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Abstract: We consider problems involving functional data where we have a collectionof functions, each viewed
as a process realization, e.g., a random curve or surface. For a particular process realization, we assume that the
observation at a given location can be allocated to separate groups via a random allocation process, which we name
the Dirichlet labeling process. We investigate properties of this process and its use as a prior in a mixture model.
We develop exact and approximate representations for the labeling process, analyze the global and local clustering
behavior, clarify model identifiability and posterior consistency, and develop efficient inference methods for models
using such priors. Performance is demonstrated with synthetic data examples, a public-health application, and an
image segmentation task.
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1. Introduction
A recurring theme in the nonparametric Bayes literature has been the development of mixture models

based on Dirichlet processes (DP) (Ferguson (1973); Sethuraman (1994); Ishwaran and James (2001)).
These models have proved to be useful in applications that involve clustering observations into distinct
groups; the dependence of different groupings can be achieved viathe formalism of dependent Dirichlet
processes (e.g., MacEachern (2000); DeIorio, Muller, Rosner, and MacEachern (2004); Gelfand, Kottas,
and MacEachern (2005); Teh, Jordan, Beal, and Blei (2006)).

In this paper we are interested in mixture modeling for functional data ( Ramsayand Silverman (2002,
2006); Ferraty and Vieu (2006)). From the viewpoint of functional data analysis we are given a sample
of n functions, surfaces or curvesY1, . . . , Yn overRd, each viewed as a realization of a stochastic process
Y . The curves are observed at a common set of locationsx1, . . . , xm ∈ D, whereD is a subset of
R

d.This setting is natural in many applications: an image is a surface of light intensityon R
2. The ocean

temperature at a location is a function of depth. The monthly progesterone level of a female subject is a
function of time.

The primary objective here is to examine clustering of the set of curves. Formalizing the notion of
clustering of curves raises several interesting challenges. First, we envision Yi as anoisyversion of the
curveθi. Theθi’s are assumed to be smooth (at least continuous) and clustering is considered with regard
to these latentθ’s. For instance, it is easy to ensure mean square continuous realizationsusing a Gaussian
process with a suitable covariance function (see, e.g., Stein (1999)). Ofcourse, introducing noise raises
a trade-off issue. With too much noise, oneθ can explain all of theYi’s - one cluster; with too little
noise, eachYi requires a distinctθi - no clustering. Second, we can envision a notion of local clustering,
by clustering curve realizationsθ1(x), . . . , θn(x) at any locationx ∈ D using a DP mixture. We can
envision global clustering,θi andθi′ identical for allx ∈ D, and, possibly, attempt to formalize notions
of “partial” clustering. With smoothness for these functions, the groupingsat locations close to each other
are expected to be more similar than those at distant locations. In other words, there is an uncountable
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collection of dependent DP mixtures, one for each location, with the dependence regulated by the inherent
spatial structure. Such clustering would be viewed as “local”. Alternatively, one can assume that the
spatial dependence is regulated by, say, a Gaussian process (GP) onD. For instance, a simple approach is
to allow random curves to be drawn from a Dirichlet process with a GP as base measure (Gelfand, Kottas,
and MacEachern (2005)). However, this approach is limited by the discrete nature of DP realizations:
conditional on the DP atoms, a random curve is either a replicate of one of a countable set of curves atall
locations inD, or not at all. Evidently, this is “global” clustering.

Our approach assumes that the collection of curve realizations can be represented in terms ofk “canon-
ical” curves drawn from a stochastic processG0, but each realization can be expressed as a hybrid species
– random portions of the curve may belong to different species. Canonical curves provide the basis for
representing a curve in terms of disjoint segments with distinct behavior (in terms of, e.g., smoothness and
monotonic properties). In certain applications, such as image modeling, a canonical curve might simply be
a (random) constant function that represents a corresponding level set in the image. The notion of hybrid
species curves has been explored in various contexts, including text analysis and genetics (Blei, Ng, and
Jordan (2003); Pritchard, Stephens, and Donnelly (2000)), as wellas in the context of spatial and func-
tional data (Duan, Guindani, and Gelfand (2007); Petrone, Guidani, and Gelfand (2009)). In particular, our
approach is based on the hybrid Dirichlet process mixture model first introduced by Petrone, Guidani, and
Gelfand (2009). Implicit in their modeling is a latent group allocation process,which we call theDirich-
let labeling process. This labeling process, which we now denote byp, allows randomlocal allocation
to one of a collection of species curves. Operating formally, we work with finite-dimensional Dirichlet
processes (Ishwaran and James (2001)) wherep is a random probability measure on{1, . . . , k}D that is
drawn from a Dirichlet process via a base measureq (i.e., p ∼ DP (αq)), whereq is also a probability
measure on{1, . . . , k}D. Explicitly, we mean that for any finite set of locations,{xj , j = 1, 2, ..., m},
p andq are probability distributions on akm dimensional simplex such thatp|q ∼ Dir(αq). To allow
spatial dependence of random allocation,q is constructed via discretization and copula transformation of
a latent Gaussian process, which essentially regulates the random allocation. Lettingk → ∞, it can be
shown that the marginal distribution of the curve (at each location) tends to the marginal drawn from a
Dirichlet process mixture (Petrone, Guidani, and Gelfand (2009)).

The novel contributions offered here are the following. First, we undertake a detailed investigation
of the Dirichlet labeling process model that provides a random label for eachθ curve at each locationx.
The labels are dependent within a realization of a curve and, through the Dirichlet process, can introduce
clustering of labels across curves. We illuminate properties of this proposed process, develop both exact
and approximate representations of the labeling processes, exact calculation when only two labels are
allowed and approximate calculation when a large number of labels are allowed. Then, we investigate
the overall mixture model. We clarify the identifiability of the mixture distribution, building upon results
from Ishwaran and Zarepour (2002) that broaden the classical work of Teicher (1963). We also discuss
consistency of posterior inference under the overall mixture model, extending results in Ishwaran and
Zarepour (2002). Here, the key issue is howk/n behaves asn → ∞. For any finite number of locations
m, the needed asymptotic rate iskm = O(n). However, our practical interest resides in the case wherek

is small relative ton, where we can represent a large number of curves with a small number ofcanonical
species. This, in turn, leads to analyzing the local and global clustering behavior in the overall mixture
model. Lastly, statistical inference with the latent labeling process is expensive with a large number
of local sites and clusters. We offer computationally efficient inference methods by proposing a model
fitting strategy using Gibbs sampling that employs ideas of pseudo-likelihood and approximate variational
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inference in Markov random fields (Wainwright and Jordan (2003)).We provide application to curves
of progesterone levels of women during the course of a menstrual cycle and, perhaps surprisingly, to an
image segmentation setting.

There are several recent approaches that permit random local allocation for functional data. In Fernan-
dez and Green (2002), the authors consider Markov random fields over lattices with Poisson distributed
data where the weights in the mixture vary with locations. Closer in spirit to our framework is the nonpara-
metric Bayesian mixtures of Hidden Markov Models (Teh, Jordan, Beal, and Blei (2006)). Our labeling
process is arguably more computationally tractable, especially for high-dimensionalD and largem, due
to the exploitation of spatial structure in the model that yields accurate conditional probability approxima-
tion. A number of recent papers introduce various constructions basedon the Sethuraman’s stick-breaking
representation, with varying weights assigned for different locations ( Griffin and Steel (2006); Dunson
and Park (2008); Duan, Guindani, and Gelfand (2007); Sudderth, Torralba, Freeman, and Willsky (2008)).
The work of Griffin and Steel (2006) and Dunson and Park (2008) exemplify several distinct proposals for
constructing spatially dependent DP mixture marginals. In contrast with our approach, these are somewhat
indirect methods for enforcing the spatial dependence – while label sharing across the collection of curves
is encouraged, label sharing across nearby locations of thesamecurve is not directly possible.

A number of recent work consider Bayesian models for representing a collection of functions in terms
of kernel basis functions ( Pillai, Liang, Mukerjee, Wolpert, and Wu (2006); MacLehose and Dunson
(2008); Dunson (2008b,a)),f(x) =

∫

K(x, u)γ(u)du, where the coefficient functionγ(·) is endowed
with a nonparametric prior. In particular, Dunson (2008b) and Dunson (2008a) insist on sparse represen-
tations by modeling the coefficient covariatesγ(·) in terms of a labeling process. In Dunson (2008b), the
labeling process is modeled by independent Dirichlet processes, while Dunson (2008a) uses kernel func-
tions to induce the spatial dependency of labels in a manner similar to that of the Dirichlet labeling process.
The key distinction between these and our work is that the Dirichlet labeling process allows distributional
specification of labeling realizations over continuous domain without the needfor kernel basis specifica-
tion. More similar to our approach is the work of Duan, Guindani, and Gelfand (2007). It also specifies a
generalized DP mixture model using the view of hybrid species curves. Their approach requires a labeling
process obtained by thresholdingk latent Gaussian processes, resulting in a model that is computationally
challenging to fit. By contrast, our approach utilizes only one latent Gaussian process to regulate spatial
dependence, while allowing label sharing through the use of the Dirichlet process at the next stage. The
resultant model is simpler and computationally more tractable.

Although we are taking a nonparametric Bayesian approach to the clusteringof functional data, we
must mention that there is a substantial non-Bayesian literature on this importanttopic. See, e.g., Abra-
ham, Cornillon, Matzner-Lober, and Molinari (2003); Biau, Devroye,and Lugosi (2008); Chiou and Li
(2007); Dabo-Niang, Ferraty, and Vieu (2006); Fraiman, Justel, andSvarc (2008); Fraiman and Muniz
(2001); James and Sugar (2003); Ma and Zhong (2008); Tokushige, Yadohisa, and Inada (2007) and the
references listed therein. Comparison between Bayesian and non-Bayesian approaches is lacking in the
literature, but is not our objective here.

The paper is organized as follows. Section 2 provides background on the Dirichlet labeling process
prior for a mixture model. Section 3 presents properties of the Dirichlet labeling process and the overall
“hybrid” prior. Section 4 discusses identifiability of the mixture model we propose, as well as posterior
consistency. Section 5 addresses parameter identifiability, a concern in model fitting with our flexible
specification. Section 6 focuses on model fitting and inference. Section 7 offers results for experimental
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and data analysis. We conclude with some discussion in Section 8. All proofsand additional details are
deferred to an Appendix.

2. Formalizing the model
We define a mixture model for curve realizationsY1, . . . , Yn over R

D, that are noisy versions of,
respectively,θ1, . . . , θn. In particular, observations are obtained at local sitesx1, . . . , xm ∈ D, soYi(xj) =

θi(xj) + ǫi(xj). Such modeling is standard in functional data analysis (see, e.g., Ramsay and Silverman
(2005), p.40) where theǫ’s contribute noise, perturbation, disturbance, error, to capture roughness in the
raw data. In different words, the data is assumed to be subject to pure error fluctuations relative to the
process model with the process model specifying suitably smooth curves (though, in some applications,
we may prefer to leave the noise in theθi’s). This process view is in accord with the idea of local and
global clustering for the collection of curves.

