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Abstract: We consider problems involving functional data where we have a colleofifunctions, each viewed
as a process realization, e.g., a random curve or surface. Feotieufz process realization, we assume that the
observation at a given location can be allocated to separate groupsavidant allocation process, which we name
the Dirichlet labeling process. We investigate properties of this procesdsanse as a prior in a mixture model.
We develop exact and approximate representations for the labelinggstanalyze the global and local clustering
behavior, clarify model identifiability and posterior consistency, an@kigvefficient inference methods for models
using such priors. Performance is demonstrated with synthetic datgpkesara public-health application, and an
image segmentation task.
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1. Introduction

A recurring theme in the nonparametric Bayes literature has been the deesibpf mixture models
based on Dirichlet processes (DP) (Ferguson (1973); Sethurak884)( Ishwaran and James (2001)).
These models have proved to be useful in applications that involve clgstservations into distinct
groups; the dependence of different groupings can be achieveadesfarmalism of dependent Dirichlet
processes (e.g., MacEachern (2000); Delorio, Muller, RosndrMatEachern (2004); Gelfand, Kottas,
and MacEachern (2005); Teh, Jordan, Beal, and Blei (2006)).

In this paper we are interested in mixture modeling for functional data ( Raamshgilverman (2002,
2006); Ferraty and Vieu (2006)). From the viewpoint of functionahdanalysis we are given a sample
of n functions, surfaces or curvés, . .., Y, overR¢, each viewed as a realization of a stochastic process
Y. The curves are observed at a common set of locatigns. ., z,, € D, whereD is a subset of
R<.This setting is natural in many applications: an image is a surface of light intemsRy. The ocean
temperature at a location is a function of depth. The monthly progestercgleofea female subject is a
function of time.

The primary objective here is to examine clustering of the set of curvesndhaing the notion of
clustering of curves raises several interesting challenges. First, vigany; as anoisyversion of the
curved;. Thef,’s are assumed to be smooth (at least continuous) and clustering is cedsidth regard
to these latenf’s. For instance, it is easy to ensure mean square continuous realiaaiogsa Gaussian
process with a suitable covariance function (see, e.g., Stein (1999poudde, introducing noise raises
a trade-off issue. With too much noise, ofiean explain all of they;'s - one cluster; with too little
noise, eacty; requires a distincf; - no clustering. Second, we can envision a notion of local clustering,
by clustering curve realizatiory (z), ..., 0,(x) at any location: € D using a DP mixture. We can
envision global clustering); and#é,: identical for allz € D, and, possibly, attempt to formalize notions
of “partial” clustering. With smoothness for these functions, the groupahgEcations close to each other
are expected to be more similar than those at distant locations. In other, wWugds is an uncountable



collection of dependent DP mixtures, one for each location, with the deperdegulated by the inherent
spatial structure. Such clustering would be viewed as “local”. Alternigtie can assume that the
spatial dependence is regulated by, say, a Gaussian process (GPJoninstance, a simple approach is
to allow random curves to be drawn from a Dirichlet process with a GPsesaasure (Gelfand, Kottas,
and MacEachern (2005)). However, this approach is limited by the tksoeture of DP realizations:
conditional on the DP atoms, a random curve is either a replicate of oneocoingadble set of curves atl
locations inD, or not at all. Evidently, this is “global” clustering.

Our approach assumes that the collection of curve realizations canrbeerfed in terms df “canon-
ical” curves drawn from a stochastic proc€gs but each realization can be expressed as a hybrid species
— random portions of the curve may belong to different species. Caadanicves provide the basis for
representing a curve in terms of disjoint segments with distinct behavior (s tef; e.g., smoothness and
monotonic properties). In certain applications, such as image modelingpaicahcurve might simply be
a (random) constant function that represents a corresponding &halthe image. The notion of hybrid
species curves has been explored in various contexts, including ysesnand genetics (Blei, Ng, and
Jordan (2003); Pritchard, Stephens, and Donnelly (2000)), asaweétl the context of spatial and func-
tional data (Duan, Guindani, and Gelfand (2007); Petrone, GuidathiGaifand (2009)). In particular, our
approach is based on the hybrid Dirichlet process mixture model firstlintem by Petrone, Guidani, and
Gelfand (2009). Implicit in their modeling is a latent group allocation proogbgh we call theDirich-
let labeling process This labeling process, which we now denotegyallows randomiocal allocation
to one of a collection of species curves. Operating formally, we work wiitefsimensional Dirichlet
processes (Ishwaran and James (2001)) wpesea random probability measure ¢, . .., k}? that is
drawn from a Dirichlet process via a base measufee., p ~ DP(aq)), whereq is also a probability
measure of{1,...,k}". Explicitly, we mean that for any finite set of location{s;;,j = 1,2,...,m},

p andq are probability distributions on &™ dimensional simplex such thalq ~ Dir(aq). To allow
spatial dependence of random allocatiqris constructed via discretization and copula transformation of
a latent Gaussian process, which essentially regulates the random afiodagiting s — oo, it can be
shown that the marginal distribution of the curve (at each location) tendetménginal drawn from a
Dirichlet process mixture (Petrone, Guidani, and Gelfand (2009)).

The novel contributions offered here are the following. First, we ua#tera detailed investigation
of the Dirichlet labeling process model that provides a random labelaftin & curve at each location.
The labels are dependent within a realization of a curve and, throughiticelBt process, can introduce
clustering of labels across curves. We illuminate properties of this prdpgmseess, develop both exact
and approximate representations of the labeling processes, exadatiafcwhen only two labels are
allowed and approximate calculation when a large number of labels are allolezh, we investigate
the overall mixture model. We clarify the identifiability of the mixture distribution, Haidupon results
from Ishwaran and Zarepour (2002) that broaden the classicé @fofeicher (1963). We also discuss
consistency of posterior inference under the overall mixture model, dixigmesults in Ishwaran and
Zarepour (2002). Here, the key issue is hioyw. behaves as — oo. For any finite number of locations
m, the needed asymptotic rateki¥ = O(n). However, our practical interest resides in the case where
is small relative tan, where we can represent a large number of curves with a small numbanaoiical
species. This, in turn, leads to analyzing the local and global clusterimavloe in the overall mixture
model. Lastly, statistical inference with the latent labeling process is exgendih a large number
of local sites and clusters. We offer computationally efficient inferencénoals by proposing a model
fitting strategy using Gibbs sampling that employs ideas of pseudo-likelihabd@proximate variational



inference in Markov random fields (Wainwright and Jordan (2008Yg provide application to curves
of progesterone levels of women during the course of a menstrual ayd/earhaps surprisingly, to an
image segmentation setting.

There are several recent approaches that permit random locataloéor functional data. In Fernan-
dez and Green (2002), the authors consider Markov random fieltdattices with Poisson distributed
data where the weights in the mixture vary with locations. Closer in spirit to aardwork is the nonpara-
metric Bayesian mixtures of Hidden Markov Models (Teh, Jordan, Bedl Ba@i (2006)). Our labeling
process is arguably more computationally tractable, especially for high-diomeh D and largem, due
to the exploitation of spatial structure in the model that yields accurate coralifosbability approxima-
tion. A number of recent papers introduce various constructions loesthe Sethuraman’s stick-breaking
representation, with varying weights assigned for different locationsffirGand Steel (2006); Dunson
and Park (2008); Duan, Guindani, and Gelfand (2007); Suddesthalba, Freeman, and Willsky (2008)).
The work of Griffin and Steel (2006) and Dunson and Park (2008)ngtify several distinct proposals for
constructing spatially dependent DP mixture marginals. In contrast withppuoach, these are somewhat
indirect methods for enforcing the spatial dependence — while labehghaaross the collection of curves
is encouraged, label sharing across nearby locations aitimecurve is not directly possible.

A number of recent work consider Bayesian models for representintiection of functions in terms
of kernel basis functions ( Pillai, Liang, Mukerjee, Wolpert, and Wu @0MacLehose and Dunson
(2008); Dunson (2008b,a)),(z) = [ K(x,u)y(u)du, where the coefficient function(-) is endowed
with a nonparametric prior. In particular, Dunson (2008b) and Dun20@8a) insist on sparse represen-
tations by modeling the coefficient covariatgs) in terms of a labeling process. In Dunson (2008b), the
labeling process is modeled by independent Dirichlet processes, whilgoR{2008a) uses kernel func-
tions to induce the spatial dependency of labels in a manner similar to that oiritiel€ labeling process.
The key distinction between these and our work is that the Dirichlet labeloaeps allows distributional
specification of labeling realizations over continuous domain without the foed@rnel basis specifica-
tion. More similar to our approach is the work of Duan, Guindani, and Gelfa007). It also specifies a
generalized DP mixture model using the view of hybrid species curves: diygroach requires a labeling
process obtained by thresholdihdatent Gaussian processes, resulting in a model that is computationally
challenging to fit. By contrast, our approach utilizes only one latent Gaupsigess to regulate spatial
dependence, while allowing label sharing through the use of the Dirictdeeps at the next stage. The
resultant model is simpler and computationally more tractable.

Although we are taking a nonparametric Bayesian approach to the clustéringctional data, we
must mention that there is a substantial non-Bayesian literature on this impogiantSee, e.g., Abra-
ham, Cornillon, Matzner-Lober, and Molinari (2003); Biau, Devrogad Lugosi (2008); Chiou and Li
(2007); Dabo-Niang, Ferraty, and Vieu (2006); Fraiman, Justel,Suadlc (2008); Fraiman and Muniz
(2001); James and Sugar (2003); Ma and Zhong (2008); Tokuys¥égimhisa, and Inada (2007) and the
references listed therein. Comparison between Bayesian and nosi@agpproaches is lacking in the
literature, but is not our objective here.

The paper is organized as follows. Section 2 provides backgroundeobDitithlet labeling process
prior for a mixture model. Section 3 presents properties of the Dirichlet labpliocess and the overall
“hybrid” prior. Section 4 discusses identifiability of the mixture model we ps®y as well as posterior
consistency. Section 5 addresses parameter identifiability, a concern in fittirakp with our flexible
specification. Section 6 focuses on model fitting and inference. Sectifferg cesults for experimental



and data analysis. We conclude with some discussion in Section 8. All paodfadditional details are
deferred to an Appendix.

