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Abstract

Learning in decentralized systems: A nonparametric approach

by

XuanLong Nguyen

Doctor of Philosophy in Computer Science

and the Designated Emphasis

in

Communication, Computation, and Statistics

University of California, Berkeley

Professor Michael I. Jordan, Chair

Rapid advances in information technology result in increased deployment of decen-
tralized decision-making systems embedded within large-scale infrastructures consisting
of data collection and processing devices. In such a system, each statistical decision is
performed on the basis of limited amount of data due to constraints given by the decen-
tralized system. For instance, the constraints may be imposed by limits in energy source,
communication bandwidth, computation or time budget. A fundamental problem arised in
decentralized systems involves the development of methods that take into account not only
the statistical accuracy of decision-making procedures, but also the constraints imposed by
the system limits. It is this general problem that drives the focus of this thesis. In particular,
we focus on the development and analysis of statistical learning methods for decentralized
decision-making by employing a nonparametric approach. The nonparametric approach
imposes very little a priori assumption on the data; such flexibility allows it to be applica-
ble to a wide range of applications. Coupled with tools from convex analysis and empirical
process theory we develop computationally efficient algorithms and analyze their statistical
behavior both theoretically and empirically.

Our specific contributions include the following. We develop a novel kernel-based al-
gorithm for centralized detection and estimation in the ad hoc sensor networks through the
challenging task of sensor mote localization. Next, we develop and analyze a nonpara-
metric decentralized detection algorithm using the methodology of convex surrogate loss
functions and marginalized kernels. The analysis of this algorithm leads to an in-depth
study of the correspondence between the class of surrogate loss functions widely used in
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statistical machine learning and the class of divergence functionals widely used in infor-
mation theory. This correspondence allows us to provide an interesting decision-theoretic
justification to a given choice of divergence functionals, which often arise from asymptotic
analysis. In addition, this correspondence also motivates the development and the analysis
of a novel M-estimation procedure for estimating divergence functionals and the likelihood
ratio. Finally, we also investigate a sequential setting of the decentralized detection algo-
rithm, and settle an open question regarding the characterization of optimal decision rules
in such a setting.

Professor Michael I. Jordan, Chair Date
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Chapter 1

Introduction

Research in the area of decentralized systems focuses on problems in which measurements
are collected by a collection of devices distributed over space (e.g., arrays of cameras,
acoustic sensors, wireless nodes). Due to power and bandwidth limitations, these devices
cannot simply relay their measurements to the common site where a centralized decision
is to be made; rather, the measurements must be compressed prior to transmission, and the
statistical decision-making at the central site is performed on the transformed data[Tsitsik-
lis, 1993b; Blum et al., 1997]. A fundamental problem in decentralized systems research
is that of designing local decision rules at individual data collection/transmission devices
and global decision rules at some fusion center(s) so as to optimize an objective function
of interest.

The problems of decentralized decision making have been the focus of considerable
research in the past three decades (see, e.g.,[Tenney and Sandell, 1981; Tsitsiklis, 1993b;
Blum et al., 1997; Viswanathan and Varshney, 1997; Chong and Kumar, 2003; Cham-
berland and Veeravalli, 2003; Chenet al., 2006]). Indeed, decentralized systems arise in
a variety of important applications, ranging from sensor networks, in which each sensor
operates under severe power or bandwidth constraints, to the modeling of human decision-
making, in which high-level executive decisions are frequently based on lower-level sum-
maries. In applied databases and computer systems, there has been growing interest in
building large-scale distributed monitoring systems of sensor, enterprise and ISP networks.
In such settings, data are typically collected by distributed monitoring devices, transmit-
ted through the network to a central network operation center for aggregation and analysis
(see, e.g.,[Cormode and Garofalakis, 2005; Olstonet al., 2003; Padmanabhanet al., 2005;
Xie et al., 2004; Yegneswaranet al., 2004; Huanget al., 2007]).

From a broad statistical perspective, the variety of learning and decision-making prob-
lems in decentralized systems can be viewed as interesting and highly nontrivial extensions
of basic statistical analysis tasks that involve aspects of experiment design, where each
particular decentralized system impose a different type of constraints on the experiment
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Chapter 1. Introduction

design space. There is a vast statistical literature on experiment designs going back to
David Blackwell and others[Blackwell, 1951; Blackwell, 1953; Bradt and Karlin, 1956;
Lindley, 1956; Goel and DeGroot, 1979; Chernoff, 1972; Steinberg and Hunter, 1985;
Ford et al., 1989; Pukelsheim, 1993; Chaloner and Verdinelli, 1995]. When applied to
decentralized systems, an experiment design is translated to a variety of types of decision
rules: For example, for a sensor network, it is a collection of compression rules at each in-
dividual sensors[Tsitsiklis, 1993b]. For a distributed enterprise network, it is the so-called
filtering scheme at monitoring devices[Olstonet al., 2003]. It is worth noting that remov-
ing the trapping of “decentralized systems” terminologies, the problems of learning and
decision making in such settings share much in common with many fundamental problems
in modern data analysis, such as dimensionality reduction, feature selection, independent
component analysis, because the latter can also be viewed as instances of the problem of
experiment design.

Despite having strong roots in the classical statistics literature, problems of decentral-
ized decision making exhibit unique challenges that typically render a large portion of
existing methods inapplicable. From a computational viewpoint, the high dimensionality
of data (e.g., large number of sensors in a large-scale monitoring infrastructure) and a va-
riety of decentralization constraints imposed on the way such devices can communicate
result in an exponentially large space for possible designs. Indeed, with the exception of
special cases, it is known that the problem of computing decentralized decision rules is NP-
hard[Tsitsiklis and Athans, 1985], even under assumption that the underlying distribution
generating the data is completely known. From a statistical viewpoint, however, the as-
sumption that the underlying distribution generating the data is known is rather unrealistic
in real applications such as sensor networks or large-scale distributed systems. This neces-
sitates the need to develop methods that impose minimal assumptions on the practitioner’s
statistical knowledge of the data. Instead of computing optimal decentralized decision rules
given the knowledge of relevant probability distributions, one could aim to estimate opti-
mal decentralized decision rules directly on the basis of the empirical data samples which
are more readily available. Therefore, this thesis is motivated by the need of developing
a nonparametricapproach to decentralized decision-making, where the optimal decision
rules have to be estimated from empirical data. The nonparametric approach studies learn-
ing procedures that aim to capture large, open-ended classes of functions of interest for our
decision-making purposes.

This chapter is devoted to an overview of a nonparametric approach to a number of
decision-making problems arised from decentralized systems. We shall start by a more
detailed review of existing approaches to decentralized decision-making in Section1.1. In
Section1.2 we summarize briefly key ingredients of our nonparametric approach. Sec-
tion 1.3discusses the main problems and contributions of the thesis in some detail.
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Chapter 1. Introduction

1.1 Existing parametric frameworks and methods

1.1.1 Decentralized decision making

To be more concrete, let us state a basic problem of decentralized detection in the language
of discriminant analysis augmented with a component of experiment design. In particular,
throughout this thesis our focus will be that ofbinary discriminants. LetX be a covariate
taking values in spaceX , and letY ∈ Y := {−1,+1} be a binary random variable. The
joint vector(X, Y ) is drawn from some probability distributionP. A discriminant function
is a measurable functionf mapping fromX to the real line, whose sign is used to make a
detection/classification decision. The standard goal of discriminant analysis is to choose the
discriminant functionf so as to minimize the probability of making the incorrect detection,
also known as theBayes risk, P(Y 6= sign(f(X))).

. . .

. . .

. . .

Y

X1 X2 X3 XS

Z1 Z2 Z3 ZS

γ1 γ2 γ3 γS

γ(Z1, . . . , ZS)

Figure 1.1.Decentralized detection system withS sensors, in whichY is the unknown hy-
pothesis,X = (X1, . . . , XS) is the vector of sensor observations; andZ = (Z1, . . . , ZS)
are the quantized messages transmitted from sensors to the fusion center.

An elaboration of this basic problem in which the decision-maker, rather than having
direct access toX, observes a random variable variableZ ∈ Z that is obtained via a
(possibly stochastic) mappingQ : X → Z. In a statistical context, the choice of the
mappingQ can be viewed as choosing a particularexperiment; in the signal processing
literature, whereZ is generally taken to be discrete, the mappingQ is often referred to as
aquantizer. A decentralized system naturally imposes constraints on the class of quantizer
Q that need to be taken into account in the decision making process.

When the underlying experimentQ is fixed, then we simply have a centralized binary
classification problem on the spaceZ: that is, our goal is to find a real-valued discriminant
functionγ onZ so as to minimize the Bayes riskP(Y 6= signγ(Z)). On the other hand,
the basic issue in decentralized detection is the problem of determiningjointly the classifier
γ ∈ Γ, as well as the experiment choiceQ ∈ Q in the following decision-making scheme:
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Chapter 1. Introduction

X
Q−→ Z

γ−→ Y

The problem of designing such compression rules is of substantial current interest in
the field of sensor networks[Chong and Kumar, 2003; Chamberland and Veeravalli, 2003].
There has also significant amount of work devoted to criteria other than the Bayes error,
such as criteria based on Neyman-Pearson or minimax formulations[Tsitsiklis, 1993b].
A closely related set of “signal selection” problems, arising for instance in radar array
processing, also blend discriminant analysis with aspects of experimental design[Kailath,
1967].

It is well-known that the optimal decision rule(Q, γ) has to be a threshold rule on
some likelihood ratios[Tsitsiklis, 1993b]. On the algorithmic front, the large major-
ity of the literature is based on the assumption that the probability distributionsP(X|Y )
lie within some known parametric family (e.g., Gaussian and conditional independent),
and seeks to characterize the optimal decision rules under such assumptions. Despite
such rather strong assumptions, the standard formulation rarely leads to computationally
tractable algorithms. One main source of difficulty is the intractability of minimizing the
probability of error, whether as a functional of the discriminant function or of the com-
pression rule. Consequently, it is natural to consider loss functions that act as surrogates
for the probability of error, and lead to practical algorithms. For example, the Hellinger
distance has been championed for decentralized detection problems[Longo et al., 1990;
Kailath, 1967], due to the fact that it yields a tractable algorithm both for the experimen-
tal design aspect of the problem (i.e., the choice of compression rule) and the discriminant
analysis aspect of the problem. Chernoff’s distance was used as a surrogate loss in conjunc-
tion with Gaussian and conditional independence assumptions onP(X, Y ) [Chamberland
and Veeravalli, 2003]. More broadly, a class of functions known asAli-Silvey distancesor
f-divergences[Ali and Silvey, 1966; Csiszár, 1967]— which includes not only the Hellinger
distance, but also the variational distance, Kullback-Leibler (KL) divergence and Chernoff
distance—have been explored as surrogate loss functions for the probability of error in a
wide variety of applied discrimination problems. Anf -divergenceDφ(P,Q) captures a
kind of “distance” between two distributionsP andQ, and has the following form:

Dφ(P,Q) =

∫
p0φ(q0/p0) dµ,

whereφ : R → R is a convex function.
Theoretical support for the use off -divergences in discrimination problems comes from

two main sources. First, a classical result of[Blackwell, 1951] asserts that if procedure
A has a smallerf -divergence than procedure B (for some particularf -divergence), then
there exists some set of prior probabilities such that procedure A has a smaller probability
of error than procedure B. This fact, though a relatively weak justification, has nonethe-
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Chapter 1. Introduction

less proven useful in designing signal selection and quantization rules[Kailath, 1967;
Poor and Thomas, 1977; Longo et al., 1990]. Second,f -divergences often arise as ex-
ponents in asymptotic (large-deviation) characterizations of the optimal rate of conver-
gence in hypothesis-testing problems; examples include Kullback-Leibler divergence for
the Neyman-Pearson formulation, and the Chernoff distance for the Bayesian formula-
tion [Cover and Thomas, 1991].

