
divergence Dφ and subgradient ∂φ(q0/p0). In general,
the estimator of Dφ takes the following form:

D̂φ := sup
f∈F

∫

f dQn −

∫

φ∗(f) dPn,

where the supremum is attained at an estimate of
∂φ(q0/p0). The analysis hinges on the modulus of
continuity of the suprema of certain empirical processes
with respect to the following Bregman divergence (a
special case of which was defined in Eq. (6)):

dφ(f0, f) =

∫

(φ∗(f) − φ∗(f0) −
∂φ∗

∂f

∣

∣

∣

∣

f0

(f − f0) dP.

Implementation and experimental results: In practice,
we implement our estimator by taking G to be the
reproducing kernel Hilbert space induced by a Gaussian
kernel. Doing so yields a convex optimization problem
that can be solved efficiently [15]. Our experiment
results [15] demonstrate the practical viability of such
estimators, which complements the theoretical analysis
of consistency and convergence rates reported herein.
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[3] L. Birgé and P. Massart. Estimation of integral functionals of a
density. Annals of Statistics, 23(1):11–29, 1995.

[4] M. S. Birman and M. Z. Solomjak. Piecewise-polynomial
approximations of functions of the classes W α

p
. Math. USSR-

Sbornik, 2(3):295–317, 1967.
[5] T. Cover and J. Thomas. Elements of Information Theory. John

Wiley and Sons, New York, 1991.
[6] I. Csiszár. Information-type measures of difference of probability

distributions and indirect observation. Studia Sci. Math. Hungar,
2:299–318, 1967.

[7] L. Gyorfi and E.C. van der Meulen. Density-free convergence
properties of various estimators of entropy. Computational
Statistics and Data Analysis, 5:425–436, 1987.

[8] P. Hall and S. Morton. On estimation of entropy. Ann. Inst.
Statist. Math., 45(1):69–88, 1993.

[9] I. A. Ibragimov and R. Z. Khasminskii. On the nonparametric
estimation of functionals. In Symposium in Asymptotic Statistics,
pages 41–52, 1978.

[10] H. Joe. Estimation of entropy and other functionals of a
multivariate density. Ann. Inst. Statist. Math., 41:683–697, 1989.

[11] T. Kailath. The divergence and Bhattacharyya distance measures
in signal selection. IEEE Trans. on Communication Technology,
15(1):52–60, 1967.

[12] B. Laurent. Efficient estimation of integral functionals of a
density. Annals of Statistics, 24(2):659–681, 1996.

[13] B. Ya. Levit. Asymptotically efficient estimation of nonlinear
functionals. Problems Inform. Transmission, 14:204–209, 1978.

[14] X. Nguyen, M. J. Wainwright, and M. I. Jordan. On divergences,
surrogate losses and decentralized detection. Technical Report
695, Department of Statistics, UC Berkeley, October 2005.

[15] X. Nguyen, M. J. Wainwright, and M. I. Jordan. Estimating
divergence functionals and the likelihood ratio by convex risk
minimization. Technical report, Department of Statistics, UC
Berkeley, January 2007.

[16] G. Rockafellar. Convex Analysis. Princeton University Press,
Princeton, 1970.

[17] F. Topsoe. Some inequalities for information divergence and
related measures of discrimination. IEEE Transactions on Infor-
mation Theory, 46:1602–1609, 2000.

[18] S. van de Geer. Empirical Processes in M-Estimation. Cambridge
University Press, 2000.

[19] A. W. van der Vaart. Asymptotic Statistics. Cambridge University
Press, 1998.

[20] A. W. van der Vaart and J. Wellner. Weak Convergence and
Empirical Processes. Springer-Verlag, New York, NY, 1996.

[21] Q. Wang, S. R. Kulkarni, and S. Verdú. Divergence estimation
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