For a givenk, we envisionk “canonical” species curvesθ∗j (j = 1, . . . , k) based on which the collection
of θi’s can be represented. Indeed, each of theθi curves is described by the label function,Li(x), x ∈
D, Li(x) ∈ {1, 2, ..., k} whereLi(x) = j implies θi(x) = θ∗j (x). The labels are random as are the
canonical species curves, each defined over an uncountable setD so, to define a stochastic process, we
specify finite dimensional distributions and verify necessary consistencyconditions. In particular, for the
labels, for any finite set of locationsx1, . . . , xm ∈ D, we specify the random distributionpx1,...,xm which
is such thatpx1,...,xm(j1, ..., jm) = P (L(x1) = j1, ..., L(xm) = jm). That is(L(x1), ..., L(xn)) is a
realization of a multinomial trial driven by the set of probabilities,{px1,...,xm(j1, ..., jm)}. For a single
sitex, the marginal distribution is a multinomial over the labels,P (L(x) = j) = px(j) for j = 1, . . . , k.

Below, the collection ofpx1,...,xm is specified to consistently determine a random probability measure
p on {1, . . . , k}D by what we define as a Dirichlet labeling process. For the canonical species curves
θ∗j ’s, we assume they are i.i.d. GP realizations, again characterized by the finite dimensional multivariate
normals for any set of locations,x1, ...xm ∈ D. Theθ∗j ’s could be modeled as realizations from a more
general process onD but this would not provide any benefit within our setting. Again, the smoothness
of theθ∗j ’s can be controlled through the choice of covariance function, as notedin the Introduction. We
denote the GP byG0. Then, formally:

θ∗j
iid∼ G0, j = 1, . . . , k,

Li| p iid∼ p, i = 1, . . . , n,

θi(xt)| L, θ∗ = θ∗Li(xt)
, i = 1, . . . , n; t = 1, . . . , m

Yi(xt)| θi(xt) ∼ N(θi(xt), τ
2), i = 1, . . . , n; t = 1, . . . , m.

In addition, depending on the application, there may be prior distributions forG0 andτ . Also, there
may be covariate information, which can be included in the mean forYi(xt).

An alternative representation sacrifices the hierarchical specification through the labels and expresses

the model directly through a random finite mixture distribution,θi
iid∼ G for i = 1, . . . , n, whereG is a

random measure onRD such that

Gx1,...,xm =
∑

(j1,...,jm)∈{1,...,k}m

px1,...,xm(j1, . . . , jm)δ(θ∗j1
(x1),...,θ∗jm

(xm)). (1)

See Ishwaran and Zarepour (2002), expressions (1) and (3) in thiscontext.
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Regardless, we need to specifyp, a random probability measure on{1, . . . , k}D. For locations
x1, . . . , xm, px1,...,xm has thekm-dimensional Dirichlet distribution

(px1,...,xm(j1, . . . , jm), ji = 1, . . . , k) ∼ Dir(αqx1,...,xm(j1, . . . , jm), ji = 1, . . . , k), (2)

where the base measureq is a probability measure on{1, . . . , k}D.
The base measureq is constructed such thatq has a uniform marginal distribution at every location

x ∈ D, qx(1) = . . . = qx(k) = 1/k. Additionally, q inherits the spatial dependence structure exhibited
by a stochastic processF onR

D as we now clarify.
Denote byFx1,...,xm the finite-dimensional distributions ofF . Let(η(x1), . . . , η(xm)) ∼ Fx1,...,xm , and

consider the random vector(Fx1(η(x1)), . . . , Fxm(η(xm))) ∈ [0, 1]m, whereFxt denotes the cumulative
distribution function at locationxt for F . This vector has uniform marginals and induces a joint distribution
function denoted byHF,x1,...,xm . The collection of finite-dimensional d.f.HF,x1,...,xm characterizes a
probability measureHF on [0, 1]D. Now, let us discretize[0, 1]m into hyper-cubes

Cj1,...,jm =

(

j1 − 1

k
,
j1

k

]

× . . .×
(

jm − 1

k
,
jm

k

]

,

for ji = 1, . . . , k. Then, the latent labeling processq is defined by:

qx1,...,xm(j1, . . . , jm) = HF,x1,...,xm(Cj1,...,jm).

Remark. (1) The overall model is characterized by a canonical curve distributionG0 and precision pa-
rameterτ , as well as parameters specifying the labeling processp, which is parameterized by labeling
processq.
(2) To gain some intuition about the labeling processq, we provide an alternative representation. For each
x ∈ D, letc1(x), . . . , ck(x) be an increasing sequence of threshold values inR such thatFx(cj(x)) = j/k,
for j = 1, . . . , k − 1. Complement the sequence withc0(x) = −∞ andck(x) = ∞. Conditioning on the
realizationη = (η(x1), . . . , η(xm)), define functionZ : D → {1, . . . , k} such that for eachj = 1, . . . , k,

Z(x) = j ⇔ η(x) ∈ (cj−1(x), cj(x)] ⇔ Fx(η(x)) ∈ ((j − 1)/k, j/k].

Hence, anη drawn from the stochastic processF yields a labelZ ∼ q.
(3) In the foregoing,q is defined by discretizing auxiliary variablesη ∼ F . Thenp is a random draw from
the Dirichlet process using base measureq, p|q ∼ DP (αq). It is simple to show thatp can be defined
directly in terms of auxiliary variablesξ without going through the labeling functionZ ∼ q. First, define
a random functionξ onR

D such thatξ ∼ H, whereH ∼ DP (αF ) (this is called spatial Dirichlet process
in Gelfand, Kottas, and MacEachern (2005). Then, discretizeξ as follows: for anyx ∈ D,

L̃(x) = j ⇔ ξ(x) ∈ (cj−1(x), cj(x)] ⇔ Fx(ξ(x)) ∈ ((j − 1)/k, j/k]. (3)

Marginalizing overξ andH, we obtain a random probability distributioñp generating̃L. It can be shown

thatp
d
= p̃ andL

d
= L̃. Indeed, for anyx1, . . . , xm ∈ D, the random vector̃L = (L̃(x1), . . . , L̃(xm)) has
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to satisfy, due to the definition of the Dirichlet process,
(

p̃(L̃ = (j1, . . . , jm)), ji = 1, . . . , k

)

d
=

(

p̃(ξ(x1) ∈ (cj1−1(x1), cj1(x1)], . . . , ξ(xm) ∈ (cjm−1(xm), cjm(xm)]), ji = 1, . . . , k

)

∼ Dir(αF (η(x1) ∈ (cj1−1(x1), cj1(x1)], . . . , η(xm) ∈ (cjm−1(xm), cjm(xm)]), ji = 1, . . . , k

)

= Dir(αqx1,...,xm(j1, . . . , jm), ji = 1, . . . , k).

This implies thatp
d
= p̃ andL

d
= L̃. Although we have shown that there are two equivalent characteri-

zations ofp in terms of latent processξ, or in terms of latent label functionZ, we shall see that the latter
characterization is much more convenient to work with. They key point is thatproperties for the label
functionZ can be easily obtained and incorporated into that forL, and lead to a computationally efficient
inference algorithm to be described in Section 6.

We conclude this section with some words regardingk. It is worth asking whether it is realistic to
assume that k is fixed or would one expect that identifying the number of canonical curves should be part
of the problem. Perhaps the latter is more likely to be the case but, due to the complexity of the model and
the challenges to fit it, even withk fixed, we decided not to pursue, for example, some sort of reversible
jump algorithm to allowk to be random. In this regard, we prefer to perform model comparison to choose
k or study sensitivity of clustering to the choice ofk, fitting models for several fixedk’s. In fact, this is
what we have done with the examples in Section 7 below. We can report that, not surprisingly, a bigger
k encourages more clusters but this is also mediated by the specification of the precision parameter in the
labeling process. In practice, we can hope that a given application will offer some suggestion of what
k’s are interesting so that we can investigate model comparison for suchk’s. In general, as noted in the
Introduction, we envision our modeling to be most useful whenk is small relative ton. Moreover, the
theoretical analysis in Section 4 also suggests thatk should grow very slowly relatively ton to ensure
strong consistency of relevant posterior distributions.

3. Properties of the Labeling Process
As is clear from the previous section, we use the label process as a priorwithin the hierarchical model

given at the beginning of Section 2. Here we examine properties of this process: the random label functions
L andZ on{1, . . . , k}D, whereL ∼ p andZ ∼ q, as well as that of the hybrid curve realizationθ ∼ G.
Properties ofp. From (2),p andq are related,p|q ∼ DP (αq). As a result, properties obtained for the
labeling processZ can be easily incorporated into those forL. We start with elementary properties forp

that are simple consequences of our use of the Dirichlet distribution:

Proposition 1. (a) Let L ∼ p. For anyx ∈ D, the distribution for the labelL(x) is a k-dimensional
multinomial trial with probabilitiespx ∼ Dir((α/k)1).

(b) LetL1, L2|p iid∼ p. Then, unconditionally,P (L1(x) = L2(x)) = 1
k + (1 − 1/k) 1

α+1 .

(c) LetL1, L2|p iid∼ p, andx1, . . . , xm ∈ D. Then, unconditionally,

P (L1(x1, . . . , xm) = L2(x1, . . . , xm)) =
1

α + 1
+

α

α + 1

∑

j1,...,jm

qx1,...,xm(j1, . . . , jm)2.
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(d) LetL ∼ p andx1, . . . , xm ∈ D. Then

P (L(x1) = j1|L(x2) = j2, . . . , L(xm) = jm) =
qx1,...,xm(j1, j2, . . . , jm)

qx2,...,xm(j2, . . . , jm)
.

Proposition 1 shows how the clustering behavior exhibited by the label replicatesLi ∼ p is driven by
the concentration parameterα and the labeling processq. (In particular, asα → ∞, p behaves more like
the base measureq.) It is worth noting the distinction between local and global clustering behavior implicit
in the labeling processp. Since the probabilitiesqx1,...,xm(·) are of orderO(1/km) (cf. Prop. 3 and the
Appendix), part (c) implies the global clustering probabilityP (L1 = L2) ∼ 1

α+1 + α
α+1 · 1

km → 1
α+1 as

m → ∞. On the other hand, at each local sitex, the probability of clustering is substantially higher:

P (L1(x) = L2(x)) =
1

α + 1
+

α

α + 1
· 1

k
.

(Due to the discreteness ofL, this probability is greater than1
α+1 , the usual probability of a tie for a

continuous variable.) However, since the probability of global clustering isstill 1
α+1 , there are evident

implications regarding either the specification ofα or a prior for it.
Whenk → ∞, the distinction between global and local clusters is apparently lost: two realizationsL1

andL2 are either identical everywhere, or nowhere at all. Although the “hard”clustering behavior is lost,
the “soft” clustering behavior remains in play, being driven byq which is in turn regulated byF .
Properties ofq. In the sequel, we assume thatF is a mean-zero, isotropic Gaussian processGP (0, 1, φL)
with covariance function of the form,ρ12(x1, x2) = cov(η(x1), η(x2)) = exp(−φL‖x1 − x2‖) for any
x1, x2 ∈ D, whereφL > 0 is called the decay parameter. (We can set the process variance to 1 w.l.o.g.)
Under the assumptions onF , the quantile threshold functionscj(x) are constant with respect tox and the
sequencec0, . . . , ck satisfiesΦ(cj) = j/k whereΦ is the c.d.f. of the standard normal variable.

To denote the dependence of labeling processq on φL andk, we writeq(φL, k). Although it is easy
to generate a random sample of(Z(x1), . . . , Z(xm)) ∼ q, the distribution function forq is generally not
available in closed form. In fact, the next result presents a closed form for k = 2 and for any two locations,
but closed form expressions fork > 2 are not readily available.

Proposition 2. (k = 2). LetZ ∼ q(φL, 2) and letρ12 = Cov(η(x1), η(x2)). Then

P (Z(x1) = 1, Z(x2) = 2) = P (Z(x1) = 2, Z(x2) = 1) := qx1,x2
(1, 2) =

1

π
arccos

„

1

2
+

ρ12

2

«1/2

P (Z(x1) = 1, Z(x2) = 1) = P (Z(x1) = 2, Z(x2) = 2) := qx1,x2
(1, 1) =

1

2
−

1

π
arccos

„

1

2
+

ρ12

2

«1/2

.