1.1.2 Decentralized detection in sequential setting

An interesting variant of the decentralized detection problem is its extension to an-online
setting: more specifically, thesequential decentralized detectionproblem[Tsitsiklis, 1986;
Veeravalli, 1999; Mei, 2003] involves a data sequence,{X1, X2, . . .}, and a corresponding
sequence of summary statistics,{U1, U2, . . .}, determined by a sequence of local decision
rules{Q1, Q2, . . .}. The goal is to design both the local decision functions and to specify
a global decision rule so as to predictH in a manner that optimally trades off accuracy
and delay. In short, the sequential decentralized detection problem is the communication-
constrained extension of classical formulation of sequential centralized decision-making
problems (see, e.g.,[Wald, 1947; Chernoff, 1972; Shiryayev, 1978; Siegmund, 1985; Lai,
2001]) to the decentralized setting.

The bulk of the literature so far is confined to setting up general framework for studying
sequential decentralized detection and studying the structure of the optimal solutions. In
setting up a general framework for studying sequential decentralized problems, Veeravalli
et al.[Veeravalliet al., 1993] defined five problems, denoted “Case A” through “Case E”,
distinguished from one another by the amount of information available to the local sensors.
For example, in Case E, the local sensors are provided with memory and with feedback
from the global decision-maker (also known as thefusion center), so that each sensor has
available to it the current data,Xn, as well as all of the summary statistics from all of the
other local sensors. In other words, each local sensor has the same snapshot of past state
as the fusion center; this is an instance of a so-called “quasi-classical information struc-
ture” [Ho, 1980] for which dynamic programming (DP) characterizations of the optimal
decision functions are available. Veeravalli et al.[Veeravalliet al., 1993] exploit this fact
to show that the decentralized case has much in common with the centralized case, in par-
ticular that likelihood ratio tests are optimal local decision functions at the sensors and that
a variant of a sequential probability ratio test is optimal for the decision-maker.

Unfortunately, however, part of the spirit of the decentralized detection is arguably lost
in Case E, which requires full feedback. In applications such as power-constrained sensor
networks, we generally do not wish to assume that there are high-bandwidth feedback
channels from the decision-maker to the sensors, nor do we wish to assume that the sensors
have unbounded memory. Most suited to this perspective—and the focus of this thesis—is
Case A, in which the local decisions are of the simplified formUn = Qn(Xn); i.e., neither
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Chapter 1. Introduction

local memory nor feedback are assumed to be available.
Noting that Case A is not amenable to dynamic programming and is presumably in-

tractable, Veeravalli et al.[Veeravalliet al., 1993] suggested restricting the analysis to the
class ofstationarylocal decision functions; i.e., local decision functionsQn that are inde-
pendent ofn. They conjectured that stationary decision functions may actually be optimal
in the setting of Case A (given the intuitive symmetry and high degree of independence
of the problem in this case), even though it is not possible to verify this optimality via DP
arguments. This conjecture has remained open since it was first posed by Veeravalli et
al. [Veeravalliet al., 1993; Veeravalli, 1999].

In comparison to (non-sequential) decentralized detection, since little is known about
the nature of optimal decision rulesQn in the aforementioned setting of sequential decen-
tralized detection, much less is known about an algorithmic solutions for such problems,
even in a parametric setting.

1.2 Nonparametric framework

Despite enormous advances in the area of (parametric) decentralized decision making,
strong parametric assumptions of data make existing methods inappropriate in a wide
range of application domains. For example, in realistic monitoring infrastructure such
as sensor networks, it is well-known that idealized parametric models can be highly in-
accurate due to variability caused by multipath effects and ambient noise interference
as well as device-specific factors such as the frequencies of node radios, physical an-
tenna orientation, and fluctuations in the power source (e.g., see[Bulusu et al., 2000;
Priyanthaet al., 2000]). What is clearly needed is a flexible framework that requires only
minimal assumtions on the data, and let the computation tasks of decision rules in de-
centralized systems be done through estimation/learning from empirical data, where the
learning is performed under the constraints imposed by the decentralized systems. Non-
parametric statistics[Wasserman, 2005] provide a suitable framework for this goal.

In the context ofcentralizedsignal detection problems, there is an extensive line of re-
search on nonparametric techniques, in which no specific parametric form for the joint
distributionP (X, Y ) is assumed (see, e.g., Kassam[Kassam, 1993] for a survey). In
the decentralized setting, however, it is only relatively recently that nonparametric meth-
ods for detection have been explored. Several authors have taken classical nonparamet-
ric methods from the centralized setting, and shown how they can also be applied in a
decentralized system. Such methods include schemes based on Wilcoxon signed-rank
test statistic[Viswanathan and Ansari, 1989; Nasipuri and Tantaratana, 1997], as well as
the sign detector and its extensions[Han et al., 1990; Al-Ibrahim and Varshney, 1989;
Hussainiet al., 1995]. These methods have been shown to be quite effective for certain
types of joint distributions.
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Chapter 1. Introduction

The overarching theme in this thesis is the development of a general nonparametric
framework for decision making in a decentralized systems. Restricting ourselves for a
moment to the basic setup stated in Section1.1.1our framework can be succintly described
as follows. LetX be a covariate taking values in spaceX , and letY ∈ Y := {−1,+1} be a
binary random variable. The joint vector(X, Y ) is drawn from someunknownprobability
distributionP. Given classesQ andF of decision rulesQ andγ, respectively, and that
the knowledge of the distributionP(X, Y ) is given through the basis of independent and
identically distributed (i.i.d.) sample((X1, Y1), (X2, Y2), . . . , (Xn, Yn)), our goal is to learn
the discriminant functionγ ∈ Γ and decision ruleQ ∈ Q so as to minimize the probability
of making the incorrect detection, i.e., Bayes risk:P(Y 6= sign(γ(Q(X)))).

There is a suite of important issues underlying our framework:

• What is the appropriate learning procedure for estimating the discriminant functions
and the quantization rules?

• What are the representations of the discriminant functions and the quantization rules?

• How are the constraints imposed by decentralized systems taken into account?

• What optimization techniques can be employed to improve the computational effi-
ciency of the algorithm?

• What are the statistical and computational properties of the algorithm?

Addressing these issues forms the core part of this thesis. Moreover, as we shall elaborate in
Section1.3, the answers to some of these issues are also of independent interest in contexts
beyond the realm of decentralized systems.

1.2.1 Classification methods

At a very high level, our development is partly motivated by the recent advances in the
statistical classification literature. By classification we refer to a class of problem of learn-
ing discriminant functions from empirical (training) data. The classification literature has
enjoyed intense research in the past half century with contributions from a variety of dis-
ciplines, including statistics (see, e.g.,[Bickel and Doksum, 2006; Hastieet al., 2001]),
engineering (e.g.,[Dudaet al., 2000; Fukunaga, 1990]), artificial intelligence and machine
learning (e.g.,[Bishop, 1995; Scḧolkopf and Smola, 2002; Shawe-Taylor and Cristianini,
2004]).

Early research on classification focused on learning linear discriminants underlying cer-
tain parametric models, resulting in classical methods such as linear discriminant analysis
and linear logistic regression, which have become standard toolboxes in a wide variety of

7



Chapter 1. Introduction

applied fields. At the same time, more flexible alternatives have been proposed to explic-
itly model the linear discrinant function in a direct manner. In particular, for the binary
discrinant functions, the well-known perceptron algorithm, due to Rosenblatt, was pro-
posed to find separating hyperplane in the empirical data[Rosenblatt, 1958]. Another key
idea, due to Vapnik[Vapnik, 1998], was to finds an optimally separating hyperplane us-
ing some measure of loss. These new methods were particularly interesting because they
paved ways for later classification methods that are flexible enough not to rely on strong
assumptions on the underlying distribution generating the empirical data.

The second strand of progress focused on moving from linear classification to non-
linear classification. A significant development was the resurgence of neural networks,
which allow for representing arbitrary nonlinear discriminant functions by compositions
of simpler linear functions and threshold functions via the network’s multiple layers, cou-
pled with the well-known backpropagation learning algorithm[Rumelhartet al., 1986;
Werbos, 1974]. Another important development was the adoption of the kernel method in
representing discriminant functions via the support vector machine algorithm[Cortes and
Vapnik, 1995]. The AdaBoost algorithm[Freund and Schapire, 1997] introduced a novel
way of constructing more complex discriminant functions out of simpler classification al-
gorithms. These are examples of nonparametric classification algorithms that have enjoyed
a significant level of popularity in the past decade.1
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Figure 1.2. Illustrations of the 0-1 loss function, and three surrogate loss functions: hinge
loss, logistic loss, and exponential loss.

The third strand of progress in the field of classification, through the work of many re-
searchers, includes an improved understanding of the statistical and computational behavior
of the proposed learning algorithms, the recognition of the important role of efficient com-
putation via convex optimization (e.g.,[Boyd and Vandenberghe, 2004; Bertsekas, 1995b]),

1Strictly speaking, the discriminant functions considered in the methods of[Cortes and Vapnik, 1995]
and[Freund and Schapire, 1997] are linear in some function spaces.
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and the (re)integration of the field with the existing statistics literature of nonparametric es-
timation (e.g.,[Silverman, 1986; Wahba, 1990]). It is now well-understood that the vast
arsenal of classification algorithms can be characterized in terms of two key components:
(1) The use of computationally-motivated surrogate loss functions and (2) the choice of a
function class representing the class of discriminant functions.

Indeed, in the decision-theoretic formulation of the classification problem, the Bayes er-
ror is interpreted as risk under 0-1 loss. The algorithmic goal is to design discriminant func-
tions by minimizing the empirical expectation of 0-1 loss. In this setting, the non-convexity
of the 0-1 loss renders intractable a direct minimization of the probability of error, so that a
variety of algorithm can be viewed as replacing the 0-1 loss with “surrogate loss functions.”
These alternative loss functions are convex, and represent approximations to the 0-1 loss
(see Figure1.2for an illustration). A wide variety of practically successful machine learn-
ing algorithms are based on such a strategy, including support vector machines[Cortes and
Vapnik, 1995; Scḧolkopf and Smola, 2002], the AdaBoost algorithm[Freund and Schapire,
1997], the X4 method[Breiman, 1998], and logistic regression[Friedmanet al., 2000].