2. Formalizing the model

We define a mixture model for curve realizatio¥s . . .,Y;, over R, that are noisy versions of,
respectivelyd, ..., 6,. In particular, observations are obtained at local siigs. . , z,, € D, soY;(z;) =
0i(x;) + €i(z;). Such modeling is standard in functional data analysis (see, e.g., Rants&f\arman
(2005), p.40) where thés contribute noise, perturbation, disturbance, error, to capturehress in the
raw data. In different words, the data is assumed to be subject to poreflactuations relative to the
process model with the process model specifying suitably smooth cureegyfthin some applications,
we may prefer to leave the noise in thgs). This process view is in accord with the idea of local and
global clustering for the collection of curves.

For a giverk, we envisiork “canonical” species curve§ (j = 1, .. ., k) based on which the collection
of §;'s can be represented. Indeed, each of@theurves is described by the label functian,(x),z €
D,Li(x) € {1,2,...,k} where L;(z) = j implies §;(z) = 67(z). The labels are random as are the
canonical species curves, each defined over an uncountahle s®tto define a stochastic process, we
specify finite dimensional distributions and verify necessary consistemmgitions. In particular, for the
labels, for any finite set of locations, . . ., z,, € D, we specify the random distributigs,, ... ., which
is such thatp,, .. »,. (41, .., jm) = P(L(z1) = j1,...,L(zm) = jm). Thatis(L(z1),..., L(zy)) is a
realization of a multinomial trial driven by the set of probabiliti¢g,, . .. (j1,...,jm)}. FOr a single
sitex, the marginal distribution is a multinomial over the labdt§L(z) = j) = p.(j) forj =1,... k.

Below, the collection op,, ... ..., iS specified to consistently determine a random probability measure
pon{l,...,k}* by what we define as a Dirichlet labeling process. For the canonicalespeurves
07's, we assume they are i.i.d. GP realizations, again characterized by the iiinéesional multivariate
normals for any set of locations;, ...z, € D. The@j’s could be modeled as realizations from a more
general process ob but this would not provide any benefit within our setting. Again, the smoathne
of the 0;’3 can be controlled through the choice of covariance function, as motde Introduction. We
denote the GP bgr. Then, formally:

0: % Gy, j=1,...,k
Li|p id p,i=1,...,n,
0;(x)| L0 = zi(xt),izl,...,n;tzl,...,m

Yi(ze)| 0i(zs) ~ N(Oi(ze),7),i=1,...,n; t=1,...,m.

In addition, depending on the application, there may be prior distribution§fandr. Also, there
may be covariate information, which can be included in the meal;fos).

An alternative representation sacrifices the hierarchical specificationgh the labels and expresses
the model directly through a random finite mixture distributiép,%i Gfori=1,...,n, whereGis a
random measure di” such that

G:m,...,xm = Z pml,...,zm (]1, e 7]m)6(9j1 (xl)v---ﬁ;,m(l"m))' (1)
(]177]7}1)6{1,,]{,‘}"”

See Ishwaran and Zarepour (2002), expressions (1) and (3) icottiiext.



Regardless, we need to specify a random probability measure dn,...,k}”. For locations
Z1,..sTm, Pay,..zm NAs thek™-dimensional Dirichlet distribution

(pﬁﬂl,.--,lm(jlv s v]m)a]l = 17 ) k) ~ Dir(aqxl,...,xm (j17 s aJM)a]Z = 17 B k)a (2)

where the base measugés a probability measure oft, ..., k}7.

The base measukgis constructed such that has a uniform marginal distribution at every location
x € D,q,(1) = ... = qy(k) = 1/k. Additionally, q inherits the spatial dependence structure exhibited
by a stochastic procegson R” as we now clarify.

Denote byF,, .. .. thefinite-dimensional distributions &f. Let(n(z1),...,n(zm)) ~ Fy, ... 2., and
consider the random vectofy, (n(z1)),. .., Fx,, (n(zm))) € [0,1]™, whereF,, denotes the cumulative
distribution function at location;, for F'. This vector has uniform marginals and induces a joint distribution
function denoted by, . ... The collection of finite-dimensional d.fHr,, . ., Characterizes a
probability measuréf = on [0, 1]°. Now, let us discretiz¢0, 1]™ into hyper-cubes

Jji—1 g1 Jm =1 Jm
le"“’jm:< 2 ’k}x X( 2 k]

for j; = 1,..., k. Then, the latent labeling procegss defined by:

q.Z’1 ..... Tm (jl? e 7]771) = HF,.Z’1,...,J}m (C.]l ----- jm)'

Remark. (1) The overall model is characterized by a canonical curve distribdfipand precision pa-
rameterr, as well as parameters specifying the labeling progesshich is parameterized by labeling
processy.

(2) To gain some intuition about the labeling procqs#/e provide an alternative representation. For each
xz € D, letei(x),. .., c(x) be anincreasing sequence of threshold valu@ssoch that, (¢ (x)) = j/k,
forj =1,...,k — 1. Complement the sequence wilf(z) = —oo andci(x) = oco. Conditioning on the
realizationn = (n(x1),...,n(xn)), define functionZ : D — {1,...,k} such thatforeach =1,...,k,

Z(x) = j & n(x) € (¢j-1(2),¢j(2)] & Fu(n(x)) € (5 = 1)/k, j/k].

Hence, am drawn from the stochastic proceBsyields a labelZ ~ q.

(3) In the foregoinggq is defined by discretizing auxiliary variablges- F'. Thenp is a random draw from
the Dirichlet process using base measygre|q ~ DP(aq). Itis simple to show thap can be defined
directly in terms of auxiliary variableSwithout going through the labeling functicf ~ q. First, define
a random functior§ onR? such that ~ H, whereH ~ DP(aF) (this is called spatial Dirichlet process
in Gelfand, Kottas, and MacEachern (2005). Then, discrétaefollows: for any: € D,

L(z) = j  &(x) € (¢j1(x),¢j(@)] & Fo(E(x) € (G — 1)/, j/k]. ®3)

Marginalizing over¢ and H, we obtain a random probability distributigngenerating.. It can be shown

thatp < p andL £ L. Indeed, for anyt1, . . ., 2 € D, the random vectof = (L(a1), . .., L(zm)) has



to satisfy, due to the definition of the Dirichlet process,
(f)(i =(J1,---50m))s Ji = 1k>
d - .
= (P(é(ﬂfl) € (cj—1(x1), ¢y (1)), -+, €(@m) € (¢—1(Tm), ¢, (Tm)]) Ji = 1, - .. ,k)

~ Dir(aF(n(z1) € (cj—1(x1), ¢ (1)), - -, 0(@m) € (Cj—1(Tm), ¢ (@m)])s i =1, .., k:)
= D’L'T(O[qxh_”,xm(jl, ce . ’]m)a]z = 17 ey k})

This implies thatp 4 pandL L Although we have shown that there are two equivalent characteri-
zations ofp in terms of latent process or in terms of latent label functio#, we shall see that the latter
characterization is much more convenient to work with. They key point ispitegierties for the label
function Z can be easily obtained and incorporated into thaffcand lead to a computationally efficient
inference algorithm to be described in Section 6.

We conclude this section with some words regardinglt is worth asking whether it is realistic to
assume that k is fixed or would one expect that identifying the number ohdzal curves should be part
of the problem. Perhaps the latter is more likely to be the case but, due to the xibyngi¢he model and
the challenges to fit it, even with fixed, we decided not to pursue, for example, some sort of reversible
jump algorithm to allowk to be random. In this regard, we prefer to perform model comparisoroimseh
k or study sensitivity of clustering to the choice faffitting models for several fixe#l's. In fact, this is
what we have done with the examples in Section 7 below. We can report thatmprisingly, a bigger
k encourages more clusters but this is also mediated by the specification oétigqn parameter in the
labeling process. In practice, we can hope that a given application viell sbme suggestion of what
k's are interesting so that we can investigate model comparison forkssicin general, as noted in the
Introduction, we envision our modeling to be most useful whda small relative ton. Moreover, the
theoretical analysis in Section 4 also suggests thsthould grow very slowly relatively ta to ensure
strong consistency of relevant posterior distributions.

3. Properties of the Labeling Process

As is clear from the previous section, we use the label process as avtor the hierarchical model
given at the beginning of Section 2. Here we examine properties of tiiegsothe random label functions
LandZon{l,...,k}?, whereL ~ p andZ ~ q, as well as that of the hybrid curve realizatidn- G.
Properties of p. From (2),p andq are relatedp|q ~ DP(aq). As a result, properties obtained for the
labeling process can be easily incorporated into those farWe start with elementary properties for
that are simple consequences of our use of the Dirichlet distribution:

Proposition 1. (a) Let L ~ p. For anyz € D, the distribution for the labeL(z) is a k-dimensional
multinomial trial with probabilitiesp,, ~ Dir((a/k)1).
(b) LetL, Lo|p ““ p. Then, unconditionallyP(L; (z) = La(z)) = P+ =1/k) 7.

(c) LetLq, Lo|p ud p,andzxy,...,x,,, € D. Then, unconditionally,

1 « . .
P(Ll(acl,. . .,J,'m) = LQ(.’L‘l,... ,Ji'm)) = ot 1 =+ ot 1 j Z:j qw1,.‘.,wm(]17" . 7]m)2-
1s--5)m



(d) LetL ~pandxy,...,z, € D. Then

. . : Qe (J1 725+ - Jm)
P(L(z1) = j1|L(x2) = jo, .., L(xm) = Jm) P R
Proposition 1 shows how the clustering behavior exhibited by the label aggdic; ~ p is driven by
the concentration parameterand the labeling procesgs (In particular, asx — oo, p behaves more like
the base measutg) It is worth noting the distinction between local and global clustering behaajalicit
in the labeling procesp. Since the probabilitieq,, .. .. (-) are of orderO(l/km) (cf. Prop. 3 and the
Appendix), part (c) implies the global clustering probabllﬂ’ﬂl = Ly) ~ L L

a+1+a+1'km H?as
m — oo. On the other hand, at each local sitehe probability of clustering is substantially higher:
1 o' 1

otl atl B

P(L(z) = La(x)) =

(Due to the discreteness @f, this probability is greater than'— R+7, the usual probability of a tie for a
continuous variable.) However, since the probability of global cIusterlmjlllsa—H, there are evident
implications regarding either the specificatiornobr a prior for it.