It is simple to observe that as eitherφL → ∞ or ‖x1 − x2‖ → ∞, ρ12 → 0 so that both probabilities
qx1,x2(1, 2) andqx1,x2(1, 1) tend to 1/4. That is,Z(x1) andZ(x2) become independent. On the other
hand, asφL → 0 or ‖x1 − x2‖ → 0, Z(x1) andZ(x2) are equal with increasing probability.

For largek, it is possible to obtain a good approximation to the likelihood function using Riemann sum
approximation.

Proposition 3. (k is large). Let Z ∼ q(φL, k). For any i, j ≤ k such thatci and cj do not diverge to
either+∞ or −∞ ask → ∞,

P (Z(x1) = i, Z(x2) = j) = qx1,x2(i, j) =
1

k2
(Rij(ci, cj) + o(1)), (4)

P (Z(x1) = i, Z(x2) > j) =
1

k

(

1 − Φ

(

cj − ciρ12

1 − ρ2
12

)

+ o(1)

)

, (5)
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where theo(1) terms tend to 0uniformly for all such(i, j), and

Rij(ci, cj) =
1

√

1 − ρ2
12

exp−
(c2

i + c2
j )ρ

2
12 − 2ρ12cicj

2(1 − ρ2
12)

. (6)

Prop. 3 can also be extended to an arbitrary number of locationsx1, . . . , xm, and can be used to obtain
conditional probabilities (see the Appendix).

It is useful to examine the intuitive behavior of theq probabilities for a fixedk as derived by Prop. 3.
As ρ12 → 0, we haveRij(ci, cj) → 1, so thatP (Z(x1) = i, Z(x2) = j) → 1/k2, i.e.,Z(x1) andZ(x2)

become less dependent. On the other hand, asρ12 → 1, for any pairi 6= j, Rij(ci, cj) → 0, i.e.,Z(x1)

andZ(x2) take different valuesi andj with probability converging to 0. Accordingly,Z(x1) = Z(x2)

with probability converging to 1. Now, fixingρ12 andci, considerP (Z(x2)|Z(x1) = i) ≈ 1
kRij(ci, cj).

Rij(ci, cj) achieves maximum atcj = ρ12ci. In particular, whenx2 is nearx1, ρ12 ≈ 1, so thatρ12ci ≈ ci,
the conditional distributionP (Z(x2)|Z(x1) = i) favors values that are neari. For most of the nodes that
are distant, so thatρ12 ≈ 0, the conditional distribution is rather flat even though the modeρ12ci ≈ 0. For
nodes in the middle range so that say,ρ12 ≈ 1/2, there is an interesting shrinkage effect pullingZ(x2)

toward the middle value (betweenk/2 and i). In addition, variableZ(x2) tends to take values that are
farther away fromi with decreasing probabilities.

Turning to the properties of a “hybrid” curve realizationθ that is drawn from the random probability
measureG (see (1)), we have

Gx1,...,xm =
∑

(j1,...,jm)∈{1,...,k}m

px1,...,xm(j1, . . . , jm)δ(θ∗j1
(x1),...,θ∗jm

(xm)),

where the randomness ofG is due to the randomness ofp andθ∗. We assume that theθ∗ are very smooth
curves by placing a zero-mean Gaussian process priorG0 on θ∗, with covariance functionρθ(x1, x2) =

σ2
θ exp−φθ‖x1 − x2‖2 (other choices of covariance function could be adopted depending on the applica-

tion). It is simple to obtain that

E[θ(x)|q, G0] = E[θ∗(x)|G0] = 0,

E[θ(x1)θ(x2)|q, G0] =
k

∑

j=1

qx1,x2(j, j)Cov(θ∗(x1), θ
∗(x2)).

As ‖x1−x2‖ → ∞, Cov(θ∗(x1), θ
∗(x2)) → 0, soCov(θ(x1), θ(x2)|q, G0) → 0. As‖x1−x2‖ → 0,

∑k
j=1 qx1,x2(j, j) → 1, soCov(θ(x1), θ(x2)|q, G0) → σ2

θ . Formally, it can be shown that the hybrid
speciesθ ∼ G is mean square continuous:

Proposition 4. Suppose thatG0 has bounded mean and variance functions, andF (x) has non-atomic
distribution for anyx ∈ D. If bothG0 andF are mean square continuous, so isG.

Althoughθ is mean square continuous, each realization is almost surely discontinuous as it is composed
of multiple smooth segments of the canonical curves. Again, theYi’s arise by the mixing with the noise or
pure error process, i.i.d. random variables at locationsǫ(x) ∼ N(0, τ2)), to obtainY (x) = θ(x) + ǫ(x)

for anyx ∈ D. The joint density forY = (Y (x1), . . . , Y (xm)) givenG andτ2 is

f(Y|G, τ) =

∫

Nm(Y|θ, τ2Im)G(dθ). (7)

8



It follows that E(Y|q, G0) = E(θ∗|G0) and the covariance matrixΣY|q, G0 = τ2Im + Σθ, where
(Σθ)ij = Cov(θ(xi), θ(xj)|q, G0).

4. Model identifiability and posterior consistency
The described labeling process provides a highly flexible nonparametric prior for modeling collections

of curves. As is generally the case with high-dimensional mixture models, model identifiability and pos-
terior consistency issues arise. Moreover, as we shall demonstrate, understanding of these issues can be
useful for prior specification. Here, we restrict our attention to the induced distribution of them-variate
Y = (Y (x1), . . . , Y (xm)) through the associated mixing distributionGx1,...,xm . Treatment for the func-
tional case is more demanding and will be pursued elsewhere, but our discussion of the multivariate case
should provide some hints for the model behavior and the issues involved asm → ∞.

For a fixedk, the induced distribution onY can be viewed as a finite mixture ofm-variate normal
vectors withN = km mixture components, where the mixing parameterp is endowed with a Dirichlet
distribution prior, and the normal means are parameterized by thek canonical species curves. Whenk is
unknown, an approach that has become common is to consider a prior that corresponds to the limit of the
finite mixture model ask → ∞. In light of the results given by Prop. 3, it can be shown that ask → ∞,
Gx1,...,xm converges in distribution toG ∼ DP (αF ) (by applying Theorem 2(a) of Petrone, Guidani, and
Gelfand (2009)) In fact, as far as the marginal density of vectorY is concerned, the finite mixture (with
N components) provides a remarkably tight approximation to the DP limit. LetΠn,k denote the marginal
density of(Y1, . . . ,Yn) which is induced by our prior distributions of(G, τ) for some finitek, andΠn,∞
the marginal density of(Y1, . . . ,Yn) using prior distributions withk → ∞. It is shown by Ishwaran and
James (2001) that theL1 distance‖Πn,k−Πn,∞‖1 ∼ 4n exp(−(N−1)/α). BecauseN = km grows very
fast withk, in practice the choice ofk has little effect on the approximation of the marginal distribution of
Y. Rather, the choice ofk hinges more on the interpretation of the canonical species vectorsθ∗1, . . . , θ

∗
k. As

we see in Section 7, in an example with progesterone data analysis, we are interested ink = 2, whereas in
another example with image analysis,k = 8 turns out to be sufficient for our segmentation and clustering
application.

Model identifiability. Our model is a finite mixture with mixing distributionGx1,...,xm . A multivariate
version of Theorem 2 of Ishwaran and Zarepour (2002), shows that it is fully identified under mild condi-
tions.

Proposition 5. Let ψ(Y|θ, τ) denote them-variate normal density with meanθ and covariance matrix
τ2Im. Let Gx1,...,xm be a mixing distribution defined(1) for some fixed canonical vectorsθ∗1, . . . , θ

∗
k

for some finitek, and positive mixing proportionspx1,...,xm(·). Given someτ∗ > 0, suppose there is a
distributionG1 overRm andπ1 overR+ such that
(a)

∫

ψ(Y|θ, τ∗)Gx1,...,xm(dθ) =
∫

ψ(Y|θ, τ)G1(dθ)π1(dτ) for almost allY ∈ R
m,

(b) UnderG1 × π1, E exp 1
2(τ∗2−τ2)

∑m
r=1 θ(xr)

2 < ∞,

(c) θ∗i (xr) 6= θ∗j (xr) for i 6= j; r = 1, . . . , m.
Then we haveG1 = Gx1,...,xm , andπ1(·) = δτ∗ .

Note that the mixing distributionGx1,...,xm is parameterized in terms of the canonical curvesθ∗1, . . . , θ
∗
k.

Though the above result shows thatG is identifiable, it does not necessarily establish that these canonical
curves (m-dimensional vectors) can actually be determined. This issue of parameter determinacy can be
resolved by incorporating additional assumptions on the prior distributions on the canonical curves. As
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a simple example, if the canonical curves are non-identical constant functions, then the identifiability of
Gx1,...,xm trivially implies the identifiability of the each individual canonical curves. More generally, we
could envision identifiability conditions for the functional case that requires“distinguishable” canonical
curves based on smoothness criteria. In addition to the determination of canonical curves, label switching
among the canonical curves is an issue commonly encountered in mixture models. Again, these issues
can be resolved in practice by introducing additional, e.g., ordering constraints to the parameters. A more
detailed discussion of parameter determinacy is deferred to the next section.

Posterior consistency. Turning to asymptotic analysis of the posterior distribution derived from ourlabel-
ing process prior, we view the use of a finite dimensional Dirichlet prior in a finite mixture model as a
Bayesian method of sieves by allowingk to grow with sample sizen. A similar viewpoint was adopted
by Ishwaran and Zarepour (2002) in their analysis of finite mixture for univariate normal variables. Indeed,
with care, their results could be adapted to obtain ours.

We consider first the distribution of them-variateY = (Y(x1), . . . ,Y(xm)) whose (conditional)
densityf(Y|G, τ) is given at (7). Because the conditionedG andτ are random and endowed with prior
distributions of their own, we can view the densityf (with the conditioning notationsG and τ being
dropped) as a random element in a setFk of densities of form (7) for somek and some realization ofG
andτ .

As before,Πn,k is used to denote the induced prior onf . The posterior distribution of densityf is a
random measure denoted byΠn,k(·|Y1, . . . ,Yn), and has the following form, for any measurable subset
B of Fk:

Πn,k(B|Y1, . . . ,Yn) =

∫

B

∏n
i=1 f(Yi)dΠn,k(f)

∫
∏n

i=1 f(Yi)dΠn,k(f)
.

Suppose thatY1, . . . ,Yn are i.i.d. draws from somef0 ∈ Fk∗ , wheref0 is defined in terms of some
realization ofG = G∗, τ = τ∗ for some fixed but possibly unknown value ofk = k∗. The posterior
distribution ofY is strongly consistent if, for anyǫ > 0, asn tends to infinity withk growing at an
appropriate rate, we have

Πn,k({f ∈ Fk : ‖f − f0‖1 < ǫ}|Y1, . . . ,Yn) → 1 Pf0 a.s..