Although the use of kernel methods in classification problems is relatively recent, they
has been studied extensively in the past three decades in the nonparametric statistics litera-
ture, mostly in the context of regression (i.e., function estimation) and density estimation.
On the algorithmic side, kernel methods are almost synonymous to density and function
estimation algorithms – see[Silverman, 1986] for an introduction. The use of reproduc-
ing kernel Hilbert space in general and smoothing splines in particular in both estimation
tasks were pioneered by the work of Wahba and others[Wahba, 1990]. This is related to
but different from the use of kernels in classical kernel density estimation methods (e.g.,
see[Scott, 1992]).

There has been a significant amount of research effort devoting to the theoretical analy-
sis of classification algorithms[Vapnik, 1998; Barron, 1993; Bartlett, 1998; Breiman, 1998;
Jiang, 2004; Lugosi and Vayatis, 2004; Mannoret al., 2003; Zhang, 2004; Bartlettet al.,
2006; Steinwart, 2005]. These work provide theoretical support for modern classification
algorithms, in particular by characterizing statistical consistency and convergence rates of
the resulting estimation procedures in terms of the properties of surrogate loss functions.
The methods of analysis fall largely within the framework of M-estimation analysis[van de
Geer, 1999; van der Vaart, 1998] using empirical process theory[van der Vaart and Well-
ner, 1996; Pollard, 1984]. [Zhang and Yu, 2005] analyzes the interplay between statistical
convergences and computational properties of boosting algorithms.

1.2.2 Key ideas in our framework

In this section we shall outline at a high level several key ideas in our nonparametric ap-
proach to learning in decentralized systems. An elaboration of these ideas are described in
the next section. Furthermore, to keep this summary relatively focused, the discussion in
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this section is confined only to the class of non-sequential decentralized detection problems.
The sequential counterpart shall be discussed in detail in the next section as well.

As in standard classification settings, we deal with the Bayes error as the objective func-
tion. Thus, a natural idea is to replace the 0-1 loss by a convex surrogate loss functionφ.
In contrast to the standard classification settings, learning is required for both the discrim-
inant function and quantization rules at individual monitoring devices. Our algorithm is a
realization of the following M-estimation procedure, i.e., the decision rules are obtained by
minimizing an empirical version of the risk functional:

(f,Q) = argmin(γ,Q)∈{Γ,Q}Êφ(Y, γ(Z))

= argmin(γ,Q)∈{Γ,Q}
1

n

n∑
i=1

∑
z∈Z

Q(z|Xi)φ(Yi, γ(z)).

In terms of representation, we apply the kernel methods by lettingΓ be a reproducing ker-
nel Hilbert space. By a small abuse of notation, we useQ(Z|X) to denote the conditional
probability representing the (stochastic) decision rulex 7→ z at individual monitoring de-
vices:x is mapped toz with probabilityQ(z|x).

In contrast to standard classification algorithms, replacing 0-1 loss by some convex
surrogateφ helps but does not completely resolve the computational challenges inherent in
our problem. Although the empirical risk functional can be made convex with respect to
eitherγ orQ, it is not a convex function with respect to the joint vector(γ,Q). Nonetheless,
this suggests that an efficient optimization procedure by coordinate-wise optimization is
possible. A more challeging issue is that the risk functional itself is difficult to evaluate,
because it involves summing over an exponential number of possible values ofz ∈ Z.
The exponentiality is with respect to the number of dimensions ofz, i.e., the number of
monitoring devices in the decentralized system. To resolve this computational difficulty,
we propose a method for approximating the risk functional. Our approximation method
exploits the decentralization constraints implicitly imposed on the decision ruleQ and the
use of amarginalizedkernel [Tsudaet al., 2002], where the marginalization is defined
naturally based on the conditional distributionQ(Z|X). The theory of duality in convex
analysis is utilized to great effect to ensure that the overall optimization algorithm can be
performed efficiently to overcome the curse of dimensionality presented byX andZ.

From a statistical viewpoint, does the use of surrogate loss functionφ still yield con-
sistent answers in the sense of the 0-1 loss? It is worth emphazing again that the existing
theory of classification is not adequate to provide an answer to this question, because our
problem involves learning both the discriminant functionγ and the decentralized decision
ruleQ. It has been proved that the broad class of so-calledclassification-calibratedloss
functions[Bartlettet al., 2006], including the hinge loss, exponential loss and logistic loss,
all yield consistency in the classification context. We show that in our problem, i.e., classifi-
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cation plus experiment design, among these three loss functions, only the hinge loss yields
consistent learning procedure. Furthermore, it is possible to construct a class of convex
losses that have the same consistency property.

The proof of these consistency results hinge on a deeper fact about the correspondence
between the class of surrogate loss functionals in binary classification, which is a decision-
theoretic concept, and the class off -divergence functionals, an information-theoretic con-
cept arising mostly in the asymptotics. This correspondence allows us to catergorize the
class of surrogate of losses into “equivalent” subclasses by examining at equivalent sub-
classes off -divergences. It turns out that only those loss functions which are equivalent
to the 0-1 loss can produce a consistent learning procedure. This correspondence extends
the early work on the relationship between 0-1 loss andf -divergence in experiment de-
sign[Blackwell, 1951; Blackwell, 1953]. It also provides concrete decision-theoretic jus-
tifications for certain choices of divergence functionals used in existing (parametric) de-
centralized detection literature[Kailath, 1967; Poor and Thomas, 1977; Longoet al., 1990;
Chamberland and Veeravalli, 2003], as well as other experiment design contexts such as di-
mensionality reduction and feature selection in machine learning[Tishbyet al., 1999]. For
instance, the choice of mutual information in the information bottleneck method[Tishby
et al., 1999] implies an underlying logistic loss function. The choice of Hellinger distance
in [Longoet al., 1990] implies an underlying exponential loss.

The correspondence between surrogate losses andf -divergences also provides a non-
parametric estimation method forf -divergence functionals, by turning the estimation prob-
lem into a convex risk minimization problem. It is worth noting that the problem of esti-
mating divergences is significant from both theoretical and practical standpoints. As will
be shown in this thesis, our method for estimatingf -divergence functionals link together
several interesting estimation problems: estimation of integral functionals of unknown den-
sities, estimation of function (the likelihood ratio of two unknown distributions), and clas-
sification problem (estimating the classifier).f -divergences play important roles in many
practical contexts: They are the rate of various coding and compression scheme. They are
also the objective functionals in the estimation procedures for many statistical tasks, includ-
ing dimensionality reduction and feature selection, independent component analysis, and
so on. As we shall elaborate in the sequel, they play key roles in not only (non-sequential)
detection problems, but also sequential detection problems as well.

1.3 Main problems and contributions

In this section we shall elaborate on the main problems considered in this thesis and our
key contributions to such problems.

• a nonparametric approach to centralized detection and estimation tasks and its appli-
cation to the problem of localization in ad hoc sensor network
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• a nonparametric approach to decentralized detection problem.

• a characterization of optimal decision rules of sequential decentralized detection
problem

• a characterization of the correspondence between surrogate loss and divergence func-
tionals.

• a nonparametric estimation method for divergence functionals and the likelihood ra-
tio

At a a high level, underlying much of our thesis is an insight about the relationship
between loss functions and divergence functionals. This relationship is exploited to charac-
terize optimal decision rules in various decision-making settings of decentralized systems,
to devise efficient algorithms for learning such decision rules, and to provide statistical
analyses of such learning algorithms.

1.3.1 Nonparametric centralized detection and estimation

Before focusing our main attention to decentralized systems, in Chapter2 we consider an
application of a nonparametric approach to detection and estimation tasks within a cen-
tralized setting of sensor networks. This also provides a concrete platform from which
we investigate and demonstrate in the sequel our nonparametric approach to decentralized
systems.

A sensor network can be viewed as a pattern recognition device. Rather than trans-
forming sensor locations and sensor readings into Euclidean, world-centric coordinates,
we work directly with the (non-Euclidean) coordinate system given by the physical sensor
readings themselves. Using the methodology of “kernel functions,” the topology implicit in
sets of sensor readings can be exploited in the construction of signal-based function spaces
that are useful for the prediction of various extrinsic quantities of interest, using any of a
variety of statistical algorithms for regression and classification. In Chapter2 we illustrate
this approach in a novel setting of a localization problem[Hightower and Borriello, 2000;
Bulusuet al., 2000; Savareseet al., 2002].

The localization problem that we study is that of determining the location of a (large)
number of sensors of unknown location, based on the known location of a (small) number
of base sensors. LetX1, . . . , Xm denote a set ofm sensors, and letxi denote the position
in R2 of sensorXi. Suppose that the locations of the firstn sensors are known, i.e.,X1 =
x1, . . . , Xn = xn, wheren � m. We want to estimate the positions ofXn+1, . . . , Xm

solely on the basis of the receive/transmit signalss(xi, xj) between pairs of sensors.
An important characteristic of radio or light signal strength is the relationship of the

signal attenuation as a function of distance[Seidel and Rappaport, 1992]. For instance, for
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radio signals in an idealized environment, given that the sending and receiving antennas are
focused on the same radio frequency, we have:

s ∝ Pd−η, (1.1)

whereη > 2 is a constant, andP is the sending signal voltage. Such relationships pro-
vide the basis for a variety of localization algorithms in the literature, which consist of
two main steps: (1) a ranging procedure which involves estimating the distance from a
sensor to another sensor based on the signal strength of the signals transmitted/received be-
tween the two, and (2) a procedure that recovers the locations of the sensors based on their
pairwise distance estimates either by triangulation or by least-squares methods[Priyantha
et al., 2000; Girod and Estrin, 2001; Savvideset al., 2001; Whitehouse, 2002]. How-
ever, the idealized model in Eq. (1.1) can be highly inaccurate due to variability caused by
multipath effects and ambient noise interference as well as device-specific factors such as
the frequencies of node radios, physical antenna orientation, and fluctuations in the power
source[Bulusuet al., 2000; Priyanthaet al., 2000]. Methods based on ranging inherit these
inaccuracies and improvements are possible only if difficult problems in signal modeling
are addressed.

We propose a method that bypasses the ranging step altogether. We show that it is pos-
sible to pose a coarse-grained localization problem as a detection (classification) problem.
Fine-grained localization is then achieved by a second application of the coarse-grained lo-
calization technique. Our localization algorithm thus involves two phases. First, there is a
training phase that chooses discriminant functions for classifying positions using arbitrarily
constructed target regions. This phase is performed either on-line at the base stations, or
taken off-line, and takesO(n3) computational time, wheren is the number of base sensors.
Second, once the training phase is completed, other location-unknown low-power sensors
can determine their own position locally, and the computation takes onlyO(n) time for
each of these sensors.