Whenk — oo, the distinction between global and local clusters is apparently lost: twoagahs
and L, are either identical everywhere, or nowhere at all. Although the “heltdtering behavior is lost,
the “soft” clustering behavior remains in play, being drivendoyhich is in turn regulated by'.
Properties of q. In the sequel, we assume tHais a mean-zero, isotropic Gaussian prod&@$¥0, 1, ¢,)
with covariance function of the fornpa(z1, z2) = cov(n(x1),n(z2)) = exp(—dr|z1 — z2||) for any
x1,x2 € D, wheregr, > 0 is called the decay parameter. (We can set the process variance to 1 w.l.0.g.)
Under the assumptions dn, the quantile threshold functiors(z) are constant with respect foand the
sequencey, . .., ¢, satisfiesP(c;) = j/k whered is the c.d.f. of the standard normal variable.

To denote the dependence of labeling proegss ¢ andk, we writeq(¢y, k). Although it is easy
to generate a random sample(&f(x;), ..., Z(z,)) ~ q, the distribution function fory is generally not
available in closed form. In fact, the next result presents a closed farin= 2 and for any two locations,
but closed form expressions fbr> 2 are not readily available.

Proposition 2. (k= 2). LetZ ~ q(¢r,2) and letp;a = Cov(n(x1),n(x2)). Then
1/2
P(Z(z1) =1,Z(z2) =2) = P(Z(z1) = 2,Z(x2) = 1) := Qa;,25(1,2) = %arccos( + &)

1/2
P(Z(x1) =1, Z(z2) = 1) = P(Z(21) = 2, Z(22) = 2) := Qay.op (1,1) = % - %arccos( + E) .

It is simple to observe that as either — oo or ||x; — z2|| — oo, p12 — 0 so that both probabilities
dz; 25(1,2) andqg, »,(1,1) tend to 1/4. That isZ(z;) and Z(z2) become independent. On the other
hand, aspy, — 0 or ||z1 — z2|| — 0, Z(z1) andZ(z2) are equal with increasing probability.

For largek, it is possible to obtain a good approximation to the likelihood function using Riersam
approximation.

Proposition 3. (kis large) LetZ ~ q(¢r,k). For anyi,j < k such thatc; and c; do not diverge to
either+oo or —oo ask — oo,

P(Z(xl) = in(‘TZ) :]) = Qw1,z2(i7j) = %(Rij(ciycj) + 0(1))7 (4)
Pl =i 2w >5) = 1(1-8(S=%2) +o) ©

7



where theo(1) terms tend to @niformly for all such(i, j), and

1 (e + C?)p%Q — 2p12cic;
1 — pis 2(1 — pi,)

Prop. 3 can also be extended to an arbitrary number of locatigns. , x,,,, and can be used to obtain
conditional probabilities (see the Appendix).

It is useful to examine the intuitive behavior of therobabilities for a fixed: as derived by Prop. 3.
As p12 — 0, we haveR;;(c;, c;) — 1, so thatP(Z(z1) = i, Z(z2) = j) — 1/k?,i.e.,Z(z1) and Z(x2)
become less dependent. On the other hang;@as- 1, for any pairi # j, R;ij(ci,cj) — 0, i.e., Z(z1)
and Z(z9) take different values andj with probability converging to 0. Accordingly/(z1) = Z(z2)
with probability converging to 1. Now, fixing;» andc;, considerP(Z(z2)|Z(z1) = i) ~ +Rij(ci, ¢;).
R;;(ci, ¢j) achieves maximum at = pi2¢;. In particular, whem, is nearzy, pi2 ~ 1, so thatpiac; = ¢,
the conditional distributiorP(Z(x2)|Z(x1) = i) favors values that are nearFor most of the nodes that
are distant, so that;; ~ 0, the conditional distribution is rather flat even though the mode; ~ 0. For
nodes in the middle range so that spay; ~ 1/2, there is an interesting shrinkage effect pullidgrs)
toward the middle value (betwedn’2 andi). In addition, variableZ(zy) tends to take values that are
farther away from with decreasing probabilities.

Turning to the properties of a “hybrid” curve realizati@rihat is drawn from the random probability
measures (see (1)), we have

Rij(ci; ¢j) = (6)

(41, rdm)E{L,... .k} ™

where the randomness 6fis due to the randomness pfandf*. We assume that th are very smooth
curves by placing a zero-mean Gaussian process @jan 6*, with covariance functiopy(z, z2) =
02 exp —¢p|lx1 — x2||* (other choices of covariance function could be adopted dependingapfiica-
tion). It is simple to obtain that

E[6(z)|a,Go] = E[6"(x)|Go] = 0,
k
E[(z1)8(x2)|a, Gol = D dayaa () Cov(8" (1), 6 (22)).
j=1

As ||x1 — x2]| — oo, Cov(0*(z1), 0*(x2)) — 0, 50Cov(0(x1),0(x2)|q, Go) — 0. As ||z1 — z2|| — 0,
Zle Qo120 (4, 7) — 1, s0Cov(0(z1),0(z2)|a, Go) — o5. Formally, it can be shown that the hybrid
species) ~ G is mean square continuous:

Proposition 4. Suppose that7y has bounded mean and variance functions, &id) has non-atomic
distribution for anyx € D. If both Gy and F' are mean square continuous, sdis

Althoughf is mean square continuous, each realization is almost surely discontirsibisscamposed
of multiple smooth segments of the canonical curves. Againyisearise by the mixing with the noise or
pure error process, i.i.d. random variables at locatign$ ~ N (0,72)), to obtainY (z) = 6(z) + (x)
for anyz € D. The joint density fofY = (Y (z1),...,Y (7)) givenG andr? is

FY|G, ) = / Nop (Y |60, 721,,)G(d6). )

8



It follows that E(Y|q,Go) = E(6*|Go) and the covariance matriXy|q, Go = 7°I,, + Xy, where
(Xo)ij = Cov(0(x:),0(x5)lq, Go).

4. Model identifiability and posterior consistency

The described labeling process provides a highly flexible nonparamatidgr modeling collections
of curves. As is generally the case with high-dimensional mixture models, Inomhdifiability and pos-
terior consistency issues arise. Moreover, as we shall demonstrdezstanding of these issues can be
useful for prior specification. Here, we restrict our attention to the iadwdistribution of then-variate
Y = (Y(z1),...,Y(zpn)) through the associated mixing distributiéfy, . ... Treatment for the func-
tional case is more demanding and will be pursued elsewhere, but oussise of the multivariate case
should provide some hints for the model behavior and the issues involved-aso.

For a fixedk, the induced distribution ofY can be viewed as a finite mixture of-variate normal
vectors withV = £™ mixture components, where the mixing paramgidas endowed with a Dirichlet
distribution prior, and the normal means are parameterized by tdamonical species curves. Wheiis
unknown, an approach that has become common is to consider a priootretponds to the limit of the
finite mixture model a& — oo. In light of the results given by Prop. 3, it can be shown that as oo,
Gaz,...z, CONverges in distribution t& ~ DP(«F') (by applying Theorem 2(a) of Petrone, Guidani, and
Gelfand (2009)) In fact, as far as the marginal density of ve®tas concerned, the finite mixture (with
N components) provides a remarkably tight approximation to the DP limitIll.gt denote the marginal
density of(Y,...,Y,) which is induced by our prior distributions ¢, 7) for some finitek, andll,, »
the marginal density ofY, ..., Y,,) using prior distributions wittk — oco. It is shown by Ishwaran and
James (2001) that thig, distance|I1,, ;, —II,, |1 ~ 4nexp(—(NN —1)/a). BecauseV = k™ grows very
fast withk, in practice the choice df has little effect on the approximation of the marginal distribution of
Y. Rather, the choice dfhinges more on the interpretation of the canonical species velgtars , 0. As
we see in Section 7, in an example with progesterone data analysis, we egstedent = 2, whereas in
another example with image analysis= 8 turns out to be sufficient for our segmentation and clustering
application.

Model identifiability. ~ Our model is a finite mixture with mixing distributio@,, . ... A multivariate
version of Theorem 2 of Ishwaran and Zarepour (2002), showsttisgully identified under mild condi-
tions.

Proposition 5. Let (Y6, 7) denote then-variate normal density with meahand covariance matrix
721,,. Let Gyz,,..z, D€ @ mixing distribution definedll) for some fixed canonical vectots, ..., 0;
for some finitek, and positive mixing proportionp,, .. ,.(-). Given some™* > 0, suppose there is a
distributionG; overR™ andm; overR, such that

@) [ (Y10, 7*)Gy,,... 0 (dO) = [ (Y10, 7)G1(d0)m1(dr) for almostallY € R™,

(b) UnderG; x 71, Eexp m S 0(x,)? < oo,

(©) 07 (zr) # 05 (zy) fori # j;r =1,...,m.

Thenwe havé, = G, . ,., andmi(-) = 0,-.

Note that the mixing distributiot,, ... .,, is parameterized in terms of the canonical cuses. . , ;.
Though the above result shows tliais identifiable, it does not necessarily establish that these canonical
curves {n-dimensional vectors) can actually be determined. This issue of parane¢éeméhacy can be
resolved by incorporating additional assumptions on the prior distributinrikecanonical curves. As



a simple example, if the canonical curves are non-identical constartidnacthen the identifiability of
Gy, ..z trivially implies the identifiability of the each individual canonical curves. Blgenerally, we
could envision identifiability conditions for the functional case that requidesinguishable” canonical
curves based on smoothness criteria. In addition to the determination oficalnurves, label switching
among the canonical curves is an issue commonly encountered in mixture mégdels, these issues
can be resolved in practice by introducing additional, e.g., ordering eomistto the parameters. A more
detailed discussion of parameter determinacy is deferred to the next section

Posterior consistency. Turning to asymptotic analysis of the posterior distribution derived fromahel-
ing process prior, we view the use of a finite dimensional Dirichlet prior imigefimixture model as a
Bayesian method of sieves by allowikgo grow with sample size. A similar viewpoint was adopted
by Ishwaran and Zarepour (2002) in their analysis of finite mixture foraniate normal variables. Indeed,
with care, their results could be adapted to obtain ours.