There is a rich body of work on posterior asymptotics for nonparametric Bayesian models, and Dirich-
let process mixture models in particular (see, e.g., Ghosal (2007) for an elegant exposition). Most relevant
to our model are the analyses of Ghosal, Ghosh, and Ramamoorthi (1999)for Dirichlet process mixture
models and Ishwaran and Zarepour (2002) for finite normal mixtures, both focusing on univariate distri-
butions, and a more recent work extending to multivariate density estimation (Wuand Ghosal (2010)).
As with these analyses we follow the now standard approach developed bySchwartz (1965); Barron,
Schervish, and Wasserman (1999); Ghosal, Ghosh, and Ramamoorthi (1999) and several others, which
requires meeting the two sufficient conditions: (A) The priorΠn,k is information densearound the true
densityf0 (that is,Πn,k places positive mass on each Kullback-Leibler neighborhood off0), and (B) the
prior Πn,k puts most of its mass around a “small” subsetFn,k ⊂ Fk, where the size ofFn,k can be
measured by the entropy number. In fact, condition (A) is guaranteed by the following lemma.

Lemma 6. LetD(·||·) denote the Kullback-Leibler divergence between two probability densities. Assume
that measureG0 of the canonical vectors(θ∗(x1), . . . , θ

∗(xm)) places positive density in a rectangle
containing the support ofG∗. For sufficiently largek, Πn,k(f ∈ Fk : D(f0||f) < ǫ) > 0 for anyǫ > 0.
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It is worth noting that our proof for this Lemma (see the Appendix) exploits specifically the choice of
the finite Dirichlet prior forp as defined by (2) whose base measure is specified byq. The proof, however,
does not extend to the functional case (by lettingm be arbitrary). Moreover, it appears that to obtain the
denseness properties in the functional setting, additional assumptions on the true densityf0 are needed.
For instance, one might need a condition to the effect that the majority of the hybrid curves do not switch
very often, so that the technique used in our proof can be applied for arbitrarym.

Turning to condition (B), for given positive numbersδ, an, τn, we takeFn,k to consist of all densities
f ∈ Fk whose associated mixing distributionGx1,...,xm has support bounded within[−an, an]m with
probability at least1 − δ, and with varianceτ restricted to the interval[τn, M ], assuming that the prior
for τ is some distribution truncated to the right atM . Define the entropy numberJ(δ,Fn,k) to be the
logarithm of the minimum of allr such that there existsf1, . . . , fr ∈ Fn,k with the propertyFn,k ⊆
∪r

i=1{f : ‖f − fi‖1 < δ}. The collection{f1, . . . , fr} is called a covering ofFn,k.

Lemma 7. Assume thatan > M/
√

δ. ThenJ(6mδ,Fn,k) ≤ km log 1+mδ
mδ + km log(1 + 2an

τnmδ2 ).

This lemma says that the entropy ofFn,k can be controlled byk, an, τn. Combining the last two
lemmas and Theorem 2 of Ghosal, Ghosh, and Ramamoorthi (1999), the following result is immediate.

Proposition 8. Suppose thatτ has support in[0, M ] and the canonical curves (vectors) have prior distri-
butionG0. If for eachδ > 0, β > 0, there exists constantsβ0, β1, and sequencesan → ∞ andτn → 0,
k → ∞ such that
(i) for someβ0, G0(θ

∗(xi) ∈ [−an, an] for i = 1, . . . , m) ≥ 1 − exp(−nβ0),
(ii) under the prior ofτ , P (τ < τn) ≤ exp(−nβ1),
(iii) km log 1+mδ

mδ + km log(1 + 2an
τnmδ2 ) ≤ nβ,

(iv) conditions of Lemma 6 and Lemma 7 hold.
then the posterior distribution ofY is strongly consistent atf0.

If, for instance,θ∗ has a Gaussian prior distribution, andτ has an inverse gamma distribution truncated
to the right, then we can allowan ∼ √

n and τn ∼ 1/
√

n. Then, if k is allowed to grow at a rate
slower thann1/m, all conditions of the proposition hold, yielding the strong consistency of theposterior
distribution ofY. Finally, consistency results can also be extended to that of the mixing distribution
Gx1,...,xm (see Ishwaran and Zarepour (2002), Theorem 7, and Ghosal, Ghosh, and Ramamoorthi (1999),
page 151).

5. Parameter Identifiability
The previous section focused on large sample properties of the posteriordistribution of the curves, and

the identifiability of the mixing distributionGx1,...,xm . In specific applications we are usually concerned
with the identifiability (determinacy) of certain parameters and latent variables of interest, under a limited
supply of data. Indeed, the foregoing discussion provides some hints onthe roles of certain parameters
controlling the smoothness of canonical curvesθ∗ and the labeling allocation probabilitiesp. We examine
these issues in more detail here. Section 3 discussed the roles of the concentration parameterα and
the labeling decay parameterφL on both the global and local clustering behavior exhibited by the label
realizationL ∼ p. Here we focus on the effects of the prior ofφL, canonical curvesθ∗, and the precision
parameterτ on the determinacy of the labelingL and canonical curvesθ∗.

Suppose that we are interested in a representation that achieves dimensionality reduction, with the goal
of inferring both canonical curvesθ∗ and labelingL1, . . . , Ln for observed replicatesY1, . . . , Yn. In this
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scenario the canonical curves can be viewed as basis functions with the label vectorsL1, . . . Ln providing
coefficients with respect to such bases. When the number of canonical curvesk is small, the canonical
curves are expected to represent “canonical” patterns for the whole collection of curves. As noted in the
Introduction, the variance parameterτ plays an important role in the identifiability of the canonical curve
θ∗. Whenτ is large, the learned canonical curves become very smooth but weakly distinguishable. By
contrast, whenτ is small, the canonical curves are less smooth and more distinguishable, as their respective
posteriors cover different regions in the function space spanned by the curve collection. This phenomenon
is illustrated in Section 7.

φL also plays an important role in the identifiablity of the canonical species curves θ∗j . WhenφL is
close to 0, as shown by Prop 2 and Prop 3, the hybridization (label switching) within each individual curve
is discouraged – the model essentially insists on global clustering. If the curve collection can indeed be
clustered globally in terms of canonical curves, these are strongly identifiable. On the other hand, if the
curve realizations tend to switch often among the canonical curves, corresponding to largeφL, or canonical
curves are not very smooth, we observe that the canonical curves become more weakly identified. As
we illustrate in Section 7, our model is able to recover segments of locations that admit relatively few
switchings among relatively smooth canonical curves. In particular, similar locations tend to be (correctly)
assigned the same labels, but it is possible that whole segment is incorrectly labeled relatively to some
other segments.

Suppose, on the other hand, that we are less interested in inferring about the canonical curves, but
more about the labeling realizationsL1, . . . , Ln as a means for characterizing and clustering the observed
replicatesY1, . . . , Yn. In this scenario, strong constraints can be imposed uponθ∗ to improve the iden-
tifiability of labels Li’s. In the image segmentation application we present, an image can be viewed as
being composed of different objects (grass, plants, buildings, animals, human faces, etc), each of which is
associated with a level set corresponding to a (random) level of light intensity. Thus, canonical curvesθ∗

can be taken to be random constant functions. Furthermore, additional order constraints can be imposed
according to label values{1, . . . , k}. The previous discussion on properties ofp andq suggests that for
largek there is a natural ordering of label values{1, 2, . . . , k}. That is, locations near to each other have
high probability of sharing similar labels, i.e., labelsj1 andj2 such that|j1 − j2| is small. It is natural
to assign more extreme ranges for priors to extreme labels such as1 andk. We could even specify that
E(θ∗1) < E(θ∗2) < . . . < E(θ∗k). Note that such ordering constraints are not necessary to ensure model
identifiability, but they would be expected to improve the mixing for simulation-based posterior inference.

6. Model fitting and inference
Using the bracket notation, the joint distribution associated with the model presented at the start of

Section 2 is

n
∏

i=1

[Yi|Li, θ
∗
1, . . . , θ

∗
k, τ ] ×

k
∏

j=1

[θ∗j |σθ, φθ] × [L1, . . . , Ln|φL, α] × [φL] × [α] × [τ ] × [φθ] × [σθ].

In this expression we have implemented the usual marginalization overp, with q ≡ φL, [L1, . . . , Ln|φL, α] =
∫

∏n
i=1[Li|p][p|φL, α]dp .

In this section we develop an algorithm for fitting the model and for inference regarding the parameters
of interest. We use Gibbs sampling to draw from[L1, . . . , Ln, θ∗1, . . . , θ

∗
k, φL, α, τ, φθ, σθ|Y]. The updates

of parametersα, τ, φθ, σθ are standard, see ,e.g., Duan, Guindani, and Gelfand (2007). For canonical
curves, under a Gaussian process, the prior for vectorθ∗j = (θ∗j (x1), . . . , θ

∗
j (xm)) is normal with meanµj
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and covariance matrixΣθ∗j |σθ,φθ
. Let Iij be anm × m diagonal matrix whoset-th entry isI(Li(t) = j).

The full conditional forθ∗j has the form

[θ∗j |Y1, . . . , Yn, L1, . . . , Ln, φθ, σθ] ∼ N

(

1

τ2
Λ

n
∑

i=1

IijYi + (Σθ∗j |σθ,φθ
)−1µj , Λ

)

,

whereΛ = ((Σθ∗j |σθ,φθ
)−1 + 1

τ2

∑n
i=1 Iij)

−1.
We now turn our attention to updating label vectorsLi, i = 1, . . . , n and decay parameterφL. Due to

the alternative characterization of latent labelsL captured by (3), one simple method is to directly sample
the latent variablesξi ∼ H, whereH ∼ DP (αFφL

). The label vectorLi is then obtained by thresholding
ξi. Although the full conditional distribution forξi can in principle be obtained by the standard Polya urn
scheme, it is simple to observe that at each iteration one has to compute an intractable sum ofkm terms.
To overcome this difficulty, a simple heuristic is to introduce an auxiliary variableξ̃i, a perturbed version
of ξ by a small independent noise:̃ξi = ξ + ǫ, whereǫ ∼ N(0, γ2Im) andIm is anm × m identity
matrix. For smallγ2, it is expected that̃ξi andξi belong to the same thresholded hypercubes with high
probability. Thus, the label vectorLi can be obtained by thresholding̃ξi instead ofξi. Vectorξi can now
be updated independently of the data via the Pólya urn scheme, whilẽξi can be updated conditionally
component-by-component via truncated univariate normals. The problemwith this approach is sensitivity
of the perturbation noiseσ to the varying size of different thresholded hypercubes, especially whenk is
moderate or large. Moreover, sampling over continuous and high-dimensional latent vectors̃ξ andξ could
be very inefficient and, as we shall see, is unnecessary.

Our approach relies on the characterization ofLi in terms of label vectorsZi ∼ q and the latent vector
ηi for i = 1, . . . , n. Furthermore, by the virtue of Prop. (3) (and its extension for anym, see the Appendix),
the latentηi can be easily marginalized so the overall mixing can be significantly improved. Thanks to our
choice of the Dirichlet prior, the Gibbs sampling procedure is now straightforward by applying the Ṕolya
urn sampling scheme. Here, we have for, say, curve1 atx1, that the conditional label distribution is

P (L1(x1)|L1(x2), . . . , L1(xm), the rest) ∝
n

∑

i=2

I(L1 = Li)

α + n − 1
N(Y1|θLi)+

α

α + n − 1
N(Y1|θL1)qx1,...,xm(L(x1), . . . , L1(xm)|φL, k).

The likelihood function underq is obtained via Prop. 3. This likelihood also provides means for updating
φL via a standard Metropolis step. One possible issue is that the approximation ofthe likelihood function
for q is not expected to be accurate for small value ofk. In particular, the distribution function and relevant
conditional probabilities for the labeling processq are not available in closed form. For the remainder of
this section we develop approximate inference methods for the latent labeling processq for smallk. We
illustrate withk = 2.