Our approach makes use of kernel methods for classification and regression, an ex-
ample of which is the “support vector machine (SVM)”[Scḧolkopf and Smola, 2002;
Shawe-Taylor and Cristianini, 2004]. (See Section1.2.1on a brief account of classification
algorithms and the kernel methods developed in statistics and machine learning literature).
Central to this approach is the notion of akernel function, which provides a generalized
measure of similarity for any pair of entities (e.g., sensor locations). The functions that are
output by the SVM and other kernel methods are sums of kernel functions, with the number
of terms in the sum equal to the number of data points.

Kernel functions typically used in practice include Gaussian kernels and polynomial
kernels. A technical requirement of these functions is that they are positive semidefinite,
which is equivalent to the requirement that then × n Gram matrixformed by evaluating
the kernel on all pairs ofn data points is a positive semidefinite matrix. Intuitively, this re-
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quirement allows a kernel function to be interpreted as a generalized measure of similarity.
The kernel function imposes a topology on the data points which is assumed to be useful
for the prediction of extrinsic quantities such as classification labels.

Given that the raw signal readings in a sensor network implicitly capture topological
relations among the sensors, kernel methods would seem to be particularly natural in the
sensor network setting. In the simplest case, the signal strength would itself be a kernel
function and thesignal matrix(s(xi, xj))ij would be a positive semidefinite matrix. Al-
ternatively, the matrix may be well approximated by a positive semidefinite matrix (e.g., a
simple transformation that symmetrizes the signal matrix and adds a scaled identity matrix
may be sufficient). More generally, and more realistically, derived kernels can be defined
based on the signal matrix. In particular, inner products between vectors of received sig-
nal strengths necessarily define a positive semidefinite matrix and can be used in kernel
methods. Alternatively, generalized inner products of these vectors can be computed—this
simply involves the use of higher-level kernels whose arguments are transformations in-
duced by lower-level kernels. In general, hierarchies of kernels can be defined to convert
the initial topology provided by the raw sensor readings into a topology more appropriate
for the classification or regression task at hand. This can be done with little or no knowl-
edge of the physical sensor model.

1.3.2 Nonparametric decentralized detection

Consider a decentralized sensor network system, which typically involves a set of sensors
that receive observations from the environment, but are permitted to transmit only a sum-
mary message (as opposed to the full observation) back to a fusion center. On the basis of
its received messages, this fusion center then chooses a final decision from some number
of alternative hypotheses about the environment. The problem of decentralized detection
is to design the local decision rules at each sensor, which determine the messages that are
relayed to the fusion center, as well a decision rule for the fusion center itself[Tsitsiklis,
1993b]. A key aspect of the problem is the presence ofcommunication constraints, mean-
ing that the sizes of the messages sent by the sensors back to the fusion center must be
suitably “small” relative to the raw observations, whether measured in terms of either bits
or power. The decentralized nature of the system is to be contrasted with a centralized
system, in which the fusion center has access to the full collection of raw observations. See
Section1.1.1for a review of existing approaches to the problem of decentralized detection,
and Section1.2.2for an overview of our key ideas.

Recalling our setup, letY ∈ {−1,+1} be a random variable, representing the two pos-
sible hypotheses in a binary hypothesis-testing problem. Moreover, suppose that the system
consists ofS sensors, each of which observes a single component of theS-dimensional vec-
torX = (X1, . . . , XS). One starting point is to assume that the joint distributionP (X,Y )
falls within some parametric family. Of course, such an assumption raises the modeling
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issue of how to determine an appropriate parametric family, and how to estimate param-
eters. Both of these problems are very challenging in contexts such as sensor networks,
given highly inhomogeneous distributions and a large numberS of sensors. Our focus in
this thesis is on relaxing this assumption, and developing a nonparametric method in which
no assumption about the joint distributionP (X, Y ) is required. Instead, we posit that a
number of empirical samples(Xi, Yi)

n
i=1 are given.

Our approach, to be described in Chapter3, is based on a combination of ideas from
reproducing-kernel Hilbert spaces[Aronszajn, 1950; Saitoh, 1988], and the framework of
empirical risk minimization from nonparametric statistics. Methods based on reproducing-
kernel Hilbert spaces (RKHSs) have figured prominently in the literature on centralized
signal detection and estimation for several decades (e.g.,[Weinert, 1982; Kailath, 1971]).
More recent work in statistical machine learning (e.g.,[Scḧolkopf and Smola, 2002; Shawe-
Taylor and Cristianini, 2004]) has demonstrated the power and versatility of kernel meth-
ods for solving classification or regression problems on the basis of empirical data samples.
Roughly speaking, kernel-based algorithms in statistical machine learning involve choosing
a function, which though linear in the RKHS, induces a nonlinear function in the original
space of observations. A key idea is to base the choice of this function on the minimization
of a regularized empirical riskfunctional. This functional consists of the empirical expec-
tation of a convex loss functionφ, which represents an upper bound on the 0-1 loss (the
0-1 loss corresponds to the probability of error criterion), combined with a regularization
term that restricts the optimization to a convex subset of the RKHS. It has been shown that
suitable choices of margin-based convex loss functions lead to algorithms that are robust
both computationally[Scḧolkopf and Smola, 2002], as well as statistically[Zhang, 2004;
Bartlettet al., 2006]. The use of kernels in such empirical loss functions greatly increases
their flexibility, so that they can adapt to a wide range of underlying joint distributions.

We show how kernel-based methods and empirical risk minimization are naturally
suited to the decentralized detection problem. More specifically, a key component of
the methodology that we propose involves the notion of a marginalized kernel, where the
marginalization is induced by the transformation from the observationsX to the local de-
cisionsZ. The decision rules at each sensor, which can be either probabilistic or determin-
istic, are defined by conditional probability distributions of the formQ(Z|X), while the
decision at the fusion center is defined in terms ofQ(Z|X) and a linear function over the
corresponding RKHS. We develop and analyze an algorithm for optimizing the design of
these decision rules. It is interesting to note that this algorithm is similar in spirit to a suite
of locally optimumdetectors in the literature (e.g,[Blum et al., 1997]), in the sense that
one step consists of optimizing the decision rule at a given sensor while fixing the decision
rules of the rest, whereas another step involves optimizing the decision rule of the fusion
center while holding fixed the local decision rules at each sensor. Our development relies
heavily on the convexity of the loss functionφ, which allows us to leverage results from
convex analysis[Rockafellar, 1970] so as to derive an efficient optimization procedure. In
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addition, we analyze the statistical properties of our algorithm, and provide probabilistic
bounds on its performance.

1.3.3 Surrogate losses and f -divergence

In Chapter4 we study the roles of and relationships between surrogate losses andf -
divergences in the context of centralized and decentralized detection problems. As math-
ematical objects, thef -divergences studied in information theory and the surrogate loss
functions studied in statistical machine learning are fundamentally different: the former are
functions on pairs of measures, whereas the latter are functions on values of discriminant
functions and class labels. However, their underlying role in obtaining computationally-
tractable algorithms for discriminant analysis suggests that they should be related. Indeed,
Blackwell’s result hints at such a relationship, but its focus on 0-1 loss does not lend itself
to developing a general relationship betweenf -divergences and surrogate loss functions.
The primary contribution of Chapter4 is to provide a detailed analysis of the relationship
betweenf -divergences and surrogate loss functions, developing a full characterization of
the connection, and explicating its consequences. We show that for any surrogate loss, re-
gardless of its convexity, there exists a corresponding convexf such that minimizing the
expected loss is equivalent to maximizing thef -divergence. We also provide necessary
and sufficient conditions for anf -divergence to be realized from some (decreasing) convex
loss function. More precisely, given a convexf , we provide a constructive procedure to
generateall decreasing convex loss functions for which the correspondence holds.

φ1

φ2

φ3

f1

f2

f3

Class of loss functions Class of f -divergences

Figure 1.3. Illustration of the correspondence betweenf -divergences and loss functions.
For each loss functionφ, there exists exactly one correspondingf -divergence (induced
by some underlying convex functionf ) such that theφ-risk is equal to the negativef -
divergence. Conversely, for eachf -divergence, there exists a whole set of surrogate loss
functionsφ for which the correspondence holds. Within the class of convex loss functions
and the class off -divergences, one can construct equivalent loss functions and equivalent
f -divergences, respectively. For the class of classification-calibrated decreasing convex loss
functions, we can characterize the correspondence precisely.
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The relationship is illustrated in Figure4.1; whereas each surrogate lossφ induces only one
f -divergence, note that in general there are many surrogate loss functions that correspond
to the samef -divergence. As particular examples of the general correspondence estab-
lished in this paper, we show that the hinge loss corresponds to the variational distance, the
exponential loss corresponds to the Hellinger distance, and the logistic loss corresponds to
the capacitory discrimination distance.

This correspondence—in addition to its intrinsic interest as an extension of Blackwell’s
work—has several specific consequences. First, there are numerous useful inequalities re-
lating the variousf -divergences[Topsoe, 2000]; our theorem allows these inequalities to
be exploited in the analysis of loss functions. Second, the minimizer of the Bayes error
and the maximizer off -divergences are both known to possess certain extremal proper-
ties [Tsitsiklis, 1993a]; our result provides a natural connection between these properties.
Third, our theorem allows a notion of equivalence to be defined among loss functions: in
particular, we say that loss functions are equivalent if they induce the samef -divergence.
We then exploit the constructive nature of our theorem to exhibit all possible convex loss
functions that are equivalent (in the sense just defined) to the 0-1 loss. Finally, we illustrate
the application of this correspondence to the problem of decentralized detection. Whereas
the more classical approach to this problem is based onf -divergences[Kailath, 1967;
Poor and Thomas, 1977], our method instead builds on the framework of statistical machine
learning. The correspondence allows us to establish consistency results for the algorithmic
framework for decentralized detection described in Chapter3: in particular, we prove that
for any surrogate loss function equivalent to 0-1 loss, our estimation procedure is consistent
in the strong sense that it will asymptotically choose Bayes-optimal quantization rules.

1.3.4 Sequential decentralized detection

In Chapter5 we take a detour from the non-sequential setting, and consider instead the
sequential setting of the decentralized detection problem. The reader is refered to Sec-
tion 1.1.2for a brief background of this problem.

We are interested in particular the following problem of sequential decentralized de-
tection, which is “Case A” in the framework of[Veeravalli, 1999]: Let X1, X2, . . . be a
data sequence drawn i.i.d. by either probability distributionP0 or P1, which correspond
to the two hypothesesH = 0 or 1, with priorπ1 andπ0, respectively. Note that the ran-
domXi can be multivariate; each variate is collected by a sensor in a sensor network. Due
to communication constraints, however, given a dataXi, each sensor transmits a message
Ui = Qi(Xi) to a fusion center. Thus, the fusion center receives a sequence of (possibly
multivariate) messagesU1, U2, . . ., one at a time, and has to decide when to stop receiv-
ing data based on a stopping timeN 2, and to determine the hypothesisH via an estimate

2 In technical terms, a stopping timeN is a random variable defined with respect to the sigma-field
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Ĥ = γ(U1, . . . , UN). In a Bayesian setting of the problem, the performance measure is
sequential costmade up by a weighted sum of the detection error, and the expected time
delay:

P(H 6= Ĥ) + cEN,

wherec denotes the cost of each extra sampleU . The overall goal of a sequential detection
problem is to determine the decision triple(Q,N, γ) so as to minimize the sequential cost.
In the sensor network setting, the decision ruleQ is also called the quantization rule at
sensors.