We consider first the distribution of the-variateY = (Y (z1),..., Y (z,)) whose (conditional)
density f(Y|G, 7) is given at (7). Because the condition€dandr are random and endowed with prior
distributions of their own, we can view the density(with the conditioning notations and r being
dropped) as a random element in a $gtof densities of form (7) for somg and some realization af
andr.

As before,lI1,, ;. is used to denote the induced prior §nThe posterior distribution of densitf/is a
random measure denoted By, ,.(-|Y1,...,Y,), and has the following form, for any measurable subset

B of Fp.:
Sl f(Y3)dIT, i (f)

ST, F(Y)dI, i (f)

Suppose thaY,...,Y, are i.i.d. draws from somg, € Fi«, wherefy is defined in terms of some
realization ofG = G*,7 = 7* for some fixed but possibly unknown value lof= k*. The posterior
distribution of Y is strongly consistent if, for any > 0, asn tends to infinity withk growing at an
appropriate rate, we have

I, ,(B|Y1,...,Yy,)

o k({f € Fi 2 [If = foln < €}[Y1,....¥n) =1 Py as..

There is a rich body of work on posterior asymptotics for nonparametge®an models, and Dirich-
let process mixture models in particular (see, e.g., Ghosal (2007) foegang exposition). Most relevant
to our model are the analyses of Ghosal, Ghosh, and Ramamoorthi fb@®jichlet process mixture
models and Ishwaran and Zarepour (2002) for finite normal mixtureh,fbousing on univariate distri-
butions, and a more recent work extending to multivariate density estimatioraf/Ghosal (2010)).
As with these analyses we follow the now standard approach develop&dhwartz (1965); Barron,
Schervish, and Wasserman (1999); Ghosal, Ghosh, and Ramamd®@8j @nd several others, which
requires meeting the two sufficient conditions: (A) The piiby,, is information densaround the true
density fo (that is,IL,, ,, places positive mass on each Kullback-Leibler neighborhoofd)ofand (B) the
prior 1I,, ;. puts most of its mass around a “small” subget;, C Fj, where the size ofF, ;, can be
measured by the entropy number. In fact, condition (A) is guaranteecelfpitbwing lemma.

Lemma 6. Let D(-||-) denote the Kullback-Leibler divergence between two probability densitsssinde
that measure, of the canonical vector$*(z1),...,0"(zy)) places positive density in a rectangle
containing the support af*. For sufficiently largek, I1,, . (f € Fi : D(fol|f) < €) > 0foranye > 0.
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It is worth noting that our proof for this Lemma (see the Appendix) exploitsifipally the choice of
the finite Dirichlet prior forp as defined by (2) whose base measure is specified e proof, however,
does not extend to the functional case (by lettindpe arbitrary). Moreover, it appears that to obtain the
denseness properties in the functional setting, additional assumptions tmetdensityf, are needed.
For instance, one might need a condition to the effect that the majority of thégurves do not switch
very often, so that the technique used in our proof can be appliedtibraay m.

Turning to condition (B), for given positive numbeisa,,, 7,,, we takeF, ; to consist of all densities
f € Fi whose associated mixing distributi@®,, . . has support bounded withir-a,,,a,]™ with
probability at leastt — §, and with variance- restricted to the intervdlr,,, M], assuming that the prior
for 7 is some distribution truncated to the right/at. Define the entropy numbef (s, 7, 1) to be the
logarithm of the minimum of all- such that there exist§;, ..., f, € F, ; with the propertyF, ; C
U_{f:|If = filh <d}. The collection{ f1,..., f.} is called a covering af,, ..

Lemma 7. Assume that,, > M/v/s. ThenJ (6mé, Fy, ) < k™ log L0 + kmlog(1 4 —2=3).

Tnmd2

This lemma says that the entropy 8f, , can be controlled by:, a,,, 7,. Combining the last two
lemmas and Theorem 2 of Ghosal, Ghosh, and Ramamoorthi (1999), theifigileesult is immediate.

Proposition 8. Suppose that has support irj0, M| and the canonical curves (vectors) have prior distri-
butionGy. If for eachs > 0,6 > 0, there exists constant$, 51, and sequences, — oo andr, — 0,

k — oo such that

(i) for somepy, Go(6*(x;) € [—an,an] fori=1,...,m) > 1 —exp(—nf),

(i) under the prior ofr, P(T < 1,,) < exp(—nf),

(iii) k™ log L2 + kmlog(1 + ~2825) < np,

(iv) conditions of Lemma 6 and Lemma 7 hold.

then the posterior distribution df is strongly consistent gf.

If, for instance §* has a Gaussian prior distribution, antias an inverse gamma distribution truncated
to the right, then we can allow,, ~ /n andr, ~ 1/y/n. Then, ifk is allowed to grow at a rate
slower tham:'/™, all conditions of the proposition hold, yielding the strong consistency optsterior
distribution of Y. Finally, consistency results can also be extended to that of the mixing di&tribu
Gy, ..z, (s€€ IShwaran and Zarepour (2002), Theorem 7, and GhosadhGGined Ramamoorthi (1999),
page 151).

5. Parameter Identifiability

The previous section focused on large sample properties of the poslistidsution of the curves, and
the identifiability of the mixing distributior®7,, .. ... In specific applications we are usually concerned
with the identifiability (determinacy) of certain parameters and latent variabiageoest, under a limited
supply of data. Indeed, the foregoing discussion provides some hirtteeaoles of certain parameters
controlling the smoothness of canonical curgésnd the labeling allocation probabilitips We examine
these issues in more detail here. Section 3 discussed the roles of thetcatime parametes and
the labeling decay parametey, on both the global and local clustering behavior exhibited by the label
realizationL. ~ p. Here we focus on the effects of the priorg@f, canonical curve8*, and the precision
parameter on the determinacy of the labelidgand canonical curves'.

Suppose that we are interested in a representation that achieves dimastysieduction, with the goal
of inferring both canonical curves” and labelingL4, ..., L, for observed replicates, ..., Y,. In this
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scenario the canonical curves can be viewed as basis functions witthéteéators.,, . .. L,, providing
coefficients with respect to such bases. When the number of canonivalsé is small, the canonical
curves are expected to represent “canonical”’ patterns for the whldetion of curves. As noted in the
Introduction, the variance parameteplays an important role in the identifiability of the canonical curve
f*. Whenr is large, the learned canonical curves become very smooth but weatihgdishable. By
contrast, wher is small, the canonical curves are less smooth and more distinguishablér essiivective
posteriors cover different regions in the function space spannecthyutive collection. This phenomenon
is illustrated in Section 7.

¢1. also plays an important role in the identifiablity of the canonical species €diveWhen¢,, is
close to 0, as shown by Prop 2 and Prop 3, the hybridization (label swglchithin each individual curve
is discouraged — the model essentially insists on global clustering. If tive coflection can indeed be
clustered globally in terms of canonical curves, these are strongly idekifi@n the other hand, if the
curve realizations tend to switch often among the canonical curvesspomnding to largeé,, or canonical
curves are not very smooth, we observe that the canonical cureesneemore weakly identified. As
we illustrate in Section 7, our model is able to recover segments of locationscdimétt relatively few
switchings among relatively smooth canonical curves. In particular, simgatitis tend to be (correctly)
assigned the same labels, but it is possible that whole segment is incorreeligdaelatively to some
other segments.

Suppose, on the other hand, that we are less interested in inferring thbocanonical curves, but
more about the labeling realizations, . . ., L,, as a means for characterizing and clustering the observed
replicatesYy, ..., Y,. In this scenario, strong constraints can be imposed @pdn improve the iden-
tifiability of labels ;'s. In the image segmentation application we present, an image can be viewed as
being composed of different objects (grass, plants, buildings, animatsinfaces, etc), each of which is
associated with a level set corresponding to a (random) level of lightsityeiT hus, canonical curves
can be taken to be random constant functions. Furthermore, additiateal @pnstraints can be imposed
according to label value§l, ..., k}. The previous discussion on propertiegpoindq suggests that for
largek there is a natural ordering of label valugls 2, ..., k}. That is, locations near to each other have
high probability of sharing similar labels, i.e., labglsand j, such thatj; — j2| is small. It is natural
to assign more extreme ranges for priors to extreme labels suclardk. We could even specify that
E(0}) < E(65) < ... < E(6;). Note that such ordering constraints are not necessary to ensuré mode
identifiability, but they would be expected to improve the mixing for simulation-tbassterior inference.

6. Model fitting and inference
Using the bracket notation, the joint distribution associated with the modelntessat the start of
Section 2 is

n k

[T0YilLe, 65,057 x T 16106, 6] X [Lns ., Lalr,a] x [62] x [a] x [7] x [¢a] x [o]
i=1 j=1

In this expression we have implemented the usual marginalizatiopowéth q = ¢, [L1, ..., Ly|¢1, ] =
JTL [Lalp][plor, aldp .

In this section we develop an algorithm for fitting the model and for infereegarding the parameters
of interest. We use Gibbs sampling to draw froin, ..., Ly, 07, ...,60;, 0L, «, T, ¢g, 06| Y]. The updates
of parametersy, 7, ¢y, 09 are standard, see ,e.g., Duan, Guindani, and Gelfand (2007). Fomicah
curves, under a Gaussian process, the prior for végter (67 (1), ..., 07 (xy,)) is normal with mean;
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and covariance matrizgﬂaem. Let I;; be anm x m diagonal matrix whose-th entry isl(L;(t) = j).
The full conditional for@j has the form

. 1, < -
[9] |YVD o 7YTL7 le s 7LTL7 ¢97 09] ~ N<7_2AZIZ]Y; =+ (29;|0’9,¢e) 1MJ7A>7
=1

whereA = ((29;|09,¢>9)_1 + 7—% >ic Iij)_l'

We now turn our attention to updating label vectétsi = 1,...,n and decay parameter,. Due to
the alternative characterization of latent labBlsaptured by (3), one simple method is to directly sample
the latent variables; ~ H, whereH ~ DP(aFy, ). The label vector; is then obtained by thresholding
&;. Although the full conditional distribution fof; can in principle be obtained by the standard Polya urn
scheme, it is simple to observe that at each iteration one has to compute arabiéraam ofk™ terms.
To overcome this difficulty, a simple heuristic is to introduce an auxiliary varigble perturbed version
of ¢ by a small independent nois€; = ¢ + ¢, wheree ~ N(0,721I,,) and I,,, is anm x m identity
matrix. For smalh?, it is expected thaf; and¢; belong to the same thresholded hypercubes with high
probability. Thus, the label vectdr; can be obtained by thresholdigginstead of;. Vector¢; can now
be updated independently of the data via tlidy® urn scheme, whilg; can be updated conditionally
component-by-component via truncated univariate normals. The profbinthis approach is sensitivity
of the perturbation noise to the varying size of different thresholded hypercubes, especialgnwlis
moderate or large. Moreover, sampling over continuous and high-dinmehéent vectors and¢ could
be very inefficient and, as we shall see, is unnecessary.