Turning first to estimation of theφ’s, we seek inference forφL given i.i.d. label realizationsZ1, . . . , Zn

drawn fromq, observed values at locationsx1, . . . , xm. We first consider the point estimation problem for
φL. Suppose we have multiple curves, indexed byi = 1, 2, ..., n, observed atm = 2 locationsx1 andx2

only. In this scenario, one can use a maximum likelihood method to obtain a consistent estimate forφL:

φ̂L = argmaxφL≥0

n
∏

i=1

q(Zi(x1), Zi(x2)),
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where the d.fq for k = 2 is available in the closed form given in Proposition 2. The more typical scenario,
however, is whenm much larger than2 and the sample sizen is small. For simplicity of exposition,
suppose thatn = 1. How can one estimateφL given asinglerealization of random curvez evaluated atm
locationsx1, . . . , xm: z = (z(x1), . . . , z(xm))? An intuitive approach is to maximize a pseudo-likelihood
for z that is obtained by taking the product of all pairwise likelihood functions. Simulation work indicates
that this is a good estimator (see Table 1 for an illustration).

Proposition 9. Suppose thatZ = (Z(x1), . . . , Z(xm)) is drawn fromq(φ∗
L, 2) via Fφ∗

L
for someφ∗

L > 0.
Let rm be the number of pairs of(xi, xj) s.t.‖xi − xj‖ ≤ d0 for somed0 > 0. Then, for

φ̂L = argmaxφ≥0

∏

1≤i<j≤m

q(Z(xi), Z(xj))|φ),

we have that|φ̂L − φ∗
L| = O(

√

m/rm) in probability.

Though the proof is provided fork = 2 it can be easily extended fork > 2.

OneEdge MLE m = 4 m = 36 m = 100
n = 1 N/A 2.26 + 2.55 0.60 + 0.35 0.51 + 0.23

n = 10 2.03 + 8.03 0.64 + 0.43 0.48 + 0.15 0.51 + 0.06
n = 20 2.57 + 7.90 0.63 + 0.31 0.51 + 0.09 0.50 + 0.04
n = 40 0.48 + 0.30 0.53 + 0.19 0.51 + 0.05 0.51 + 0.04
n = 60 0.53 + 0.20 0.54 + 0.16 0.50 + 0.05 0.51 + 0.03
n = 80 0.52 + 0.33 0.51 + 0.16 0.50 + 0.04 0.50 + 0.02

n = 100 0.49 + 0.16 0.50 + 0.14 0.49 + 0.03 0.50 + 0.02

Table 1: Mean and variance of the maximum likelihood estimate (for one edge) and maximum pseudo-likelihood
estimates forφL. n denotes sample size,m denotes the number of locations in a equally spaced grid inR

2. The data
is drawn fromq(φL, k) with φL = 0.5, k = 2.

Suppose now thatφL is endowed with a prior distributionπ(φL) on a bounded interval[φ1, φ0]. We are
interested in sampling the posterior distribution forφL given values of the labelZ = (z(x1), . . . , z(xm)).
We propose to use the aforementioned pseudo-likelihood to obtain what we term a “Gibbs posterior”
distribution (Zhang (2006)) forφL as

Pλ(φL|Z) ∝
∏

1≤i<j≤m

q(Z(xi) = z(xi), Z(xj) = z(xj))|φL)λπ(φL). (8)

Hereλ > 0 is an arbitrary parameter that controls the dispersion of the Gibbs posterior.It can be shown
that the Gibbs posterior is very close to the “true” posterior in the sense of Kullback-Leibler divergence.

Proposition 10. Suppose thatZ = (Z(x1), . . . , Z(xm)) is drawn fromq, equivalentlyFφ∗
L
, for some

φ∗
L > 0, and that for any sufficiently small neighborhood(u, v) of φ∗

L, π(u, v) > |u− v|r for somer > 0,
then under the true marginal generatingZ,

EPλ

1

m(m − 1)/2
log(Pλ(φ∗

L|Z)/Pλ(φ|Z)) = OP (1/m).

Next, we introduce a variational Bayes approach for inference aboutq. In particular, the proposed
sampling method for the decay parameterφL via the Gibbs posterior provides a direct motivation for
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approximating the distributionq using variational inference techniques for Markov random fields (cf.,
e.g., Wainwright and Jordan (2003)). LetE be a subset of pairs{(i, j)| 1 ≤ i < j ≤ m}. E could be
viewed as a collection of edges connecting the verticesx1, . . . , xm ∈ D to form a graphical structure.
Our strategy is to approximate the multivariate distributionq(Z(x1), . . . , Z(xm)) by a graphical model
distributionq̃ defined as

q̃E(Z(x1), . . . , Z(xm)) ∝
∏

(i,j)∈E

q(Z(xi), Z(xj)). (9)

Then the conditional probability distribution for the labels is approximated by
q̃E(Z(x1)|Z(x2), . . . , Z(xm)) ∝ ∏

j 6=1 q(Z(x1), Z(xj)).
The following result shows that̃q is the best possible approximation within a restricted class of graph-

ical models in the sense of Kullback-Leibler divergenceD(·||·).
Lemma 11. Consider a class of probability distributions of(Z(x1), . . . , Z(xm)) ∈ {1, 2}m:

QE =

{

Q : Q(Z(x1), . . . , Z(xm)) ∝
∏

(i,j)∈E

qij(Z(xi), Z(xj))

}

,

whereqij ’s are any function on{1, 2}2. Then the distributioñqE defined in(9) satisfies

q̃E = argminQ∈QE
D(q||Q).

From the above lemma, the more edges added to setE, the better the approximatioñq is for q, but it
is also more difficult to estimate the log-partition function

A(E) = log
∑

Z

∏

(i,j)∈E

q(Z(xi), Z(xj)).

Indeed, for a tree-structured graph,A(E) is a known constant while, in general, we can only obtain upper
and lower bounds.

Proposition 12. (a) The marginal distribution under̃qE is uniform.
(b) If E forms a spanning tree thenA(θE) = −(m − 2) log 2, and

q̃E(Z(xi), Z(xj)) = q(Z(xi), Z(xj)) for any(i, j) ∈ E.
(c) SupposeE forms a connected graph, andE0 ⊆ E is a spanning tree, then

−(|E| − 1) log 2 + U ≤ A(θE) ≤ −(|E| − 1) log 2 + V, where

U =
X

(i,j)∈E−E0

„

q̃E0
(Z(xi) 6= Z(xj)) log q(Z(xi) 6= Z(xj)) + q̃E0

(Z(xi) = Z(xj)) log q(Z(xi) = Z(xj))

«

V =
X

(i,j)∈E−E0

„

q̃E(Z(xi) 6= Z(xj)) log q(Z(xi) 6= Z(xj)) + q̃E(Z(xi) = Z(xj)) log q(Z(xi) = Z(xj))

«

.

For a one-dimensional domainD, we conveniently employ a tree-structured approximation forq in
which the set of(xt, xt+1) pairs form the collection of edges fort = 1, . . . , m − 1, assuming that
x1 < x2 < . . . < xm. For domains of two or higher dimensions, we also apply a minimum spanning
tree approximation, although more sophisticated methods can be employed (seeWainwright and Jordan
(2003)).
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Figure 1: Evolution of posterior distributions at held-outlocationsx = 2, 4, . . . , 40. Solid plots are true distributions.
Dashed plots are predictive distributions learned from themodel.

7. Applications
We demonstrate the behavior of the Dirichlet label process prior using simulated data in Section 7.1.

Sections 7.2 and 7.3 look at a collection of progesterone curves and a collection of images, respectively.
7.1 Synthetic data. First we illustrate the fitting of the mixture model described in Section 2, where
the species samples are obtained by random switching amongk species curves that are drawn from a
known Gaussian process on the real line. In particular, we specifym = 20 locations[x1, . . . , xm] =

[1, 3, . . . , 39] while leaving out 20 other locations2, 4, . . . , 40 for validation purposes.θ∗j for j = 1, . . . , k

are independently drawn from a Gaussian processGP (µj , φθ, σθ) at locationsx1, . . . , xm, whereµj =

−1 + 2(j − 1)/(k − 1). The label vectorsL1, . . . , Ln are drawn from label processq, which is drawn by
knownφL. Speciesθ1, . . . , θn are constructed by lettingθi(xt) = θ∗Li(t)

(xt). Finally, the data collection

Y1, . . . , Yn is obtained by mixingθi with an independent error process drawn fromN(0, τ2Im). We
generatedn = 100 sample curves usingk = 4 canonical species curves. Parameter values for data
generation wereφθ = 0.01, σθ = 1, φL = 0.05, τ = 0.1. For inference, we placed an uniform prior on the
label switching parameterφL ∼ Uni[0.0001, 1], while keepingφθ, σθ andτ fixed. Posterior distributions
for latent labels and canonical species curves were obtained by running the MCMC algorithm for 4000
iterations after a burn-in period of 1000 iterations. An examination of running traces suggested that the
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Figure 2: Illustration of canonical curve samples generated from the posterior in solid lines with squares. Figures to
the right describe the corresponding Gibbs posterior forφL.

sampling algorithm mixed well.
Fig. 1 illustrates the evolution of the posterior distributions (in solid lines) at the held-out locations,

as we move from location 2 to 40, the estimated densities obtained from our sampling. It is interesting
to observe how the clusters initially “move” toward each other, then split into more clusters, and merge
again. The estimated densities (in dashed lines) approximate the true densities well. The dependence in
these distributions is driven by the smoothness of thek canonical species curvesθj (j = 1, . . . , k) serving
as the bases for our curve collection, as well as the label switching parameterφL.

With φθ fixed, φL plays a central role in the identifiablity of the canonical species curvesθj . When
φL is close to 0, the curves hardly switch their labels, the curve collections can be globally clustered by
the canonical curves that are strongly identifiable. On the other hand, whenφL is large, the curves tend
to switch often among the canonical species curves which become more weakly identified. In general,
our model is able to always recover segments of locations that admit relatively few switchings. Fig. 2
illustrates this phenomenon with data generated fromk = 2 canonical curves, with the trueφL set to be
0.1 (top) and 0.5 (bottom figures). Note the corresponding Gibbs posterior for φL which was obtained
from our sampling algorithm. In both cases, a uniform distribution priorUni[0.0001, 1] was placed on
parameterφL, while φθ = 0.005, σθ = 1, τ = 0.1 were fixed. For smaller value of trueφL (top figures),
the posterior was well-concentrated around the true value. For largerφL (bottom figures), the posterior
mass shifted to the right, because the canonical species curve estimates (due to weak identifiability) tended
to over-switch between the modes.
7.2 Progesterone modeling.We turn to an application of the Dirichlet labeling process for modeling
Progesterone data (cf. Brumback and Rice (1998)). This data set records the natural logarithm of the pro-
gesterone metabolite, measured by urinary hormone assay, during a monthlycycle for 51 female subjects.
Each cycle ranges from -8 to 15 (8 days pre-ovulation to 15 days post-ovulation). There are a total of 88
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Figure 3: Monthly PGD cycle for contraceptive group (solid lines) and non-contraceptive group (dashed lines). Solid
lines with squares are the mean estimate of canonical curves.
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Figure 4: Left: Mean of estimated labels during the whole monthly cycle. Right: label means for pre and post-
ovulation periods for 88 individuals (plots with x’s and squares, resp.).

cycles; the first 66 cycles belong to non-contraceptive group, the remaining 22 cycles belong to the con-
traceptive group. This grouping is of courseunknownto our analysis. See Fig. 3 for the illustration. This
data set is interesting as it allows us to compare our model to a more simplistic globalclustering approach.
To appreciate the noise and overlap of the two groups, we also consider amodified data set in which the
curves belong to the contraceptive group are down-shifted by 2 (see Fig. 6).