Note that whenQ is fixed, we are reduced to a classical sequential detection problem,
which was well-understood[Wald, 1947; Shiryayev, 1978; Siegmund, 1985; Lai, 2001].
Thus the key issues lie in the characterization of the optimal quantization rules(Q1, Q2, . . ..
Veeravalli et al[Veeravalliet al., 1993; Veeravalli, 1999] conjectured that the optimal deci-
sion ruleQ is stationary, e.g., the quantization ruleQn at each time stepn is independent of
n, at least in the asymptotic setting asc → 0. This is due to an observation that asc → 0,
the stopping time tends to infinity. Thus, each sample at a time step may have the same role
in the asymptotic setting. The stationary conjecture has remained open since it was first
posed.

Characterizing the optimal rulesQ has important implication if we are to take the se-
quential detection problem beyond the original parametric setting in the existing literature.
Indeed, if we drop the assumptions that the distributionsP0 andP1 are known, and now
view Ui = Qi(Xi) as a summarizing statistic, then a key issue would be how choose the
best class of statistical functionsQi’s in a sequential estimation procedure.

One primary contribution in this chapter is to show that stationary decision functions
are, in fact,not optimal. Our argument is based on an asymptotic characterization of the
optimal Bayesian risk as the cost per sample goes to zero. In this asymptotic regime, the
optimal cost can be expressed as a simple function of priors and Kullback-Leibler (KL)
divergences. This characterization allows us to construct counterexamples to the stationar-
ity conjecture, both in an exact and an asymptotic setting. In the latter setting, we present
a broad class of problems in which there always exists a range of prior probabilities for
which stationary strategies, either deterministic or randomized, are suboptimal. We note in
passing that an intuition for the source of this suboptimality is easily provided—it is due to
the asymmetry of the KL divergence.

It is well known that optimal quantizers when unrestricted are necessarily likelihood-
based threshold rules[Tsitsiklis, 1986]. Our counterexamples and analysis imply that op-
timal thresholds are not generally stationary (i.e., the threshold may differ from sample to
sample). We also provide a partial converse to this result: specifically, if we restrict our-
selves to stationary (or blockwise stationary) quantizer designs, then there exists an optimal

σ(U1, . . . , UN ) generated by the random sequenceU1, U2, . . . [Durrett, 1995].
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design that is a threshold rule based on the likelihood ratio. We prove this result by estab-
lishing a quasiconcavity result for the asymptotically optimal cost function. In this thesis,
this result is proven for the space of deterministic quantizers with arbitrary output alpha-
bets, as well as for the space of randomized quantizers with binary ouputs. We conjecture
that the same result holds more generally for randomized quantizers with arbitrary output
alphabets.

1.3.5 Nonparametric estimation of f -divergence functionals and
the likelihood ratio

One consequence of the relationship between surrogate losses andf -divergences stud-
ied in Chapter4 is a non-asymptotic decision-theoretic variational characterization off -
divergence functionals. This allows us to devise and analyze a nonparametric estimation
method forf -divergence functionals and the likelihood ratio. Recall that anf -divergence
Dφ(P,Q) captures a “distance” between two distributionsP andQ:

Dφ(P,Q) =

∫
p0φ(q0/p0) dµ,

whereφ : R → R is a convex function.
This problem estimatingDφ has important applications. As noted earlier, divergences

play important roles not only in learning in (non-sequential and sequential) decentralized
systems. They also have a fundamental role as an objective to optimize in various other data
analysis and learning tasks, including dimentionality reduction and feature selection. An
important quantity in information theory, the Shannon mutual information, can be viewed
as a KL divergence. The KL divergence is used as the bit rate in several compression
schemes. Mutual information is often used as a measure of independence to be minimized
such as in the problem of independent component analysis[Hyvarinenet al., 2001]. If
the divergences are to be used as objective functional in such tasks, one has to be able to
estimate them efficiently from empirical data.

We propose a novelM -estimator for the likelihood ratio and the family off -divergences
based on the variational characterization off -divergence as explained above. Our estima-
tion procedure is inherently nonparametric:P andQ are not known. Nor do we make strong
assumptions on the forms of the densities forP andQ. The estimation procedure is based
on i.i.d. empirical samplesX1, X2, . . . andY1, Y2, . . . drawn fromP andQ, respectively.

We provide a consistency and convergence analysis for our estimators. For the analy-
sis, we make assumptions on the boundedness of thedensity ratio, which can be relaxed
in some cases. The maximization procedure is cast over a whole function classG of den-
sity ratio, thus our tool is based on results from the theory of empirical processes. Our
method of proof is based on the analysis ofM -estimation for nonparametric density esti-
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mation[van de Geer, 1999; van der Vaart and Wellner, 1996]. The key issue essentially
hinges on the modulus of continuity of the suprema of two empirical processes (defined on
P andQ measures) with respect to a metric defined on the classG. This metric turns out
to be a surrogate lower bound of a Bregman divergence defined on a pair of density ratios.
Our choice of metrics include the Hellinger distance andL2 norm.

We provide an efficient implementation of our estimation procedures using RKHS as
the relevant function classes. Our estimation method compares favorably againts existing
approaches in the literature.

1.4 Thesis organization

The remainder of this thesis is organized as follows.
Chapter 2: Nonparametric centralized detection and estimation
This chapter introduces the use of kernel methods in centralized detection and estima-

tion by considering a challenging problem of localization in ad hoc sensor network. It also
provides a concrete application of our nonparametric approach as we go decentralized in
the sequel.

Chapter 3: Nonparametric decentralized detection
This chapter considers the problem of decentralized detection, proposes a nonparamet-

ric learning algorithm and describes its computational and statistical properties.
Chapter 4: Surrogate losses andf -divergence functionals
This chapter investigates the correspondence of surrogate loss functions and divergence

funtionals and the implications of this correspondence. As an application we prove the
consistency of the learning algorithm proposed in Chapter 3.

Chapter 5: Optimal quantization rules in sequential decentralized detection
This chapter studies the structure of optimal decision rules in a sequential decentralized

detection problem.
Chapter 6: Nonparametric estimation of divergences and the likelihood ratio
This chapter introduces and analyzes a nonparametric estimation procedure for diver-

gence functionals and the likelihood ratio.
Chapter 7: Contributions and suggestions
This chapter summarizes the contributions of the thesis, and discusses several directions

for future research.
All background knowledge are included in each individual chapter, making each chap-

ter sufficiently self-contained. Nonetheless, Chapter2 is a good warm-up for the materials
developed in Chapter3, especially for the readers who are new to kernel methods and their
application to detection and estimation problems. For readers who are interested in the
motivation of the theoretical study of losses and divergence funtionals it is useful to start
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with Chapter3 before going into Chapter4. Chapter5 focuses on sequential detection
problems and can be read independently from the rest. Techniques introduced in Chapter6
have useful applications that go beyond the context of decentralized systems and can also
be read independently without the background in the previous chapters.
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Chapter 2

Nonparametric centralized detection
and estimation

This chapter demonstrates the use of kernel methods in a challenging problem of local-
ization in sensor networks. We show that the coarse-grained and fine-grained localization
problems for ad hoc sensor networks can be posed and solved as a pattern recognition
problem using kernel methods from statistical learning theory. This stems from an obser-
vation that the kernel function, which is a similarity measure critical to the effectiveness of
a kernel-based learning algorithm, can be naturally defined in terms of the matrix of signal
strengths received by the sensors. Thus we work in the natural coordinate system provided
by the physical devices. This not only allows us to sidestep the difficult ranging procedure
required by many existing localization algorithms in the literature, but also enables us to
derive a simple and effective localization algorithm. The algorithm is particularly suitable
for networks with densely distributed sensors, most of whose locations are unknown. The
computations are initially performed at the base sensors and the computation cost depends
only on the number of base sensors. The localization step for each sensor of unknown lo-
cation is then performed locally in linear time. We present an analysis of the localization
error bounds, and provide an evaluation of our algorithm on both simulated and real sensor
networks.1

2.1 Introduction

A sensor network can be viewed as a distributed pattern recognition device. In the pat-
tern recognition approach, rather than transforming sensor locations and sensor readings
into Euclidean, world-centric coordinates, we work directly with the (non-Euclidean) co-
ordinate system given by the physical sensor readings themselves. Using the methodology

1 This work has been published in[Nguyenet al., 2005a].
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of “kernel functions,” the topology implicit in sets of sensor readings can be exploited
in the construction of signal-based function spaces that are useful for the prediction of
various extrinsic quantities of interest, using any of a variety of statistical algorithms for
regression and classification. In the current chapter we illustrate this approach in the
setting of a localization problem[Hightower and Borriello, 2000; Bulusu et al., 2000;
Savareseet al., 2002].

The localization problem that we study is that of determining the location of a (large)
number of sensors of unknown location, based on the known location of a (small) number
of base sensors. LetX1, . . . , Xm denote a set ofm sensors, and letxi denote the position
in R2 of sensorXi. Suppose that the locations of the firstn sensors are known, i.e.,X1 =
x1, . . . , Xn = xn, wheren� m. We want to recover the positions ofXn+1, . . . , Xm solely
on the basis of the receive/transmit signalss(xi, xj) between pairs of sensors.

An important characteristic of radio or light signal strength is the relationship of the
signal attenuation as a function of distance[Seidel and Rappaport, 1992]. For instance, for
radio signals in an idealized environment, given that the sending and receiving antennas are
focused on the same radio frequency, we have:

s ∝ Pd−η, (2.1)

whereη > 2 is a constant, andP is the sending signal voltage. Such relationships provide
the basis for a variety of localization algorithms in the literature, which consist of two main
steps: (1) a ranging procedure which involves estimating the distance from a sensor to
another sensor based on the signal strength of the signals transmitted/received between the
two, and (2) a procedure that recovers the locations of the sensors based on their pairwise
distance estimates either by triangulation or by least-squares methods[Priyanthaet al.,
2000; Girod and Estrin, 2001; Savvideset al., 2001; Whitehouse, 2002]. Unfortunately,
however, the idealized model in Eq. (1.1) can be highly inaccurate due to variability caused
by multipath effects and ambient noise interference as well as device-specific factors such
as the frequencies of node radios, physical antenna orientation, and fluctuations in the
power source[Bulusu et al., 2000; Priyanthaet al., 2000]. Methods based on ranging
inherit these inaccuracies and improvements are possible only if difficult problems in signal
modeling are addressed.