Our approach relies on the characterizatio.pin terms of label vectorg; ~ q and the latent vector
n; fori =1,...,n. Furthermore, by the virtue of Prop. (3) (and its extension forrangee the Appendix),
the latent); can be easily marginalized so the overall mixing can be significantly improvehKE to our
choice of the Dirichlet prior, the Gibbs sampling procedure is now straighéia by applying the &lya
urn sampling scheme. Here, we have for, say, clirakr, that the conditional label distribution is

(L, = L;
P(Ly(21)| L1 (22), ..., Ly (xm), the resp o< ) Ci;n_l)N(Ylei)qL
=2
«
mN(Yl\9L1)Qx1,...,ccm(L($1)v s Li(zm)| oL, k).

The likelihood function undey is obtained via Prop. 3. This likelihood also provides means for updating
¢1, via a standard Metropolis step. One possible issue is that the approximattenlidelihood function

for q is not expected to be accurate for small valué.ah particular, the distribution function and relevant
conditional probabilities for the labeling procegsre not available in closed form. For the remainder of
this section we develop approximate inference methods for the latent labetiogspg for small k. We
illustrate withk = 2.

Turning first to estimation of the’s, we seek inference faf;, giveni.i.d. label realization&, ..., Z,
drawn fromq, observed values at locations, . . . , z,,,. We first consider the point estimation problem for
¢r. Suppose we have multiple curves, indexed by 1, 2, ..., n, observed atn = 2 locationsz; andx,
only. In this scenario, one can use a maximum likelihood method to obtain atemmsstimate fop

n
¢r = argmax,, >g H a(Zi(r1), Zi(z2)),
i=1
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where the d.f for £ = 2 is available in the closed form given in Proposition 2. The more typical sitena
however, is whenm much larger thar2 and the sample size is small. For simplicity of exposition,
suppose that = 1. How can one estimatg;, given asinglerealization of random curve evaluated atn
locationsy, . ..,z z = (2(x1), ..., z(z,))? Anintuitive approach is to maximize a pseudo-likelihood
for z that is obtained by taking the product of all pairwise likelihood functions. &itimn work indicates
that this is a good estimator (see Table 1 for an illustration).

Proposition 9. Suppose that = (Z(x1), ..., Z(x,)) is drawn fromq(¢7 , 2) via Fy: for somep] > 0.
Letr,, be the number of pairs @f;, z;) s.t. [|z; — z;|| < do for somedy > 0. Then, for

gbAL:argmaX¢20 H a(Z(xi), Z(x5))|9),

1<i<j<m

we have thatér, — ¢%| = O(y/m/rm) in probability.
Though the proof is provided fdr = 2 it can be easily extended fér> 2.

OneEdge MLE m=4 m = 36 m =100

n=1 N/A | 2.26 +2.55| 0.60+0.35| 0.51 +0.23
n=10 2.03+8.03| 0.64+0.43| 0.48+0.15| 0.51+0.06
n=20 257+7.90| 0.63+0.31| 0.51+0.09| 0.50+0.04
n=40 0.48 +0.30| 0.53+0.19| 0.51+0.05| 0.51 +0.04
n =60 0.53+0.20| 0.54+0.16| 0.50+0.05| 0.51 +0.03
n=80 0.52+0.33| 0.51+0.16| 0.50+0.04| 0.50 +0.02
n =100 0.49+0.16| 0.50+0.14| 0.49+0.03| 0.50 +0.02

Table 1: Mean and variance of the maximum likelihood estar{&dr one edge) and maximum pseudo-likelihood
estimates fop ;. n denotes sample size; denotes the number of locations in a equally spaced gii}irThe data
is drawn fromq(¢r, k) with ¢, = 0.5, k = 2.

Suppose now that;, is endowed with a prior distributiom(¢,) on a bounded intervad,, ¢o]. We are
interested in sampling the posterior distribution §or given values of the label = (z(z1), ..., z2(zm)).
We propose to use the aforementioned pseudo-likelihood to obtain whatrrveatéGibbs posterior”
distribution (Zhang (2006)) fop;, as

PorlZ) o< [ a(Z(w) = 2(w:), Z(x5) = 2(z)))|oL) 7 (6L). (8)

1<i<j<m

Here\ > 0 is an arbitrary parameter that controls the dispersion of the Gibbs postegan be shown
that the Gibbs posterior is very close to the “true” posterior in the senseltfdCk-Leibler divergence.

Proposition 10. Suppose thaZ = (Z(z1),...,Z(zx,)) is drawn fromq, equivalentlyFy: , for some
¢3 > 0, and that for any sufficiently small neighborhogd v) of ¢} , 7(u,v) > |u — v|" for somer > 0,
then under the true marginal generativg

B 75 08(PA(0112)/ PA(612)) = Op(1/m).

Next, we introduce a variational Bayes approach for inference adpouih particular, the proposed
sampling method for the decay parameter via the Gibbs posterior provides a direct motivation for
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approximating the distributioly using variational inference techniques for Markov random fields (cf.,
e.g., Wainwright and Jordan (2003)). LBtbe a subset of pair§(i, j)| 1 < i < j < m}. E could be
viewed as a collection of edges connecting the vertices. ., z,, € D to form a graphical structure.
Our strategy is to approximate the multivariate distribuédty (x1), ..., Z(x,,)) by a graphical model
distributiong defined as

as(Z(@1),. ., Z(wm) o [ a(Z(@), Z(x))). (9)
(i,4)eE

Then the conditional probability distribution for the labels is approximated by

a(Z(21)|Z(x2), ..., Z(xm)) o [T a(Z(21), Z ().
The following result shows thaj is the best possible approximation within a restricted class of graph-
ical models in the sense of Kullback-Leibler divergetizg||-).

Lemma 11. Consider a class of probability distributions 6 (z1), ..., Z(x,,)) € {1,2}™:
0r ~{Q: (). 2w ¢ [T (2w, 26},
(¢,5)€E
whereg;;’s are any function o{1,2}2. Then the distributioj defined in(9) satisfies
qg = argminQeQED(QHQ)'

From the above lemma, the more edges added té&'stte better the approximatiaipis for q, but it
is also more difficult to estimate the log-partition function

AE)=10g) " [ aZ(x:), Z(x;)).
Z (i,j)€E

Indeed, for a tree-structured graph(£) is a known constant while, in general, we can only obtain upper
and lower bounds.

Proposition 12. (a) The marginal distribution undeig is uniform.
(b) If E forms a spanning tree theA(fg) = —(m — 2)log 2, and
an(Z(x:), Z(x))) = a(Z(:), Z(x;)) for any (i, j) € E.
(c) Supposd’ forms a connected graph, ard, C F is a spanning tree, then

—(|E|—1)log2+U < A(0g) < —(|E| —1)log2 + V, where

U = > (flEo (Z(xi) # Z(x;))loga(Z(w:) # Z(x;)) + Ao (Z(x:) = Z(x;)) log a(Z(x:) = Z(ﬂﬂj)))
(i,j)EE—Eqg

Vo= > (QE(Z(QH) # Z(x;))loga(Z(zi) # Z(x;)) + ae(Z(z:) = Z(z;))log q(Z(zi) = Z(wj)))
(,j)EE—Eg

For a one-dimensional domaifl, we conveniently employ a tree-structured approximationgfan
which the set of(x;, x411) pairs form the collection of edges for= 1,...,m — 1, assuming that
r] < w9 < ... < x,,. For domains of two or higher dimensions, we also apply a minimum spanning
tree approximation, although more sophisticated methods can be employatlgiseeight and Jordan
(2003)).
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Figure 1: Evolution of posterior distributions at held-tadationsr = 2,4, ..., 40. Solid plots are true distributions.
Dashed plots are predictive distributions learned fronmtioglel.

7. Applications

We demonstrate the behavior of the Dirichlet label process prior using sedulata in Section 7.1.
Sections 7.2 and 7.3 look at a collection of progesterone curves and eticollef images, respectively.
7.1 Synthetic data. First we illustrate the fitting of the mixture model described in Section 2, where
the species samples are obtained by random switching ama@pgcies curves that are drawn from a
known Gaussian process on the real line. In particular, we specify 20 locations|xy, ..., z,;,] =
[1,3,...,39] while leaving out 20 other locatiors 4, . . ., 40 for validation purposes; forj=1,...,k
are independently drawn from a Gaussian procesg.;, ¢g, o) at locationsey, . .., z,,, whereu; =
—1+2(j—1)/(k —1). The label vectord,,, ..., L,, are drawn from label procesg which is drawn by
known ¢,. Specied, ..., 0, are constructed by lettingj(x;) = Gzi(t)(:ct). Finally, the data collection
Y1,...,Y, is obtained by mixingd; with an independent error process drawn fron0, 721,,). We
generatedh = 100 sample curves using = 4 canonical species curves. Parameter values for data
generation wereéy = 0.01, 09 = 1, ¢;, = 0.05, 7 = 0.1. For inference, we placed an uniform prior on the
label switching parametef;, ~ Uni[0.0001, 1], while keepingpy, oy andr fixed. Posterior distributions
for latent labels and canonical species curves were obtained by gutimerMCMC algorithm for 4000
iterations after a burn-in period of 1000 iterations. An examination of rgntreces suggested that the
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Figure 2: lllustration of canonical curve samples gener&iem the posterior in solid lines with squares. Figures to
the right describe the corresponding Gibbs posteriopiar

sampling algorithm mixed well.