We focus our analysis to the casek = 2. We envision that there are two canonical curves providing
bases for random label selection (switching). Due to the apparent noiseand overlap of the two groups, we
placed a prior on the switching parameterφL ∼ Gam(5, 2) so as to allow possible duplication of canon-
ical curves in certain local segments. Canonical curves were drawn from mean-0 Gaussian process with
a covariance matrix using decay parameterφθ = 0.005 andσθ = 1. We fixed the precision parameters
τ = 1, α = 1. A discussion of the sensitivity of these parameters is included in the sequel.Samples from
posterior distribution were collected from 5000 MCMC iterations (discardingthe first 1000). An exam-
ination of running traces suggested very fast mixing. Fig. 3 shows the meanestimate for the canonical
curves. (The quantiles are not plotted because the posterior distribution for canonical curves are tightly
concentrated around their means). It appears difficult to cluster the datafor individual locations without
taking into account the global smoothness of the whole curves. With our modelthe estimated canonical
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Figure 5: Heatmap illustrating propotion of equal labels for pairs of replicates for the whole curve (left), and a curve
segment[20, 24] (i.e.,last 5 days of the monitored cycle) (right).
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Figure 6: Analysis applied to the modified PG data set. Left: Mean estimate for the canonical curves. Right:
Heatmap illustrating proportion of equal labels for pairs of replicates for the whole curve.

curves appear to match the general behavior of the two groups fairly well.We observe that the two canon-
ical curves are virtually indistinguishable in the early part of the cycle. In fact, the behavioral patterns
between the two curves become more distinguishable only in the post-ovulation period. Fig. 4 shows the
label mean for the whole monthly period for each of the 88 individual cycles. The last 22 cycles (contra-
ceptive group) register generally higher label means than the first 66 cycles. This is also demonstrated by
heatmaps in Fig. 5, which illustrate the proportion of equal labels for pairs ofcurve replicates. Although
global clustering is apparently not possible, one can observe the local clustering effect by zooming in to
the curve segment corresponding to the last 5 days of the menstrual cycle. We also applied our analysis
(using the same prior specification and parameter initial values) to a modified data set in which the curves
belong to the second group were down-shifted by 2. Global clustering was now easily achievable (see
Fig. 6).

We now turn to a discussion of the effects of several parameters of interest on the identifiability of the
canonical curves (see Fig. 7 for illustrative results). We observe that,asφL gets smaller, the model insists
on increasingly global clusters (and less label switching for each replicate) resulting in separable canonical
curves that do not intersect. For this data set, these separable curve estimates do not reflect the behavioral
pattern for each of the two groups, but act rather as a pair of basis curves for representing the curve
collection. On the other hand, largeφL offers more flexibility by allowing more complex canonical curve
interaction. For instance, it is possible to obtain well separated clustering effects in one local segment and
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Figure 7: Top row: effects ofτ = .1, 1, 2. Second row: effects ofφL = .01, 1, 2. Third row: effects ofφθ =
.001, .005, .02.

Figure 8: Effects ofφL = 0.5, 0.05, 0.01 on segmentation for the leftmost image.

almost duplicates in another local segment. Turning toτ , asτ gets smaller, the canonical curves become
more distinct (and less smooth) to expand the coverage of the function space. On the other hand, largeτ
results in weakly distinguishable canonical curves. The role ofφθ is to dictate the smoothness of canonical
curves. Finally, the influence ofα (not shown here) on the number of clusters induced by label realizations
is less pronounced than that ofτ andφL for this data set.
7.3 Image modeling.In this section we demonstrate a possibly surprising application of our model toan
image segmentation task. Our data set consists of 80 color images from a Microsoft image database (Winn,
Criminisi, and Minka (2005)). These images are of size26 × 40. Although these images can be loosely
grouped into different categories (grass fields, plants, buildings, planes, etc), there are often multiple
objects of different types in the same image. It is thus very natural to view them as hybrid species curves.
Each image is represented by a surface realizationYi, for i = 1, . . . , 80, whereYi(x) is the color intensity
of the locationx ∈ D = {1, . . . , 26}× {1, . . . , 40} in thei-th image. The color intensity consists of three
numbers in[0, 255] (corresponding to the red, green and blue scales). Accordingly, we write Yi(x) =

[Y 1
i (x), Y 2

i (x), Y 3
i (x)]. We introducek = 8 canonical species curves, each of which is represented by

three constant random functions ranging in[0, 255]. (Introducing more canonical species, which we did
for instance withk = 12, almost always yielded more than one duplicate canonical species curves). We
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Figure 9: Examples of segmented images (usingφL = 0.1).

write θ∗j (·) = [θ∗j
1(·), θ∗j 2(·), θ∗j 3(·)] for j = 1, k. The three dimensions are treated independently, by

letting Y r
i (x) = θ∗Li(x)

r(x) + ǫi,r,x, whereǫi,r,x is independent zero-mean normal noise with varianceτ2

for anyi = 1, . . . , n; r = 1, 2, 3; x ∈ D.
As described in Section 4 we introduce additional constraints into the prior structure for the canonical

curvesθ∗. In particular, we placed a (truncated) normal prior with mean[10 10 10] and variance102I3 on
θ∗1, and a normal prior with mean[240 240 240] and the same variance onθ∗k. That is, we anchored the two
extreme labels with the two extremes of the color scale (black and white colors).All remaining canonical

species were given a relatively non-informative prior; forj = 2, . . . , k − 1, θ∗j
r iid∼ N(µj , σj) · I[0,255],

whereµj = 128. For all j = 1, . . . , k, we fixedσj = σθ, whereσ−2
θ ∼ Gam(aσ, bσ). We setaσ = 0.4

andbσ = 0.001. For precision parameterτ we letτ−2 ∼ Gam(aτ , bτ ), whereaτ = 0.1 andbτ = 0.025.
We set the concentration parameterα = 1.

To complete the prior specification, let us turn to the latent labeling processesp andq. One possible
approach is to endowp with a single Dirichlet labeling process prior for the entire domain (as in the
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previous applications). For the image data set, global clustering is generallynot of interest (because it is
unlikely that two images have exactly the same labeling everywhere). On the other hand, label sharing at
smaller scales (not to mention the pixel-level scale) is much more likely due to the occurrence of similar
objects in similar scenes. To encourage this sharing we decomposed each image into fixed and disjoint
patches of sizer×r. Conditionally onq, the labeling processesp defined for disjoint patches are mutually
independent and follow the Dirichlet labeling process specification as before. We experimented with the
choicesr = 4, 6, 8 and received comparable results. Finally, the latent labeling processq(φL, k = 8) was
specified for the whole domain using different choices ofφL = 0.5, 0.1, 0.05, 0.01.

The MCMC algorithm was run for 200 iterations. Samples obtained from the last 150 iterations were
used for image segmentation. The segmented images were obtained by assigning to each image location
the light intensity of the MAP estimate of the canonical curve at the same location.Fig. 9 provides
examples of representative segmentation results. Fig. 8 illustrates the effects of φL on the segmentation
results. ForφL large, the group allocation at each location is highly independent, resulting infragmented
segmentation. AsφL decreases, the segments become increasingly coherent. AsφL becomes too small,
however, nearby locations are forced to share the same group. Furthermore, patches from different images
are also encouraged to cluster, resulting in increasingly “abstract” segments.

8. Conclusions
The Dirichlet labeling process provides a highly flexible prior for modeling collections of functions

(curves, surfaces). Though driven by just a few parameters, the inter-relationships between these param-
eters are complex with regard to process behavior. We are currently exploring multivariate extensions of
the labeling process, the modeling of label clustering at random spatial scales, as well as the incorporation
of prior knowledge of canonical curves. From a practical viewpoint, itis also worth comparing the func-
tional clustering arising from the Dirichlet labeling process prior with that ofnon model-based approaches
such as those mentioned in the Introduction. Investigation to illuminate advantages/diadvantages offers
potential future work.
Acknowledgment The work of the first author was supported in part through a SAMSI postdoctoral
fellowship and the work of the second author was supported in part under NSF award DMS-0504953. The
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9. Appendix
Proof of Prop. 1. This result is straightforward using standard properties of Dirichlet distribution.
Proof of Prop. 2. We derive the result for a stochastic processF ∼ GP (0, σL, φL) (the Proposition
states the result forσL = 1). From the definition,qx1,x2(1, 1) = P (η(x1) > 0, η(x2) > 0). Note that

(η(x1), η(x2)) ∼ N([0 0],

[

σ2
L ρ12

ρ12 σ2
L

]

). By a change of variables,̃η = 1√
2

[

1 1
−1 1

]

[η(x1) η(x2)]
T ,

we obtain that̃η ∼ N([0 0],

[

λ1 0
0 λ2

]

), whereλ1 = σ2
L + ρ12 andλ2 = σ2

L − ρ12. Then

P (η(x1) > 0, η(x2) > 0) =
1

2π
√

λ1λ2

∫

η(x1),η(x2)>0
exp−(η̃2

1/λ1 + η̃2
2/λ2)/2dη̃1η̃2

Another change of variables (̃η1 = r
√

λ1 cos α and η̃2 = r
√

λ2 sinα) and some elementary calculus
yields the desired result.
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Proof of Prop. 3 We derive the result for stochastic processF ∼ GP (0, σL, φL) (the Proposition states
the result forσL = 1). The proposition is concerned with an arbitrary collection of indicesi, j such
that i, j ∈ (α1k, α2k) for given 0 < α1 < α2 < 1. By definition, cj = σLΦ−1(j/k). By Taylor
approximation, it is simple to obtain that

cj = cj−1 +
1

k
(
√

2πσLec2j/2σ2
L + o(1)). (10)

Furthermore,cj = −ck−j andck/2 = 0 if k is even. Using a Riemann sum approximation, we have:

P (Z1 = i, Z2 = j) = P (η1 ∈ (ci−1, ci), η2 ∈ (cj−1, cj))

=
1

2π
√

σ4
L − ρ2

12

∫ ci

ci−1

∫ cj

cj−1

exp−σ2
L(η2

1 + η2
2) − 2ρ12η1η2

2(σ4
L − ρ2

12)
dη1η2

=
1

2π
√

σ4
L − ρ2

12

(ci − ci−1)(cj − cj−1) exp−
σ2

L(c2
i + c2

j ) − 2ρ12cicj

2(σ4
L − ρ2

12)
(1 + o(1))

(10)
=

1

k2

σ2
L

√

σ4
L − ρ2

12

exp−
(c2

i + c2
j )ρ

2
12 − 2ρ12σ

2
Lcicj

2(σ4
L − ρ2

12)σ
2
L

(1 + o(1)).

By properties of the multivariate Gaussian,η2|η1 = u1 ∼ N(u1ρ12/σ2
L, σ2

L − ρ2
12/σ2

L). So

P (η1 = i, η2 ≥ j) =

∫ ci

ci−1

e−u2
1/2σ2

L

σL

√
2π

(

1 − Φ(
cj − u1ρ12/σ2

L

σ2
L − ρ2

12/σ2
L

)

)

du1

= (ci − ci−1)(
e−c2i /2σ2

L

σL

√
2π

(

1 − Φ(
cj − ciρ12/σ2

L

σ2
L − ρ2

12/σ2
L

)

)

)
(10)
=

1

k

(

1 − Φ

(

cj − ciρ12/σ2
L

σ2
L − ρ2

12/σ2
L

)

+ o(1)

)

.