In this chapter we propose a method that bypasses the ranging step altogether. We
show that it is possible to pose a coarse-grained localization problem as a discriminative
classification problem that can be solved using tools from the statistical machine learning
literature. Fine-grained localization is then achieved by a second application of the coarse-
grained localization technique. Our localization algorithm thus involves two phases. First,
there is a training phase that chooses discriminant functions for classifying positions using
arbitrarily constructed target regions. This phase is performed either on-line at the base
stations, or taken off-line, and takesO(n3) computational time, wheren is the number of
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base sensors. Hence, our assumption is that the base sensors have sufficient power and
processing capability (indeed, these are also the nodes that might have GPS-capability to
determine their own exact locations). Second, once the training phase is completed, other
location-unknown low-power sensors can determine their own position locally, and the
computation takes onlyO(n) time for each of these sensors.

Our approach makes use of kernel methods for statistical classification and regres-
sion [Scḧolkopf and Smola, 2002], an example of which is the “support vector machine
(SVM).” Central to this approach is the notion of akernel function, which provides a gen-
eralized measure of similarity for any pair of entities (e.g., sensor locations). The functions
that are output by the SVM and other kernel methods are sums of kernel functions, with
the number of terms in the sum equal to the number of data points. Kernel methods are
examples ofnonparametricstatistical procedures—procedures that aim to capture large,
open-ended classes of functions.

Kernel functions typically used in practice include Gaussian kernels and polynomial
kernels. A technical requirement of these functions is that they are positive semidefinite,
which is equivalent to the requirement that then × n Gram matrixformed by evaluating
the kernel on all pairs ofn data points is a positive semidefinite matrix. Intuitively, this re-
quirement allows a kernel function to be interpreted as a generalized measure of similarity.
The kernel function imposes a topology on the data points which is assumed to be useful
for the prediction of extrinsic quantities such as classification labels.

Given that the raw signal readings in a sensor network implicitly capture topological
relations among the sensors, kernel methods would seem to be particularly natural in the
sensor network setting. In the simplest case, the signal strength would itself be a kernel
function and thesignal matrix(s(xi, xj))ij would be a positive semidefinite matrix. Al-
ternatively, the matrix may be well approximated by a positive semidefinite matrix (e.g., a
simple transformation that symmetrizes the signal matrix and adds a scaled identity matrix
may be sufficient). More generally, and more realistically, derived kernels can be defined
based on the signal matrix. In particular, inner products between vectors of received sig-
nal strengths necessarily define a positive semidefinite matrix and can be used in kernel
methods. Alternatively, generalized inner products of these vectors can be computed—this
simply involves the use of higher-level kernels whose arguments are transformations in-
duced by lower-level kernels. In general, hierarchies of kernels can be defined to convert
the initial topology provided by the raw sensor readings into a topology more appropriate
for the classification or regression task at hand. This can be done with little or no knowl-
edge of the physical sensor model.

Our focus is on the discriminative classification problem of locating sensors in an ad
hoc sensor network. It is worth noting that similar methods have been explored recently
in the context of tracking one or more objects (e.g., mobile robots) that move through a
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wireless sensor field.2 Systems of this type include Active Badge[Wantet al., 1992], [Ward
et al., 1997], RADAR [Bahl and Padmanabhan, 2000], Cricket [Priyanthaet al., 2000],
and UW-CSP (cf. [Li et al., 2002]). In [Bahl and Padmanabhan, 2000], the authors
describe a simple nearest neighbor classification algorithm to obtain coarse localization of
objects. Most closely related to our approach is the work of[Li et al., 2002] in which
a number of classification algorithms are used for tracking moving vehicles, includingk-
nearest neighbor and support vector machines. We elaborate on the connections between
this work and ours in the description of our algorithm.

The chapter is organized as follows. We begin with a brief background of classification
using kernel methods, and motivate our application of kernel methods to the localization
problem based on sensor signal strength. Next, the localization algorithm and its error
analysis are described. We then present details of the implementation of the algorithm and
its computational cost, followed by an evaluation of our algorithm with simulated and real
sensor networks. Finally, we present our discussions in the final section.

2.2 Classification using kernel methods

In a classification algorithm, we are given as training datan samples(xi, yi)
n
i=1 in X ×

{±1}, whereX denotes the input space. Eachyi specifies whether the data pointxn ∈ X
lies in a classC ⊆ X (yi = 1) or not (yi = −1). A classification algorithm involves finding
a discriminant functiony = sign(f(x)) that minimizes the classification errorP (Y 6=
sign(f(X))).

Central to a kernel-based classification algorithm (e.g., the SVM) is the notion of a
kernel functionK(x, x′) that provides a measure of similarity between two data pointsx
andx′ in X . Technically,K is required to be a symmetric positive semidefinite function.3

For such a function, Mercer’s theorem implies that there must exist a feature spaceH in
whichK acts as an inner product, i.e.,K(x, x′) = 〈Φ(x),Φ(x′)〉 for some mappingΦ(x).
The SVM and related kernel-based algorithms choose a linear functionf(x) = 〈w,Φ(x)〉
in this feature space. That is, they find a vectorw which minimizes the loss

n∑
i=1

φ(yif(xi))

subject to||w|| ≤ B for some constantB. Hereφ denotes a convex function that is an

2The alternative to discriminative classification is classification usinggenerativeprobabilistic models.
This is a well-explored area that dates back to contributors such as Wiener and Kalman. Recent work in this
vein focuses on the distributed and power-constrained setting of wireless sensor networks (e.g.[Sheng and
Hu, 2003; D’Costa and Sayeed, 2003]).

3For a translation-invariant kernel, i.e.,K(x, x′) = h(x − x′) for some functionh, K is a positive
semidefinite kernel if the Fourier transform ofh is non-negative.
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upper bound on the 0-1 lossI(y 6= sign(f(x))).4 In particular, the SVM algorithm is based
on the hinge lossφ(yf(x)) = (1− yf(x))+.5 By the Representer Theorem (cf.[Scḧolkopf
and Smola, 2002]), it turns out that the minimizingf can be expressed directly in terms of
the kernel functionK:

f(x) =
n∑

i=1

αiK(xi, x) (2.2)

for an optimizing choice of coefficientsαi.
There are a large number of kernel functions that satisfy the positive semidefinite prop-

erty required by the SVM algorithm. Examples include the Gaussian kernel:

K(x, x′) = exp−(||x− x′||2/σ)

as well as the polynomial kernel:

K(x, x′) = (γ + ||x− x′||)−σ,

for parametersσ andγ. Both of these kernel functions decay with respect to the distance
||x− x′||, a property that is shared by most idealized signal strength models. In particular,
the radio signal model (1.1) has a form similar to that of a polynomial kernel. In[Sheng and
Hu, 2003], the authors justify the use of an acoustic energy model for localization that has
the form of the Gaussian kernel above. These relationships suggest a basic connection be-
tween kernel methods and sensor networks. In particular, a naive usage of kernel methods
could be envisaged in which signal strength is used directly to define a kernel function. In
general, however, signal strength in real sensor networks need not define a positive semidef-
inite function. Nonetheless, it is the premise of this chapter that signal strength matrices
provide a useful starting point for defining kernel-based discriminant functions. We show
how to define derived kernels which are stacked on top of signal strength measurements in
the following section.

Finally, it is worth noting that multi-modal signals are naturally accommodated within
the kernel framework. Indeed, suppose that we haveD types of sensory signals, each of
which can be used to define a kernel functionKd(x, x

′) for d = 1, . . . , D. Then any conic
combination ofKd yields a new positive semidefinite function:

K(x, x′) =
D∑

d=1

βdKd(x, x
′).

There are methods for choosing the parametersβd > 0 based on empirical data[Lanckriet

4The indicator function is defined asI(A) = 1 if A is true, and 0 otherwise.
5The subscript + notation means thatx+ = max(x, 0).
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et al., 2004].

2.3 Localization in ad hoc sensor network

2.3.1 Problem statement

We assume that a large number of sensors are deployed in a geographical area. The input
to our algorithm is a set ofm sensors, denoted byX1, . . . , Xm. For eachi we denote byxi

the position inR2 of sensorXi. Suppose that the firstn sensor locations are known, i.e.,
X1 = x1, . . . , Xn = xn, wheren� m. For every pair of sensorsXi andXj, we are given
the signals(xi, xj) that sensorXj receives fromXi. We want to recover the positions of
Xn+1, . . . , Xm.

2.3.2 Algorithm description

We first aim to obtain a coarse location estimate forXn+1, . . . , Xm. Given an arbitrarily
constructed regionC ⊆ R2, we ask whetherXi ∈ C or not, for i = n + 1, . . . ,m. This
can be readily formulated as a classification problem. Indeed, since the location of the base
sensorsX1, . . . , Xn are known, we know whether or not each of these base sensors are in
C. Hence we have as our training datan pairs(xi, yi = sign(xi ∈ C))n

i=1. For any sensor
Xj, j = n + 1, . . . ,m, we can predict whetherXj ∈ C or not based on the sign of the
discriminant functionf(xj):

f(xj) =
n∑

i=1

αiK(xi, xj). (2.3)

We emphasize that the value off(xj) is known because the values of the kernels,K(xi, xj),
are known, despite the fact that we do not know the positionxj per se.

Next, we turn to the definition of the kernel matrixK = (K(xi, xj))1≤i,j≤m. In general
we envision a hierarchy of kernels based on the signal matrix. An example of such a
hierarchy is as follows:

1. We might simply defineK(xi, xj) = s(xi, xj). We call this naive choice afirst-tier
kernel. If the signal matrixS = (s(xi, xj))1≤i,j≤m is a symmetric positive semidef-
inite Gram matrix then this approach is mathematically correct although it may not
yield optimal performance. IfS is not symmetric positive semidefinite, then a pos-
sible approximation is(S + ST )/2 + δI. This matrix is symmetric, and is positive
semidefinite for sufficiently largeδ > 0 (in particular, forδ larger in absolute value
than the most negative eigenvalue of(S + ST )/2).
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2. Alternatively, defineK = STS, to be refered to as asecond-tierlinear kernel.K is
always symmetric positive semidefinite. This kernel can be interpreted as an inner
product for a feature spaceH which is spanned by vectors of the form:

Φ(x) = (s(x, x1), s(x, x2), . . . , s(x, xm)).

Specifically, we define:

K(xi, xj) =
m∑

t=1

s(xi, xt)s(xj, xt).

Intuitively, the idea is that sensors that are associated with similar vectors of sensor
readings are likely to be nearby in space.

3. Finally, it is also possible to evaluate any kernel function (e.g., Gaussian) on the
feature spaceH induced by the second-tier kernel. This yields a symmetric positive
semidefinite matrix, to be refered to as athird-tier kernel. Specifically, a third-tier
Gaussian kernel has the following form, for a parameterσ:

K(xi, xj) = exp

{
− ‖Φ(xi)− Φ(xj)‖2

σ

}
= exp

{
−

∑m
t=1(s(xi, xt)− s(xj, xt))

2

σ

}
.