Fig. 1 illustrates the evolution of the posterior distributions (in solid lines) at &hé-but locations,
as we move from location 2 to 40, the estimated densities obtained from our samiplis interesting
to observe how the clusters initially “move” toward each other, then split inteerolusters, and merge
again. The estimated densities (in dashed lines) approximate the true densitieShe dependence in
these distributions is driven by the smoothness ofitbanonical species curvés (j = 1,. .., k) serving
as the bases for our curve collection, as well as the label switching ptarafme

With ¢ fixed, ¢1, plays a central role in the identifiablity of the canonical species cutye¥hen
¢y, is close to 0, the curves hardly switch their labels, the curve collectionsecagiobally clustered by
the canonical curves that are strongly identifiable. On the other hareh) syhis large, the curves tend
to switch often among the canonical species curves which become moré/waakified. In general,
our model is able to always recover segments of locations that admit rfdiwve switchings. Fig. 2
illustrates this phenomenon with data generated fkom 2 canonical curves, with the trug, set to be
0.1 (top) and 0.5 (bottom figures). Note the corresponding Gibbs pasterig; which was obtained
from our sampling algorithm. In both cases, a uniform distribution pri@[0.0001, 1] was placed on
parameters;,, while ¢y = 0.005,09 = 1,7 = 0.1 were fixed. For smaller value of trug, (top figures),
the posterior was well-concentrated around the true value. For laggéoottom figures), the posterior
mass shifted to the right, because the canonical species curve estimatesyeak identifiability) tended
to over-switch between the modes.

7.2 Progesterone modeling.We turn to an application of the Dirichlet labeling process for modeling
Progesterone data (cf. Brumback and Rice (1998)). This data setissihie natural logarithm of the pro-
gesterone metabolite, measured by urinary hormone assay, during a noyaibljor 51 female subjects.
Each cycle ranges from -8 to 15 (8 days pre-ovulation to 15 days posttmn). There are a total of 88
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Figure 3: Monthly PGD cycle for contraceptive group (solittk) and non-contraceptive group (dashed lines). Solid
lines with squares are the mean estimate of canonical curves
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Figure 4: Left: Mean of estimated labels during the whole thiyncycle. Right: label means for pre and post-
ovulation periods for 88 individuals (plots with x’s and sqges, resp.).

cycles; the first 66 cycles belong to non-contraceptive group, theimerge22 cycles belong to the con-
traceptive group. This grouping is of counseknownto our analysis. See Fig. 3 for the illustration. This
data set is interesting as it allows us to compare our model to a more simplistic ¢lisdtating approach.
To appreciate the noise and overlap of the two groups, we also congidedified data set in which the
curves belong to the contraceptive group are down-shifted by 2 (ge6)F

We focus our analysis to the cake= 2. We envision that there are two canonical curves providing
bases for random label selection (switching). Due to the apparentanuiseverlap of the two groups, we
placed a prior on the switching parameter ~ Gam(5,2) so as to allow possible duplication of canon-
ical curves in certain local segments. Canonical curves were dramnrfrean-0 Gaussian process with
a covariance matrix using decay parametgr= 0.005 andoy = 1. We fixed the precision parameters
7 =1, a = 1. Adiscussion of the sensitivity of these parameters is included in the s&&praples from
posterior distribution were collected from 5000 MCMC iterations (discarthegfirst 1000). An exam-
ination of running traces suggested very fast mixing. Fig. 3 shows the pwamate for the canonical
curves. (The quantiles are not plotted because the posterior distribaticarionical curves are tightly
concentrated around their means). It appears difficult to cluster thdatatalividual locations without
taking into account the global smoothness of the whole curves. With our rtfuglektimated canonical
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Figure 5: Heatmap illustrating propotion of equal labelsffairs of replicates for the whole curve (left), and a curve
segmenf20, 24] (i.e.,last 5 days of the monitored cycle) (right).
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Figure 6: Analysis applied to the modified PG data set. Lefeahl estimate for the canonical curves. Right:
Heatmap illustrating proportion of equal labels for paifsaplicates for the whole curve.

curves appear to match the general behavior of the two groups fairly\Welbbserve that the two canon-
ical curves are virtually indistinguishable in the early part of the cycle.abt, fthe behavioral patterns
between the two curves become more distinguishable only in the post-ovulatiod.pFig. 4 shows the
label mean for the whole monthly period for each of the 88 individual cydlée last 22 cycles (contra-
ceptive group) register generally higher label means than the first@@scyT his is also demonstrated by
heatmaps in Fig. 5, which illustrate the proportion of equal labels for paicamk replicates. Although
global clustering is apparently not possible, one can observe the losétring effect by zooming in to
the curve segment corresponding to the last 5 days of the menstrual ddealso applied our analysis
(using the same prior specification and parameter initial values) to a modit@detan which the curves
belong to the second group were down-shifted by 2. Global clusterisgmea easily achievable (see
Fig. 6).

We now turn to a discussion of the effects of several parameters ofshtardhe identifiability of the
canonical curves (see Fig. 7 for illustrative results). We observedhat, gets smaller, the model insists
on increasingly global clusters (and less label switching for each régliessulting in separable canonical
curves that do not intersect. For this data set, these separable climates do not reflect the behavioral
pattern for each of the two groups, but act rather as a pair of basiestor representing the curve
collection. On the other hand, large offers more flexibility by allowing more complex canonical curve
interaction. For instance, it is possible to obtain well separated clustefegsin one local segment and
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Figure 7: Top row: effects of = .1,1,2. Second row: effects af;, = .01,1,2. Third row: effects ofpy =
.001, .005, .02.

Figure 8: Effects ofy;, = 0.5,0.05,0.01 on segmentation for the leftmost image.

almost duplicates in another local segment. Turning,tast gets smaller, the canonical curves become
more distinct (and less smooth) to expand the coverage of the functioe. spache other hand, large
results in weakly distinguishable canonical curves. The robg a$ to dictate the smoothness of canonical
curves. Finally, the influence of (not shown here) on the number of clusters induced by label realizations
is less pronounced than thatotnd¢, for this data set.

7.3 Image modeling.In this section we demonstrate a possibly surprising application of our modal to
image segmentation task. Our data set consists of 80 color images from abficneage database (Winn,
Criminisi, and Minka (2005)). These images are of sldex 40. Although these images can be loosely
grouped into different categories (grass fields, plants, buildingsesplagic), there are often multiple
objects of different types in the same image. It is thus very natural to viaw #sehybrid species curves.
Each image is represented by a surface realizafjofor i = 1, ..., 80, whereY;(z) is the color intensity

of the locationr € D = {1,...,26} x {1,...,40} in thei-th image. The color intensity consists of three
numbers in[0, 255] (corresponding to the red, green and blue scales). Accordingly, nte ¥(z) =
[V(z),Y?(x),Y;3(z)]. We introducek = 8 canonical species curves, each of which is represented by
three constant random functions rangindg(n255]. (Introducing more canonical species, which we did
for instance withk = 12, almost always yielded more than one duplicate canonical species tuwes
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Figure 9: Examples of segmented images (uging= 0.1).

write 07(-) = [9;-‘1(-),0;-‘2(-),9;‘-‘3(-)] for j = 1,k. The three dimensions are treated independently, by
letting ;" (z) = 9};_ (m)r(x) + €ir.z, Wheree; .., is independent zero-mean normal noise with variarfce
foranyi=1,...,n;r=1,2,3;z € D.

As described in Section 4 we introduce additional constraints into the primtsgte for the canonical
curvesd*. In particular, we placed a (truncated) normal prior with mgani0 10] and variancd 0213 on
67, and a normal prior with meda40 240 240] and the same variance 6j. That is, we anchored the two
extreme labels with the two extremes of the color scale (black and white cofdirs3maining canonical

species were given a relatively non-informative prior; for 2,...,k — 1, 67" w (t5,5) - Ljo,255)
wherep; = 128. Forallj = 1,...,k, we fixedo; = oy, wherea@‘2 ~ Gam(ay,bs). We seta, = 0.4

andb, = 0.001. For precision parameterwe letr—2 ~ Gam(a,,b,), wherea, = 0.1 andb, = 0.025.
We set the concentration parametet 1.

To complete the prior specification, let us turn to the latent labeling procesardq. One possible
approach is to endow with a single Dirichlet labeling process prior for the entire domain (as in the
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previous applications). For the image data set, global clustering is geneoaldf interest (because it is
unlikely that two images have exactly the same labeling everywhere). On tiehathd, label sharing at
smaller scales (not to mention the pixel-level scale) is much more likely due to tierecce of similar
objects in similar scenes. To encourage this sharing we decomposed egehimtaafixed and disjoint
patches of size x . Conditionally ong, the labeling processgsdefined for disjoint patches are mutually
independent and follow the Dirichlet labeling process specification asdefVe experimented with the
choices- = 4, 6, 8 and received comparable results. Finally, the latent labeling pregegs £ = 8) was
specified for the whole domain using different choices pf= 0.5,0.1, 0.05,0.01.

The MCMC algorithm was run for 200 iterations. Samples obtained from thé $8siterations were
used for image segmentation. The segmented images were obtained by gssigranh image location
the light intensity of the MAP estimate of the canonical curve at the same locak@n.9 provides
examples of representative segmentation results. Fig. 8 illustrates thes effég, on the segmentation
results. Forpy, large, the group allocation at each location is highly independent, resultinrggmented
segmentation. Ag; decreases, the segments become increasingly coheregi; Bascomes too small,
however, nearby locations are forced to share the same group. fruotiee patches from different images
are also encouraged to cluster, resulting in increasingly “abstract” sgagme

8. Conclusions

The Dirichlet labeling process provides a highly flexible prior for modelinliections of functions
(curves, surfaces). Though driven by just a few parameters, therilationships between these param-
eters are complex with regard to process behavior. We are currentyriegpmultivariate extensions of
the labeling process, the modeling of label clustering at random spatieésaa well as the incorporation
of prior knowledge of canonical curves. From a practical viewpoins, @#lso worth comparing the func-
tional clustering arising from the Dirichlet labeling process prior with thataf model-based approaches
such as those mentioned in the Introduction. Investigation to illuminate advafdegivantages offers
potential future work.
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9. Appendix

Proof of Prop. 1. This result is straightforward using standard properties of Dirichletildigton.