The above result can be used to obtain conditional probabilities (e.g., for interpolation). For instance, for
i, j1, j2 ∈ {1, . . . , k},

P (Z(x2) ∈ (j1, j2]|Z(x1) = i) = Φ

(

cj2 − ciρ12/σ2
L

σ2
L − ρ2

12/σ2
L

)

− Φ

(

cj1 − ciρ12/σ2
L

σ2
L − ρ2

12/σ2
L

)

+ o(1).

Finally, it is worth mentioning that ask → ∞, o(1) → 0 uniformly for all i, j in the specified interval,
whereo(1) does depend onσL andφL.
Extension of Prop. 3 tom > 2 locations. The results of Prop. 2 can be easily extended to an arbi-
trary collection of locationsx1, . . . , xm. Let A denote the inverse covariance matrix for random vector
(η(x1), . . . , η(xm)). For anym-tuple(j1, . . . , jm) ∈ {1, . . . , k}m such that none ofcji diverges to∞ or
−∞,

P (Z(x1) = j1, . . . , Z(xm) = jm) =
1

km
(Rj1,...,jm(cj1 , . . . , cjm) + o(1)), (11)

whereo(1) → 0 uniformlyfor all such tuple(j1, . . . , jm), and

Rj1,...,jm(cj1 , . . . , cjm) = σm
L (det A)1/2 exp

m
∑

i=1

c2
ji
(

1

2σ2
L

− Aii

2
) −

∑

s<t

cjscjtAst. (12)
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Given the d.f. forq, it is simple to obtain conditional probabilities, e.g., for labelZ(x1) at locationx1

given remaining labelsZ(x2), . . . , Z(xm). Letting Ã denote the inverse of the covariance matrix for
Z(x2), . . . , Z(xm), we have

P (Z(x1) = j1|Z(x2) = j2, . . . , Z(xm) = jm) =
σL(det A)1/2

k(det Ã)1/2
×

exp

{

c2
j1(1/(2σ2

L) − A11/2) − cj1

∑

t6=1

cjtA1t −
1

2
[cj2 . . . cjm]T (A − Ã)[cj2 . . . cjm]

}

+ o(1/k).

P (Z(x1) > j1|Z(x2) = j2, . . . , Z(xm) = jm) = 1 − Φ

(

cj1 − [ρ12 . . . ρ1m]Ã[cj2 . . . cjm]T

σ2
L − [ρ12 . . . ρ1m]T Ã[ρ12 . . . ρ1m]

)

+ o(1).

Proof of Prop. 4 Sinceθ∗ andL are independent, we have

E(θ(x1) − θ(x2))
2 = E

∑

j1,j2=1,...,k

px1,x2(j1, j2)(θ
∗
j1(x1) − θ∗j2(x2))

2

=
∑

j1 6=j2

qx1,x2(j1, j2)(Eθ∗(x1)
2 + Eθ∗(x2)

2 − Eθ∗(x1)Eθ∗(x2)) +
k

∑

j=1

qx1,x2(j, j)E(θ∗(x1) − θ∗(x2))
2.

The second summand goes to 0 becauseθ∗ is mean square continuous. It remains to show that for anyj1, j2

such thatj1 6= j2, qx1,x2(j1, j2) → 0 asx2 → x1. Note that ifF is a Gaussian processGP (0, σL, φL)

andk = 2, this probability is available in a closed form given by Prop. 2: Forj1 6= j2, qx1,x2(j1, j2) =
1
π arccos(1/2 + ρ12/2σ2

L)1/2 → 0 as x2 − x1 → 0. More generally, suppose thatj1 < j2. Recall
the construction ofZ via the auxiliary random functionη ∼ F . Fix an arbitraryǫ > 0. P (Z(x1) =

j1, Z(x2) = j2|η(x1) < cj1 − ǫ) ≤ P (η(x2) − η(x1) > ǫ) ≤ E(η(x1) − η(x2))
2/ǫ2 → 0 asx2 → x1,

due to the mean square continuity ofη. Now lettingǫ → 0, we obtainP (η(x1) ∈ [cj1 − ǫ, cj1 ]) → 0. So,
asx2 → x1

qx1,x2(j1, j2) ≤ P (η(x1) ∈ [cj1 − ǫ, cj1 ]) + P (Z(x1) = j1, Z(x2) = j2|η(x1) < cj1 − ǫ) → 0.

Proof of Prop. 5.
To simplify the notation in the proof we omit the subscriptsx1, . . . , xm. The equality in distribution

implies the equality of moment generating functions. Thus, for any(t1, . . . , tm) ∈ R
m, we have

∑

(j1,...,jm)

p(j1, . . . , jm) exp

( m
∑

r=1

θ∗jr
(xr)tr+

1

2
τ∗2

∑

t2r

)

=

∫

exp

( m
∑

r=1

θ(xr)tr+
1

2
τ2

∑

t2r

)

G1(dθ)π1(dτ).

(13)
Let j∗1 , . . . , j∗m be the indices of the canonical curves that have the maximum values at locationsx1, . . . , xm,

respectively. Divide both sides of the above equation byexp

[

∑

r θ∗j∗r tr + +1
2τ∗2 ∑

t2r

]

to obtain

p(j∗1 , . . . , j∗m) +
∑

(j1,...,jm)

p(j1, . . . , jm) exp

{ m
∑

r=1

(θ∗jr
(xr) − θ∗j∗r )tr

}

=

∫

exp

{ m
∑

r=1

(θ(xr) − θ∗j∗r )tr +
1

2
(τ2 − τ∗2)

∑

t2r

}

G1(dθ)π1(dτ).
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Note that for anyr = 1, . . . , m, letting tr → +∞ leaves the left hand side positive and bounded while
the right hand side tends to 0 or∞, unless under the priorG1 × π1 the only events with strictly positive
probabilities are eitherY1 = {τ = τ∗, θ(xr) = θ∗j∗r (xr) for all r = 1, . . . , m} or Y2 = {τ < τ∗}. It
follows that the RHS can be written as

PG1×π1(Y1) +

∫

Y2

exp

{ m
∑

r=1

−θ∗j∗r tr −
1

2
(τ∗2 − τ2)(tr −

θ(xr)

τ∗2 − τ2
)2

}

R(θ, τ)G1(dθ)π1(dτ),

whereR(θ, τ) = exp 1
2(τ∗2−τ2)

∑m
r=1 θ(xr)

2. Let tr → ∞ for r = 1, . . . , m, and use the assumption on

functionR, we obtain thatPG1×π1(Y1) = pj∗1 ,...,j∗m × δτ∗ . Now substract the tuple(j∗1 , . . . , j∗m) from the
moment equality equation and carry the same argument to the remaining terms to obtain G1 = Gx1,...,xm ,
andπ1 = δτ∗ .
Proof of Lem. 6.

This lemma is a multivariate version of a result of Ishwaran and Zarepour (Lemma 2). The key to the
proof is to exploit the distribution of the weight vector(px1,...,xm(·)), which is akm-dimensional Dirichlet
distribution parameterized byqx1,...,xm(j1, . . . , jm) where(j1, . . . , jm) ∈ {1, . . . , k}m. It can be shown
that, by examining the proof of Prop. 3, there exists a constantc > 0 such that for anyk there are at least
(k/2)m tuples of the form(j1, . . . , jm) whose associatedq probabilities are greater thanc/km. Using this
fact, and choosingk > 2k∗, wherek∗ is the true number of canonical curves used to generatef0, it can be
verified that Ishwaran and Zarepour’s proof goes through here aswell.
Proof of Lem. 7.

First, letFan
n,k,τ be a subset ofFn,k where the associatedτ is fixed to a constant in[τn, M ], and the

support of the associatedGx1,...,xm lies entirely in[−an, an]m. We obtain the bound of this density class
first, and then relate it to the entropy of the bigger classFn,k.

We note the following bound ofL1 distance for two univariate normal densities (from Lemma 1
of Ghosal, Ghosh, and Ramamoorthi (1999)):

‖ψ(θ(x1), τ) − ψ(θ(x2), τ)‖1 ≤ (θ(x1) − θ(x2))/τ.

To extend this bound to the product of normal densities, we exploit the following bound betweenL1 and
the Hellinger distanceh (which is defined as2h2(f, g) =

∫

(
√

f −√
g)2):

1

2
‖f − g‖2

1 ≤ 2h2(f, g) ≤ ‖f − g‖1.

For product of densities, we have

h2(

m
∏

i=1

fi,

m
∏

i=1

gi) = 1 −
∫

(

m
∏

i=1

figi)
1/2 = 1 −

m
∏

i=1

∫

(figi)
1/2 = 1 −

m
∏

i=1

(1 − h2(fi, gi)).

As a result, if|θ(xi) − θ̃(xi)| ≤ δ for all i = 1, . . . , m,

‖
m
∏

i=1

ψ(θ(xi), τ) −
m
∏

i=1

ψ(θ̃(xi), τ)‖2
1 ≤ 4(1 −

m
∏

i=1

(1 − (θ(xi) − θ̃(xi))/2τ) ≤ 2mδ/τ.

If ‖θ − θ̃‖∞ ≤ δ2τn/2m andτ ≥ τn then‖∏m
i=1 ψ(θ(xi), τ) − ∏m

i=1 ψ(θ̃(xi), τ)‖1 ≤ δ.
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Next, note that the hybrid species curves (vectors)θ is parameterized in terms of onlyk canonical
vectorsθ∗. That is, instead of needingkm mean variables of thekm mixture components, we need only
km mean variables. This can reduce the size of the covering forFan

n,k,τ , which we now specify: LetN0

be the smallest integer greater than2an/(δ2τn/2m) = 4anm/(τnδ2). Divide [−an, an] into N0 equal
intervals and collectN0 midpoints. At each locationxi, i = 1, . . . , m there are onlyk possible values
for θ(xi). Combining acrossm locations, there are

(

N0

k

)m ≤ Nkm
0 ways of choosingkm hybrid curves

(vectors) for thekm mixture components using the midpoints constructed. Thus, we have obtained aδ-
covering for the set of density products of the formPY = {∏m

i=1 ψ(Y(xi)|θ(xi), τ)|θ ∈ [−an, an]m} that
has no more thanNkm

0 elements, andJ(δ,PY ) ≤ km log N0.
Let N = km andPN = {(P1, . . . , PN ) : Pi ≥ 0,

∑N
i=1 Pi = 1}. As proved in Lemma 1 of Ghosal,

Ghosh, and Ramamoorthi (1999) (GGR), under thel1 metric, thatJ(δ,PN ) ≤ N(1 + log 1+δ
δ ). Further-

more, it is simple to observe that one can construct a2δ-covering forFan
n,k,τ by combining each element

of theδ-covering forPN with an element of theδ-covering forPY . This implies that:

J(2δ,Fan
n,k,τ ) ≤ J(δ,PN ) + J(δ,PY ). (14)

The final step is to relateJ(2δ,Fan
n,k,τ ) to J(2δ,Fn,k). Following GGR we use another intermedi-

ate classFan,δ
n,k,τ that consists of allf ∈ Fn,k where the support of the associatedGx1,...,xm lies within

[−an, an]m with probability at least1−δ, and the varianceτ is fixed. From GGR’s Lemma 2,J(3δ,Fan,δ
n,k,τ ) ≤

J(δ,Fan
n,k,τ ). Following GGR’s Lemma 3, foran > M/

√
δ, one can obtain thatFn,k ⊂ F2an,2mδ

n,k,τn
. Com-

bining these with (14)

J(6mδ,Fn,k) ≤ J(6mδ,F2an,2mδ
n,k,τn

) ≤ J(2mδ,F2an
n,k,τn

) ≤ km log
1 + mδ

mδ
+ km log(1 +

2an

τnmδ2
).