Given training data(xi, yi)
n
i=1 and a kernel functionK, we apply the SVM algorithm

to learn a discriminant functionf(x) as in Eq. (2.2). The algorithmic details and computa-
tional costs are discussed in Section2.4.

Our classification formulation has several noteworthy characteristics. First, the training
points correspond to the base sensors, and thus may be limited in number, making the learn-
ing problem nominally a difficult one. However, because we are free to choose the target
regionC, the problem can in fact be made easy. This ability to design the geometry of the
boundary to fit the geometry of the classifier distinguishes this problem from a traditional
pattern recognition problem.

The second characteristic is that we require that the network be relatively dense. As
seen in Eq. (2.3), the prediction of position is based on a sum over sensors, and an accurate
prediction can be achieved in general only if there are enough non-zero terms in the sum
for it to be statistically stable.

A related point is that it is not necessary that the network be completely connected.
If the sensor readings(xi, xj) is generally small or zero for a pair of sensors, then that
term does not perturb the kernel calculation or the discriminant calculation. If readings
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fluctuate between small values and large non-zero values, then the prediction will generally
be degraded. Given that the approach is a statistical approach, however, with predictions
based on an aggregation over neighboring sensors, it should be expected to exhibit a certain
degree of robustness to fluctuations. This robustness should be enhanced by the protocol
for fine-grained estimation, as we now discuss.

We now turn to the fine-grained estimate of sensor positions. We use the coarse-
grained solution presented above as a subroutine for a localization algorithm for sensors
Xj(j = n + 1, . . . ,m). The idea is as follows: We fix a number of overlapping regions
Cβ(β = 1, . . . , U) in the geographical region containing the sensor network. For eachβ,
we formulate a corresponding classification problem with respect to classCβ and predict
whether or notXj ∈ Cβ. Hence,Xj has to be in the intersection of regions that contain
it. We might, for example, assign its locationxj to be the centroid of such an intersection.
Given an appropriate choice of granularity and shapes for the regionsCβ, if most of the
classification labels are correct we expect to be able to obtain a good estimate ofxj.

As we have seen in our experiments on both simulated data (using a Gaussian or poly-
nomial kernel) and real sensor data (using kernels that are constructed directly from the
signal matrix), given a sufficient number of base sensors (i.e., training data points), the
SVM algorithm can fit regions of arbitrary shape and size with reasonable accuracy. When
the number of base sensors is limited, it is found that the SVM algorithm can still fit el-
liptic shapes very well. This can be turned to our advantage for fine-grained localization:
By picking appropriate regionsCβ such as ellipses that are easy to classify, we do not need
many base sensors to achieve reasonable localization performance for the entire network.
In the sequel, we will show that this intuition can be quantified to give an upper bound on
the expected (fine-grained) localization error with respect to the number of base sensors.

2.3.3 Localization error analysis

Suppose that the sensor network of sizeL×L is covered uniformly byk2 discs with radius
R. Then any given point in the sensor network is covered by approximatelyπ(Rk/L)2

discs. Each of these discs are used to define the region for a region classification prob-
lem. To obtain a fine-grained location estimate for all remaining sensors,Xj for j =
n + 1, . . . ,m, we need to solvek2 region classification problems. Leteβ be the training
error for each of these problems, forβ = 1, . . . , k2. That is,

eβ =
n∑

i=1

φ(sign(xi ∈ Cβ)f(xi)).

Since the size and shape of the regions are ours to decide, it is reasonable to assume that
the training error for these classification problems are small. For instance, the circle/elliptic
shape is particularly suited for Gaussian or polynomial kernels. Defineε(R) to be the upper
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bound for all training errors:
ε(R) = max

β
eβ.

Our analysis needs the following assumption:

Assumption 2.1. If a sensor is correctly classified with respect to all covering discs, then
it is also correctly classified with respect to all remaining discs.

This assumption is reasonable and follows from an observation that the covering discs
imply boundaries that are closer to a given sensor location. Thus the classification problems
with respect to the covering discs tend to be more difficult than with respect to other dics
located farther away from the sensor location.

Using a generalization error bound for margin-based classification[Koltchinskii and
Panchenko, 2002], for eachβ = 1, . . . , k2, the probability of misclassification for each
new sensorXj and regionCβ is eβ + O(1/

√
n), wheren is the number of training points

(i.e., number of base sensors). Since each location is covered byπR2k2/L2 discs, the
probability of misclassification for at least one these covering discs is, by the union bound,
less thanπR2k2

L2 (ε(R)+O(1/
√
n)). If a given sensor is correctly classified with respect to all

of its covering discs, then we assign the sensor’s location to be the center of the intersection
of all these discs, in which case the localization error is bounded byO(L/k).

Hence, the expectation of the localization error is bounded by

O

(
L

k

)
+
πR2k2

L

(
ε(R) +O(1/

√
n)

)
.

This asymptotic bound is minimized by lettingk ∝ L2/3R−2/3(ε(R)+O(1/
√
n))−1/3. The

bound then becomesO(L1/3R2/3(ε(R) +O(1/
√
n))1/3).

In summary, we have proved the following:

Proposition 2.2. Assume that all sensor locations are independently and identically dis-
tributed according to an (unknown) distribution. For any sensor locationx, let x̂ be the
location estimate given by our algorithm. Then, under Assumption2.1there holds:

E||x− x̂|| ≤ O(L1/3R2/3(ε(R) +O(1/
√
n))1/3).

This result has the following consequences for the expected variation of the fine-grained
localization error as a function of the parametersn (the number of base sensors),R (the
size of the discs), andk2 (the number of discs):

1. The fine-grained localization error decreases as sensor network becomes more densely
distributed (i.e.n increases). In addition, the localization error increases with the size
of the network, but this increase is at most linear.
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2. The fine-grained localization error increases asR increases; on the other hand, as
R increases, the optimal value ofk decreases, resulting in a smaller computational
cost, because there arek2 discs to classify. Hence, variation inR induces a tradeoff
between localization accuracy and computational complexity.

3. We would expect the localization error to increase at a rateO(R2/3) if ε(R) were to
remain constant. However, asR increases, the length of the boundary of the regions
Cβ also increases, and the training errorε(R) is expected to increase as well. As a
result, we expect the localization error to actually increase faster thanO(R2/3).

4. The training errorε(R) depends on the distribution of sensor location, but which is
unknown.

Note that our analysis makes some simplifying assumptions—it assumes a uniform dis-
tribution for the locations of regionsCβ and it assumes circular shapes. While the analysis
can be readily generalized to other specific choices, it would be of substantial interest to
develop a general optimization-theoretic approach to the problem of choosing the regions.

2.4 Algorithm details and computational cost

During the training phase associated with each coarse localization subroutine, i.e., classi-
fication with respect to a fixed regionCβ, we construct the training data set based on the
locations of the base sensors as described in the previous section. This is achieved by hav-
ing all base stations send the signal matrix entriess(xi, xj) and their known locations to
a central station, a procedure which involves receiving and storingn2 + n numbers at the
central station. The central station then solves the following optimization problem:

min
w
||w||2 +

c

n

n∑
i=1

φ(yif(xi)),

wheref(x) = 〈w,Φ(x)〉, φ(yf(x)) = (1 − yf(x))+, andc is a fixed parameter.6 This is
a convex optimization problem, which has the following dual form[Scḧolkopf and Smola,
2002]:

max
0≤α≤c

2
n∑

i=1

αi −
∑

1≤i,j≤n

αiαjyiyjK(xi, xj). (2.4)

The algorithm finds optimizing values of{αi}, which are then used to form the discriminant
function in Eq. (2.2).

6The parameterc is a regularization parameter associated with the SVM algorithm. In all our experiments,
we fix c = 10.
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Coarse localization algorithm
Input: Xi = xi ∈ R2 for i = 1, . . . , n; signal matrix[s(xi, xj)]1≤i,j≤m where
n� m; a regionC ⊆ R2.
Output: yj ∈ {±1} for j = n+ 1, . . . ,m.

1. For i = 1, . . . , n, let yi = sign(xi ∈ C).

2. Define a positive semidefinite kernel matrix[K(xi, xj)]1≤i,j≤m based upon
[s(xi, xj)]ij.

3. Solve the optimization problem (2.4) for optimum{αi}n
i=1.

4. For j = n+ 1, . . . ,m, yj = sign (
∑n

i=1 αiK(xi, xj)) .

Figure 2.1: Summary of the coarse localization algorithm.

It is known that the solution to this optimization problem can be found in the worst
case inO(n3) computational time. Thus if there arek2 regions to classify, this result
suggests a total training time ofO(n3k2). However, this generic worst-case estimate is
overly conservative in our setting. Indeed, an estimate based on the number of support
vectorsns returned by each classification algorithm (thoseXi such thatαi 6= 0) reveals
that the computational complexity isO(n3

s + n2
sn) instead ofO(n3). Usuallyns � n.

Our simulation experience (to be presented in the next section) shows that when discs with
radiusR are used, the support vectors reside mostly along the boundaries of the discs,
hencens ≈ O(min(nπR2/L2, 2πR)), in which case the overall training phase takes only
O(R2nk2) time. Note also that this training phase is the most expensive part of our algo-
rithm and is performed at a central station.

Once the training phase is complete, each base sensor is required to store then param-
eters(α1, . . . , αn) for the purpose of classification of the remaining (location-unknown)
sensors. If the first-tier kernel is used, a new sensorXj for j = n + 1, . . . ,m records the
signals(xi, xj) from thens base sensorsi ∈ {1, . . . , n}, and combines these with the non-
zero valuesαi, resulting in a cost ofO(ns) in time and storage. If a second-tier linear kernel
or a third-tier Gaussian kernel is used, a new sensorXj recordsn-element signal vectors
(s(xj, x1), . . . , s(xj, xn)) from thens base stations, resulting in aO(nsn) cost in time and
storage. The kernel valuesK(xi, xj) are then readily computable from the received sig-
nalss(xi, xj) in O(1), O(n), O(n2) time for the first-tier, second-tier and third-tier kernel,
respectively. Then a simple computation (Equation2.3) determines for sensorXj whether
it resides in the regionC or not. The attractive feature of the localizing step is that it is
done locally (in a distributed fashion), taking only linear (for the first-tier and second-tier
kernels) or quadratic (for the third-tier Gaussian kernel) time and storage space (in terms

32



Chapter 2. Nonparametric centralized detection and estimation

of n). Since the localization is done on an as-needed basis, its time and storage cost do not
depend on the total number of sensorsm in the network. A summary of our algorithm is
provided in Figure2.1.

Now we turn to fine-grained localization. At both algorithmic and system levels,
this involves invoking the coarse localization subroutinek2 times with respect to regions
C1, . . . , Ck2. Therefore, for each regionβ = 1, . . . , k2 we have a set of parameters(αi)

n
i=1.