Proof of Prop. 2. We derive the result for a stochastic procéss~ GP(0,01,¢1) (the Proposition

states the result far;, = 1). From the definitiong,, .,(1,1) = P(n(z1) > 0,n(z2) > 0). Note that
1

(1), (22)) ~ N(0 0, [ i o b. By a change of variables; = f[ : }][nm) ()T,

we obtain that) ~ N ([0 0], [ AOI ;)2 ]), where); = U% + p12 andig = a% — p12. Then
1 _ - o
P(n(z1) > 0,n(z2) > 0) = RN, /( . OeXP—(W%/Al + 15/ A2) [ 2diy T2
n(z1),m(x2)>

Another change of variablesify = rv/ A1 cosa andis = rv/Assina) and some elementary calculus
yields the desired result.
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Proof of Prop. 3 We derive the result for stochastic procdssv GP(0,01, ¢1) (the Proposition states
the result foro;, = 1). The proposition is concerned with an arbitrary collection of indicgssuch
thati,j € (a1k,azk) for given0 < a3 < as < 1. By definition,c; = o, ® 1(j/k). By Taylor
approximation, it is simple to obtain that

¢ =cj_1+ — (\/ onores/*L + o(1)). (10)
Furthermoreg; = —c,—; andey, o = 0 if & is even. Using a Riemann sum approximation, we have:
P(Zy=i,Zy=j) = P(ne (Cz 1,6), 12 € (¢j— 1,cj))

+ 2p12m1n2
n3) — 2p e g,

/ / eXp— 771
2
27n/aL P2, 2(a} — p1y)

20,2, .2
o1 (ci +¢5) — 2p12cicy

= —(C ci-1)(¢j — ¢j—1) exp — (1+0(1))
Sy —y 30—l
2
@o) 1 o7 (C + ¢ )/)12 2p1207.Cicj
= E O T (14 o(1)).
ot — p3y ( o1 — pla)o

By properties of the multivariate Gaussiap|n = u1 ~ N(u1p12/0%,0% — piy/0?). SO

¢ —7L1/20'L i — ’U,1,012/02
P(m =1, >'—/ 1—<I>JL>du
i 2= [ (1o

—c2 /202 L o 2 L e 2
et /207 cj — cipia)o (10) 1 cj — cip12/o
= (ci —cim1)(——=— <1 - @(]222]:)>) =7 (1 - ‘I’<]222L) + 0(1))'

oLV 2m o7 — pi2/07 o7 = pia/o7

The above result can be used to obtain conditional probabilities (e.g. téopadation). For instance, for
i,j1,J2 € {1,..., k},

2 2
P(2(a2) € Gl 20an) = i) = 0Dy 5250 ) (000000 4 o),

o} — p1a/0F 0 — Pia/oF
Finally, it is worth mentioning that a8 — oo, o(1) — 0 uniformly for all 4, j in the specified interval,
whereo(1) does depend ot and¢y..
Extension of Prop. 3 tom > 2 locations. The results of Prop. 2 can be easily extended to an arbi-
trary collection of locationg, ..., z,,. Let A denote the inverse covariance matrix for random vector
(n(x1),...,n(xm)). For anym-tuple (ji,...,jm) € {1,...,k}™ such that none of;, diverges too or
— 00,

. ) 1
P(Z(z1) = ;- Z(2m) = Jm) = 1 (Bj e (S5 ) + 0(1)), (11)
whereo(1) — 0 uniformlyfor all such tuple(ji, ..., j»), and
Rj, o jm (Cjis oo €5,,) = o (det A)1/2 exp Z CQ;( Z Cj, Cjo Ast- (12)
=1 s<t
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Given the d.f. forq, it is simple to obtain conditional probabilities, e.g., for latiglr) at locationzy
given remaining labels (z2), ..., Z(z,,). Letting A denote the inverse of the covariance matrix for
Z(x2), ..., Z(xm), we have

, , ) o (det A)/?

P(Z(x1) = j1|Z(22) = jo, - ., Z(¥m) = jm) = WX

eXP{C%(l/(?U%) —An/2) =i Y ¢iAu - %[Cﬂ cim] (A= A)eja ... ij]} + o(1/k).
t#£1

Ci1 — .- pimlAlc; ...cjmT
P(Z(“)>‘7'1'Z(“):”"“72(”3’"):“):1‘@< ? [[ij . 1];{&%[;12 pl]1)+0(”'
o7 — . Plm e Plm

Proof of Prop. 4 Since#* and L are independent, we have

E(0(z1) = 0(22))* =E Y Paya (i, j2) (0], (21) — 0}, (22))

J1,J2=1,....k

k

= D Guras (1, 42) (B (21)* + B (22)* — EO* (21)EO" (22)) + Y Gy (5, 5)E(O" (1) — 07 (w2))*.
J1#j2 Jj=1

The second summand goes to 0 bec#ise mean square continuous. It remains to show that foranjy

such thatj; # j2, Az, 2, (J1,72) — 0 aszy — z1. Note that if /' is a Gaussian processP (0, 0y, ¢1.)

andk = 2, this probability is available in a closed form given by Prop. 2: fR0¢ j2, qu; 4, (J1,J2) =

L arccos(1/2 + p12/202)/2 — 0 asxy — x; — 0. More generally, suppose thgt < j». Recall

the construction o¥Z via the auxiliary random function ~ F. Fix an arbitrarye > 0. P(Z(x1) =

g1, Z(x2) = jaln(z1) < ¢y —€) < P(n(xg) — n(x1) > €) < E(n(z1) —n(z2))?/e® — 0 aszy — a1,

due to the mean square continuityrpfNow lettinge — 0, we obtainP(n(z1) € [¢;, — €,¢j,]) — 0. So,

asry — I1

Qi1 22 (J1,52) < P(n(x1) € [c5;, — €, ¢5y]) + P(Z(w1) = j1, Z(x2) = ja|n(z1) < ¢j; —€) — 0.

Proof of Prop. 5.
To simplify the notation in the proof we omit the subscripts. .., z,,. The equality in distribution
implies the equality of moment generating functions. Thus, for@any . .,t,,) € R, we have

> p(jl,...,jm>exp(;et<xq~>u+;f*2Zt?) -/ exp(;e<xr>tr+if2th)audmm(dﬂ.

(F15-23m)
(13)
LetjT, ..., j;, betheindices of the canonical curves that have the maximum values atifseatio. . , z,,,

respectively. Divide both sides of the above equatiomtq:y[ dor 93} t, + —l-%T*Z > tﬁ] to obtain

PG di) - S p(jl,...,jm>exp{2<e;:<xr>—9;:%}

(J15e-2dm.) r=1
= /exp{

(0(z,) — 0% )t + %(72 > tz}al(de)m(m).

m
r=1
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Note that for any- = 1,...,m, lettingt, — +oo leaves the left hand side positive and bounded while
the right hand side tends to 0 es, unless under the pridr; x 71 the only events with strictly positive
probabilities are eithedy = {7 = 7*,0(z,) = 0}.(z,) forall r = 1,....,m}or Y, = {r < 7°}. It
follows that the RHS can be written as

m 0z,
P+ [ exp{ 30—t = 5072 = 7200, = =0 L6716 (do)m ),
2 r=1

-7
whereR(0,T) = exp ﬁ S 0(x,)?. Lett, — oo forr = 1,...,m, and use the assumption on
function R, we obtain that’c, x, (V1) = Pjz,...jz, X d-. Now substract the tuplgiy, . . ., j;,) from the
moment equality equation and carry the same argument to the remaining termsnadbtaG,, .. 4.,
andmy = 0.

Proof of Lem. 6.

This lemma is a multivariate version of a result of Ishwaran and Zarep@mifha 2). The key to the
proof is to exploit the distribution of the weight vect@s,, ... ... (-)), which is ak™-dimensional Dirichlet
distribution parameterized by, . ... (j1,--.,Jm) Where(ji,...,5m) € {1,...,k}™. It can be shown
that, by examining the proof of Prop. 3, there exists a constant) such that for any: there are at least
(k/2)™ tuples of the forn{j, . . ., 7, ) Whose associategl probabilities are greater thank™. Using this
fact, and choosing > 2k*, wherek* is the true number of canonical curves used to genggaiecan be
verified that Ishwaran and Zarepour’s proof goes through henehls
Proof of Lem. 7.

First, let 7, _ be a subset aof,, , where the associatedis fixed to a constant ifr,,, M/}, and the
support of the 7a’ssociat€eﬁgghwxm lies entirely in[—ay,, a,]™. We obtain the bound of this density class
first, and then relate it to the entropy of the bigger class.

We note the following bound of,; distance for two univariate normal densities (from Lemma 1
of Ghosal, Ghosh, and Ramamoorthi (1999)):

[9(0(21), 7) = $(0(22), 7) Iy < (0(21) — O(x2))/7-

To extend this bound to the product of normal densities, we exploit the foigplound betweeli; and
the Hellinger distancé (which is defined agh?(f, g) = [(Vf — /9)):

217 — gl < 22(£,9) < 17 — gl

For product of densities, we have

([ ]]e) =1~ /(H fig)'? =1- H/(figi)1/2 =1-[J( - r(fi.9:))-
=1 =1 i=1 i=1 i=1
As aresult, ifl(z;) — 0(z;)| < dforalli=1,...,m,
ITT ¢, 7) = [T ¢@), )T <40t = [0 = (0(x:) — 6(:))/27) < 2md /7.
i=1 i=1 i=1

If 160 = 6]|oo < 6%7/2m andr > 7, then|| T, ¥ (0(z), ) — [T, »(0(x:), 7)1 < 6.
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Next, note that the hybrid species curves (vectérs) parameterized in terms of only canonical
vectorsf*. That is, instead of needing” mean variables of th#™ mixture components, we need only
km mean variables. This can reduce the size of the coveringi%T, which we now specify: LetV,
be the smallest integer greater thaw, / (627, /2m) = 4a,m/(7,6%). Divide [~a,,a,] into Ny equal
intervals and collectVy midpoints. At each locatior;, i = 1,...,m there are only possible values
for 0(z;). Combining across locations, there ar(ajzo)m < NE™ ways of choosing:™ hybrid curves
(vectors) for thek™ mixture components using the midpoints constructed. Thus, we have obtatred a
covering for the set of density products of the foftp = {]]", ¢/(Y (2;)|0(x:), 7)|0 € [—an, a,]™} that
has no more tha}™ elements, and (6, Py) < km log No.