Proof of Prop. 9.
LetD = {‖xi − xj‖|1 ≤ i, j ≤ m} andpφ(d) = 1

π arccos
√

1/2 + e−φd/2. Let n+(d) (n−(d), resp.)
be the number of(xi, xj) pairs such that‖xi − xj‖ = d andη(x1)η(x2) ≥ 0 (η(x1)η(x2) < 0, resp.) Let
n(d) = n+(d) + n−(d). Note thatn(d) is independent ofη. The maximum pseudo-likelihood estimator
can be written as

φ̂L = argmaxφ≥0

∑

d∈D
n+(d) log pφ(d) + n−(d) log(1/2 − pφ(d)).

For anyφ, d ≥ 0, 0 ≤ pφ(d) ≤ 1/4. From the definition ofφ̂L,
∑

d∈D
n+(d) log pφ̂L

(d) + n−(d) log(1/2 − pφ̂L
(d)) ≥

∑

d∈D
n+(d) log pφ∗

L
(d) + n−(d) log(1/2 − pφ∗

L
(d)).

Due to the concavity of logarithm,log u+v
2 ≥ (log u + log v)/2 by Jensen’s inequality. This implies

∑

d∈D
n+(d) log

pφ̂L
(d) + pφ∗

L
(d)

2pφ∗
L
(d)

+ n−(d) log
1 − pφ̂L

(d) − pφ∗
L
(d)

1 − 2pφ∗
L
(d)

≥ 0. (15)

It is simple to see that bothlog
pφ(d)+pφ∗

L
(d)

2pφ∗
L

(d) andlog
1−pφ(d)−pφ∗

L
(d)

1−2pφ∗
L

(d) are absolutely bounded by some con-

stantM > 0 for anyφ ≥ 0. From Prop. 2,En+(d) = 2n(d)pφ∗
L
(d) andEn−(d) = 2n(d)(1/2− pφ∗

L
(d)).
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Applying McDiarmid’s inequality, for anyǫ > 0 we obtain

P

„

sup
φ≥0

˛

˛

˛

˛

X

d∈D

„

n+(d) − 2n(d)pφ∗

L
(d))

«

log
pφ(d) + pφ∗

L
(d)

2pφ∗

L
(d)

+

„

n−(d) − 2n(d)(1/2 − pφ∗

L
(d)

«

log
1 − pφ(d) − pφ∗

L
(d)

1 − 2pφ∗

L
(d)

˛

˛

˛

˛

≥ ǫ

«

≤ 2 exp
−4ǫ2

m(m − 1)M2
. (16)

Combining (16) and (15),

P

(
∣

∣

∣

∣

∑

d∈D
−2n(d)pφ∗

L
(d) log

pφ̂L
(d) + pφ∗

L
(d)

2pφ∗
L
(d)

−2n(d)(1/2 − pφ∗
L
(d) log

1 − pφ̂L
(d) − pφ∗

L
(d)

1 − 2pφ∗
L
(d)

∣

∣

∣

∣

≥ ǫ

)

≤ 2 exp
−4ǫ2

m(m − 1)M2
.

Thus,
∑

d∈D n(d)

(

pφ∗
L
(d) log

2pφ∗
L

(d)

pφ̂L
(d)+pφ∗

L
(d) + (1/2 − pφ∗

L
(d)) log

1−2pφ∗
L

(d)

1−pφ̂L
(d)−pφ∗

L
(d)

)

= OP (m) in q-

probability. Note that forlog x ≤ 2(
√

x − 1),

pφ∗
L
(d) log

2pφ∗
L
(d)

pφ̂L
(d) + pφ∗

L
(d)

+ (1/2 − pφ∗
L
(d)) log

1 − 2pφ∗
L
(d)

1 − pφ̂L
(d) − pφ∗

L
(d)

≥ −2pφ∗
L
(d)

(

√

√

√

√

pφ∗
L
(d) + pφ̂L

(d)

2pφ̂L
(d)

− 1

)

− 2(1/2 − pφ∗
L
(d))

(

√

1 − pφ̂L
(d) − pφ∗

L
(d)

1 − 2pφ∗
L
(d)

− 1

)

=

(

√

pφ∗
L
(d) + pφ̂L

(d)

2
−

√

pφ∗
L
(d)

)2

+

(

√

1 − pφ̂L
(d) − pφ∗

L
(d)

2
−

√

1/2 − pφ∗
L
(d)

)2

≥ 1

8
(pφ̂L

(d) − pφ∗
L
(d))2.

For anyφ ∈ [0, φ0] andd ≤ d0, it is simple to verify that there exists a constantC0 > 0 that depends only
on φ0 andd0 such that|pφ(d) − pφ∗

L
(d)| ≥ C0|φ − φ∗

L|. As a result,|φ̂L − φ∗
L| = OP (

√

m/rm), where
rm is the number of pairs(xi, xj) such that‖xi − xj‖ ≤ d0.
Proof of Prop. 10. Let Z = (z(x1), . . . , z(xm)). Denote byP ∗ the joint distributionPZ × Pλ, wherePλ

denotes the Gibbs posterior givenZ, andPZ the “true” distribution generatingZ (i.e., under trueφ∗
L). By

Markov’s inequality, for anyǫm > 0,

Pλ(log P1(φ
∗
L|Z) − log P1(φ|Z) ≥ ǫm)

= Pλ(exp(λ(log P1(φ
∗
L|Z) − log P1(φ|Z)) ≥ exp(λǫm))) ≤ exp(−λǫm)EPλ

(

P1(φ
∗
L|Z)

P1(φ|Z)

)λ

= exp(−λǫm)

∫
(

P1(φ
∗
L|Z)

P1(φ|Z)

)λ ∏

q(z(xi), z(xj))
λπ(φ)dφ

∫
∏

q(z(xi), z(xj))λπ(φ)dφ

= exp(−λǫm)

∏

q(z(xi), z(xj)|φ∗
L)λ

∫

(π(φ∗
L)/π(φ))λdφ

∫
∏

q(z(xi), z(xj))λπ(φ)dφ
= exp(−λǫm)

∏

q(z(xi), z(xj)|φ∗
L)λC1

∫
∏

q(z(xi), z(xj))λπ(φ)dφ
,
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whereC1 =
∫

(π(φ∗
L)/π(φ))λdφ is a constant. Let

Am(ǫ) = {Z : sup
φ≥φ1

∣

∣

∣

∣

log
∏

q(z(xi), z(xj)) − EZ log
∏

q(z(xi), z(xj))

∣

∣

∣

∣

≥ ǫ}.

By McDiarmid’s inequality,PZ(Am(ǫ)) ≤ 2 exp −4ǫ2

m(m−1)M2 for some constantM > 0. Applying
union bounds, under the joint distributionP ∗ we have, for anyδm > 0,

P ∗(log P1(φ
∗
L|Z) − log P1(φ|Z) ≥ ǫm)

≤ PZ(Am(δm/4)) + EZ

[

exp(−λǫm)
C1

∏

q(z(xi), z(xj)|φ∗
L)λ

∫
∏

q(z(xi), z(xj))λπ(φ)dφ

∣

∣

∣

∣

AC
m(δm/4)

]

≤ PZ(Am(δm/4)) + EZ

[

C1 exp−λ(ǫm − δm)

π(φ : log
∏

q(z(xi), z(xj)) ≥ log
∏

q(z(xi), z(xj)|φ∗
L) − δm)

∣

∣

∣

∣

AC
m(δm/4)

]

≤ PZ(Am(δm/4)) +
C1 exp−λ(ǫm − δm)

π(φ : EZ log
∏

q(z(xi), z(xj)) ≥ EZ log
∏

q(z(xi), z(xj)|φ∗
L) − δm/2)

= PZ(Am(δm/4)) +
C1 exp−λ(ǫm − δm)

π(φ : h(φ) ≥ h(φ∗
L) − δm/2)

,

where we defineh(φ) := EZ log
∏

q(z(xi), z(xj)). Let nd be the number of pairs(xi, xj) such that
‖xi − xj‖ = d, andD be the set of suchd. For anyφ ≥ φ1 andd ≥ d1,

|h(φ∗
L) − h(φ)| ≤ C2|φ − φ∗

L|
∑

d∈D
ndd

for some constantC2 > 0 that depends onφ1, d1. From the assumption on the priorπ,

π(φ : h(φ∗
L) − h(φ) ≤ δm/2) ≥ π

(

φ : |φ − φ∗
L| ≤

δm

2C2
∑

d ndd

)

≥
(

δm

2C2
∑

d ndd

)r

.

Thus we obtain

P ∗(log P1(φ
∗
L|Z)−log P1(φ|Z) ≥ ǫm) ≤ 2 exp

−δ2
m

4m(m − 1)M2
+

C1 exp(−λ(ǫm − δm))(2C2
∑

d ndd)r

δr
m

Let δm = ǫm/2 andǫm ∼ m, it follows that underP ∗, log P1(φ
∗
L|Z) − log P1(φ|Z) = OP (m), which

means 1
m(m−1)/2 log

P1(φ∗
L|Z)

P1(φ|Z) = OP (1/m).
Proof of Lem. 11. (sketch)Using standard calculations for exponential families, for each pair of values
(u, v) ∈ {1, . . . , k}2, taking the derivative ofD(q||Q) with respect toqij(Z(x1) = u, Z(x2) = v) and
setting to 0 we can easily obtain the desired result.
Proof of Prop. 12. (sketch)(a) The proof proceeds by induction. The result clearly holds form = 2. For
m > 2, assume thatx0 corresponds to a leaf node and letE′ = E − {x0}. It is simple to show that the
marginal distribution generating the remainingm − 1 nodes follow the form

q̃E′(Z(x2), . . . , Z(xm)) =
2

∑

Z(x1)=1

q̃E(Z(x1), . . . , Z(xm)) ∝
∏

(i,j)∈E′

qij(Z(xi), Z(xj)),

so, by induction, it has uniform marginal at each single node corresponding tox2, . . . , xm. Apply the same
step to another subtree to obtain that the marginal forZ(x1) is also uniform.
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(b) The proof for the first result is straightforward by induction basedon the following fact:A(E) =

A(E′) + log 2. The second result is a known fact for tree-structured graphical models.
(c) To understand the behavior ofA, it is useful to interpret it as a function of parameterθ, A(θ) from

now on, via

θij = log
q(Z(xi) 6= Z(xj))

q(Z(xi) = Z(xj))
for (i, j) ∈ E ; 0 otherwise,

θE = {(θij) | 1 ≤ i, j ≤ m},

q̃E(Z) = exp

{

∑

(i,j)∈E

θijI(Z(xi) 6= Z(xj)) − BE(θ)

}

B(θE) = log
∑

Z

exp

{

∑

(i,j)∈E

θijI(Z(xi) 6= Z(xj))

}

,

A(θE) = B(θE) +
∑

(i,j)∈E

log
1

2
q(Z(xi) = Z(xj)).

As a standard fact of exponential families,B : R
m(m−1)/2 → R is a convex function with respect toθE .

In addition,∇θE
B(θE) = q̃E(Z(xi) 6= Z(xj)). Due to the convexity, we have:

B(θE) ≥ B(θE0) + (θE − θE0)∇θE
B(θE0) and

B(θE0) ≥ B(θE) + (θE0 − θE)∇θE
B(θE).

These inequalities lead to the desired result.
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