Let N = k™ andPy = {(Py,...,Pn) : P > O,Zf\il P; = 1}. As proved in Lemma 1 of Ghosal,
Ghosh, and Ramamoorthi (1999) (GGR), underlthmetric, that/ (5, Pny) < N(1 + log 1+5) Further-
more, it is simple to observe that one can construgi-aovering for]—"“" » by combining each element
of the §-covering forPy with an element of thé-covering forPy-. ThIS |mpI|es that:

J (26, Fen ) < J(6,Pn) + J(d, Py). (14)

n,k,T

The final step is to relatd (24, F:n ) to J(24, F, ;). Following GGR we use another intermedi-

n,k,m
ate classF, ", that consists of alff € 7, where the support of the associat@q, ... .,, lies within

[—an, an|™ Wlth probability at least —d, and the varianceis fixed. From GGRsLemma27(35 Fond ) <

n,k,T

J(6,F ). Following GGR's Lemma 3, foa,, > M/+/3, one can obtain thaf,, ; C J—“za"’Qm‘s Com-

n,k,T

bining these with (14)

an7

1+ mé

J(6m8, Fp ) < J(6mé, F2or-2m0) < J(2mé, F2% ) < k™ log

n,k,Tn, n,k, T,

an
kmlog(1 )
+ kmlog(1 + nm(52)

Proof of Prop. 9.

LetD = {||a; — z;||[1 < 4,j < m} andpy(d) = 1 arccos \/1/2 + e=94/2. Letn*(d) (n~(d), resp.)
be the number ofz;, z;) pairs such thatz; — z;|| = d andn(z1)n(z2) > 0 (n(z1)n(z2) < 0, resp.) Let
n(d) = n*(d) + n~(d). Note thatn(d) is independent ofy. The maximum pseudo-likelihood estimator
can be written as

gbAL = argmaxs Z nt(d) logpg(d) +n~(d)log(1/2 — py(d)).
deD

For any¢,d > 0,0 < py(d) < 1/4. From the definition of;SAL,

> nt(d)logpy, (d) +n~(d)log(1/2 —p, (d) > > n'(d)logps; (d) +n~(d)log(1/2 — py; (d)).
deD deD

Due to the concavity of logarithnipg “3* > (log u + log v)/2 by Jensen’s inequality. This implies

1 —pg (d) — pg; (d)

™ (d) og Py, (d) + pg; (d)

+n~(d)log > 0. (15)
deD 2pg; (d) 1 —2py: (d)
P (d)+pyx (d) 1—pg(d)—pyx (d)
It is simple to see that botlog TWL) andlog Tm are absolutely bounded by some con-
L

stantM > 0 for any¢ > 0. From Prop. 2En™ (d) = 2n(d)p¢z (d) andEn~(d) = 2n(d)(1/2 — pg; (d)).
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Applying McDiarmid’s inequality, for any > 0 we obtain

P(sup
$>0

b Pe(d) +poy, (4)
Z(n (d) 2n(d)p¢;(d))> log 2p5; (d)

deD

1 —pg(d) — pgr (d) —4€?
> < _
1~ 2py: (d) ‘—Q—%mmman2(m

+ (n_(d) —2n(d)(1/2 — pgs (d)) log
Combining (16) and (15),

g

pg, (d) + pe; (d)

> —2n(d)pg; () log

deD 2p¢2 (d)
1 =pg, (d) = pg; (d) —4¢?
—2n(d)(1/2 — pgs (d) log ld’j 2o d)L ’ > e> S 2O e
L

Th d d)log e l? 1/2 D)log 2D N _ Opm) i
us, >_gep n(d) | pg; (d) 8 by [@tpy: (@) + (1/2 — pg; (d)) 8T, @ py @ ) p(m) in g-

probability. Note that fotog z < 2(y/z — 1),

2pgy (d) (Do 1 —2py: (d)
2, (@) + pey (@) T 2P oe T G @

(d)+p o (d 1—p - (d) - py (d
> 2p¢z(d)(J p%;;ﬂ(];?( i 1> —2(1/2 —pqﬁz(d))(\/ Zl)¢i(2;¢z(l;(§L( ) 1>

pg: (d) log

_ <\/p¢z(d)ﬂ;%;(d)_ p¢2(d)>2+<\/1_%(d;_%?(d) —\/W)Q

(05, () — po (D).

For any¢ € [0, ¢o] andd < dy, it is simple to verify that there exists a constéit> 0 that depends only
on ¢ anddy such thatps(d) — pg: (d)| > Colg — ¢7|. Asa result)¢;, — ¢7| = Op(y/m/rm), Where
rm IS the number of pair§z;, ;) such that|z; — z;|| < do.

Proof of Prop. 10.Let Z = (z(x1), ..., 2(z)). Denote byP* the joint distributionP; x Py, wherePy
denotes the Gibbs posterior giveh and Pz the “true” distribution generating (i.e., under trues; ). By
Markov’s inequality, for any,,, > 0,

v

Pr(log P1(¢7|2) —log Pi(¢]2) = €m)

131(¢}§\Z)>A

= P\(exp(A(log P1(¢%|Z) —log P1(¢]2)) > exp(Aem))) < exp(—Aem)EPx( P (4] 2)

= eeo( e [ (P12 TTa(e(@), 2(x)) 7 ($)do
= exp(Aen) [ <P1<¢\Z>> T T a(z(w). 2(z;)Pr(8)dd

(e, LACED. 20 (o)) o - TTa((e), 2a)[61) Co
T TG ), 2(w;) m(0)do " T a((@:), 2(x)) (@) dg
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whereC; = [(m(¢%)/m(¢)) d¢ is a constant. Let

Ap(e) ={Z : sup
$=>¢1

o8 [ Ta(a(20).2(07) - Bzlog [l ()| = e

By McDiarmid’s inequality, Pz (A, (¢)) < Qexpi for some constand/ > 0. Applying

m(m—1)M?2
union bounds, under the joint distributid?f we have, for any,,, > 0,

P*(log P1(¢7|2) —log P1(4]Z) = €m)
) C1ITa(z(w:), 2(z5)|¢p)
J T a(z(zi), 2(x;)) w(6)de
Crexp —A€m — Om)
(@ - Tog [Ta(=(m), 2(xy)) = log [Ta(=(z1), 2(@)|5%) — o)
Cyexp —A(em — Om)
76 Bz log [al=(w1), 2(27)) = Bz log [[a(=(we), 2(2)16%) — bm/?)
= Py(Ap(6/4)) + —— LK M em — Om)
mOm ¥ 2GR G) = h(6E) — omf2)

where we definé,(¢) := Ezlog[[a(z(z;),2(z;)). Letn, be the number of pairgr;, z;) such that
|z; — x;|| = d, andD be the set of suctl. For anyy > ¢, andd > d;,

h(67) — h(@)] < Calep — ¢3| D nad

deD

< Pz(An(6m/4)) + Ez {exp(—)\em

A6 /0)

A0 /)

< PZ(Am((Sm/4)) +

for some constants > 0 that depends oy, d;. From the assumption on the prioy

* . * Om Om '
() h(¢y) — h(d) < 6,/2) > W(Gﬁ- ¢ =Ll < 56, Zdndd> Z(202 Zdndd> '

Thus we obtain

—5%1 Cl exp(—)\(em — 5m))(202 Zd ndd)T
4m(m — 1) M? or

Letd,, = en/2 ande,, ~ m, it follows that underP*, log Pi (¢} |Z) — log Pi(¢|Z) = Op(m), which
means, 575 log Ijil(fq:ﬁlzz)) = Op(1/m).

Proof of Lem. 11. (sketch)Using standard calculations for exponential families, for each pair oksgalu
(u,v) € {1,...,k}?, taking the derivative oD(q||Q) with respect tay;;(Z(z1) = u, Z(z2) = v) and
setting to 0 we can easily obtain the desired result.

Proof of Prop. 12. (sketch)(a) The proof proceeds by induction. The result clearly holdsifer 2. For

m > 2, assume that, corresponds to a leaf node and Iét= E — {z}. It is simple to show that the

marginal distribution generating the remainimg— 1 nodes follow the form

P*(log Pi(¢7,|Z)—log P1(¢|Z) > €m) < 2exp

2

Ap(Z(x2),... Z(em)) = Y @p(Z(x1),.... Z@em) o [ ai(Z(w:), Z(x;)),

Z(z1)=1 (i,j)EE’

so, by induction, it has uniform marginal at each single node correépgtozs, . .., z,,. Apply the same
step to another subtree to obtain that the marginakfar; ) is also uniform.

28



(b) The proof for the first result is straightforward by induction basedhe following fact:A(F) =
A(E'") +log 2. The second result is a known fact for tree-structured graphicaélsod

(c) To understand the behavior 4f it is useful to interpret it as a function of parameferd(#) from
now on, via

4 £ 2)
0;; = lgq(Z(m): Z2(z)) for (i,j) € E ; 0 otherwise,
O = {(0i5)|1<4,5 <m},
as(2) = exp{ S 0,17 <xz>¢z<x]>>—BE<e>}
(i,7)EF

B(g) = logZeXp Z 0i1(Z (x; #Z(%))}
Z

(i,J)eE

Ar) = Bs)+ Y logsa(Z(x:) = Z(x).

(i,5)eE

As a standard fact of exponential familig3,: R™("~1/2 _ R is a convex function with respect ;.
In addition,Vy, B(0r) = ar(Z(x;) # Z(z;)). Due to the convexity, we have:

B(0r) = B(g,)+ (0p — 0r,)Ve,B(05,) and
B(QEO) > B(@E)+(9EO—9E)V9EB(9E).

These inequalities lead to the desired result.
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