Each sensorXj can then determine its location by settingxj to be the centroid of the in-
tersection of all regionsCβ that it finds itself residing in. In the case in whichCβ are discs
with centerscβ, this yields:

xj :=

∑k2

β=1 cβI(Xj ∈ Cβ)∑k2

β=1 I(Xj ∈ Cβ)
.

Clearly, the computational cost of a fine-grained localization algorithm isk2 times as much
as the computational cost of each coarse localization step. In summary, our fine-grained
localization algorithm is shown in Figure2.2.

Fine-grained localization algorithm
Input: Xi = xi ∈ R2 for i = 1, . . . , n; signal matrix[s(xi, xj)]1≤i,j≤m where
n� m; k; R.
Output: xj ∈ R2 for j = n+ 1, . . . ,m.

1. Let A1 = min{(xi)1}n
i=1; B1 = max{(xi)1}n

i=1; A2 = min{(xi)2}n
i=1;

B2 = max{(xi)2}n
i=1.

2. Let Cβ for β = 1, . . . , k2 bek2 discs with radiusR distributed uniformly
in a grid of coordinates[A1, B1]× [A2, B2].

3. For β = 1, . . . , k2, run the coarse localization algorithm with respect to
regionCβ to get values{yβ,j}m

j=n+1.

4. Letting cβ be the center ofCβ for β = 1 . . . , k2, then:

xj =
Pk2

β=1 cβI(yβ,j=1)
Pk2

β=1 I(yβ,j=1)
.

Figure 2.2: Summary of the fine-grained localization algorithm.
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2.5 Experimental Results

...

...

...

...

light source

sensor motes

(a) (b)

Figure 2.3: (a) Illustration of a sensor field. (b) a Mica sensor mote.

We evaluate our algorithm on simulated sensor networks in the first two subsections,
and then on a real network using Berkeley sensor motes.

2.5.1 Coarse localization

Simulation set-up:
We consider a network of size10 × 10 square units. The base sensors are distributed

uniformly in a grid-like structure. There are a total ofn such sensors. We are concerned
with recognizing whether a sensor positionx, characterized by the signal readings(xi, x)
for i = 1, . . . , n, lies in a regionC or not.

We first define a signal model: Each sensor locationx is assumed to receive from a sen-
sor located atx′ a signal value following a fading channel model:s(x, x′) = exp− ||x−x′||2

σ
+

N(0, τ), whereN(0, τ) denotes an independently generated normal random variable with
standard deviationτ . This signal model is a randomized version of a Gaussian kernel. We
have also experimented with a signal strength model that is a randomized version of the
polynomial kernel:s(x, x′) = (||x−x′||)−σ +N(0, τ). The results for the polynomial ker-
nels are similar to the Gaussian kernels, and are not presented here. It is emphasized that
although the use of these models have been motivated elsewhere as signal models[Seidel
and Rappaport, 1992; Sheng and Hu, 2003], in our case they are used merely to generate
the signal matrixS. Our algorithm is not provided with any knowledge of the procedure
that generatesS.

Next, we define a regionC to be recognized. In particular,C consists of all locationsx
that satisfy the following equations:(x− v)TH1(x− v) ≤ R and(x− v)TH2(x− v) ≤ R,
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Figure 2.4. Simulation results with (randomized) Gaussian models. Thex-axis shows the
number of sensors employed along each dimension of the network. They-axis shows the
ratio between the number of incorrectly classified points and the number of points inside
the area to be recognized. (Note that this ratio is larger than the overall failure rate; in the
latter the denominator includes the points outside the area to be recognized).

wherev = [5 5]T ,H1 = [2 −1;−1 1] andH2 = [2 1; 1 1]. The radiusR is used to describe
the size ofC. For each simulation set-up(n,R, σ, τ), we learn a discriminant functionf for
the regionC using the training data given by the base sensor positions. Oncef is learned,
we test the classification at100 × 100 sensor locations distributed uniformly in the region
containing the network.

Figure2.5(a) illustratesC as a green shaded region, forR = 2, while the black bound-
ary represents the region learned by our localization algorithm. Qualitatively, the algorithm
has captured the shape of the target regionC. We now present a quantitative analysis on
the effects ofn,R, σ, andτ on the localization (i.e., classification) performance:

Effects ofn: The plots in Figure2.4 show the localization (test) error with respect to
the number of base sensors deployed in the network. The test error is defined to be the
ratio between the number of misclassified points and the number of points located within
the areaC(R) (out of 100× 100 locations distributed uniformly in the grid). In this set of
simulations, we fix the noise parameterτ = 0, and letσ = 1 andσ = 7, while varying
n. The plots confirm that the localization error tends to decrease as the sensor network
becomes more densely distributed. Note that if we need to recognize a particular area, we
only need to plant base sensors in the area near the boundary, because these are the likely
locations of support vectors. Of course, in our context coarse-grained localization is only
a subroutine for fine-grained localization, and it is our interest to have base sensors spread
throughout the whole geographical area.

Effects of σ and τ : The parameterσ is used to describe the sensitivity of the signal
strength with respect to the sensor distance. In particular, for a Gaussian signal function, a
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Figure 2.5. (a) Illustration of a simulated sensor network with 15×15 base sensors, and
the recognized boundary in black (withR = 2) using a Gaussian kernel withσ = 1. The
black squares are the support vector base sensors. The test error in this figure is 0.27. (b)
Plots show the effect of the sensor fading signal parameterσ and signal noise parameterτ
on coarse localization performance.

small value ofσ implies that the signal strength fades very quickly for distant sensors. The
plots in Figure2.5(b) display the effects of bothσ andτ on the localization performance.
In this set of simulations, we fix the number of base sensors along each dimension to be 10,
and set the radius ofC to beR = 2, while varyingσ andτ . It is seen that the localization
performance degrades as we increase the noise parameterτ , and the degradation is more
severe for the least sensitive signal, i.e., whenσ is large.

2.5.2 Fine-grained localization

Simulation set-up: The network set-up is the same as the previous section, except that the
n base sensors are now distributed approximately uniformly at random in the whole area.
By this we mean that each base sensor is initially planted at a grid point in theL×L square,
whereL = 10, and then perturbed by Gaussian noiseN(0, L/(2

√
n)). There are 400 other

sensors whose locations are to be determined using our algorithm. These 400 sensors are
deployed uniformly in the grid. Again, we assume the signal strength follows a Gaussian
signal model, with noise parameterτ = 0.2.

We applied the algorithm described in Section2.3 for fine-grained localization. The
algorithm involves repeated coarse localizations with respect to a set of regions that cover
the whole network area. We choose these regions to be discs of radiusR, and distributed
uniformly over the network. Letk be the number of discs along each dimension, such that
there are a totalk2 discs to recognize. In this simulation we study the effects ofR, k and
the number of base sensorsn on the localization performance. Specifically, we examine the
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Figure 2.6. The left panel shows the effect of the number of base sensorsn on fine-grained
localization error mean and standard deviation (for all nodes). The right panel shows the
effects of the size of discs (by radiusR) and the number of discs (k2) distributed uniformly
on the field. The means and variances are collected after performing the simulation on 20
randomly generated sensor networks.
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Figure 2.7. This figure shows the effects of the size of discs (R) on the fine-grained
localization error. The number of disks(k2) is chosen so that the mean localization error
(per node) is smallest. The error rate is compared with the curveO(R2/3) plotted in blue.
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Figure 2.8. Localization results for a simulated sensor network of size10×10 square units
with 25 base sensors (left figure) and 64 base sensors (right figure). The base sensors are
the black squares. Each blue line connects a true sensor position (in circle) and its estimate.
The signal model is Gaussian. The mean localization error is 0.4672 in the left figure and
0.3877 in the right figure.

tradeoff between computational cost and localization accuracy of our algorithm by varying
these parameters, as suggested by the theoretical analysis in Section2.3.3.

Effects of n: Figure2.6(a) shows that the mean localization error (averaged over all
sensor networks and over all sensors) decreases monotonically as more base sensors are
added to the network. This agrees with the theoretical result presented in Section2.3.3.
Figure2.8 illustrates the localization results for each node in the networks with 25 and
64 base sensors. The mean localization error (averaging over all sensors) for these two
networks are 0.47 and 0.39, respectively.

Effects of R and k: Figure2.6(b) shows the effects ofR andk on the localization
performance. In this set of simulations, we fixτ = 0.2, σ = 2, andn = 100, while
varyingR andk. The analysis in Section2.3.3suggests that for each value ofR, there
exists an optimal value fork that increases asR decreases. Since there arek2 classification
problems to solve, the computational cost generally increases asR decreases. However,
the mean localization error improves asR decreases. Hence, there is a tradeoff between
computational cost and localization accuracy as manifested by the behavior ofR andk.

To gain more insight of the effects of the size of discs (R) on the fine-grained local-
ization error, in Figure2.7, we plot the mean localization error for the optimal value ofk.
This figure shows that the optimal mean localization error increases asR increases. We
also compare the rate of increase with that ofR2/3. As shown in Figure2.7 the rate is
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Figure 2.9. Panel (a) shows the noisy relationship between signal strength received by
sensors and the distances. Few sensors exhibit a clear signal strength-distance functional
pattern as in panel (b), while most are like those in panels (c) and (d). Note that only data
points marked with x in red are available for regression training.
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Figure 2.10. Localization result for a real sensor networks covering a 40×40 square-inch
area. There are 25 base sensors (Berkeley motes) spaced in a 5× 5 grid. Each line connects
a true position (in circle) and its estimate. Panel (a) shows the results given by a traditional
2-step localization algorithm, while panels (b,c,d) show the localization results obtained by
our algorithm using three different kernels (the first-tier, second-tier and third-tier Gaussian
kernel, respectively).

approximately that ofR2/3 in a middle range and eventually surpassesR2/3. Recall from
the analysis in Section2.3.3that we expect this increase in rate due to the increase inε(R).
On the other hand, the analysis does not predict the smaller rate of increase observed for
small values ofR.

2.5.3 Localization with Berkeley sensor motes

Experiment set-up: We evaluated our algorithm on a real sensor network using Berkeley
tiny sensor motes (Mica motes) as the base stations. The goal of the experiment is to
estimate the positions of light sources given the light signal strength received by a number
of base sensors deployed in the network. Our hardware platform consists of 25 base sensors
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Method Mean Median Std

Two-step ranging-based 6.99 5.28 5.79
First-tier signal kernel 6.67 4.60 7.38

Second-tier linear kernel 3.65 2.51 4.29
Third-tier Gaussian kernel 3.53 2.63 3.50

Table 2.1. Comparison between a two-step ranging-based algorithm and our kernel-based
localization algorithm in a sensor network with 25 base sensors covering a40× 40 square-
inch area. The localization error mean, median and standard deviation are taken over all
position estimates, and measured in inches.

placed 10 inches apart on a5 × 5 grid in a flat indoor environment. Each sensor mote is
composed of one Atmel ATmega 103 8-bit processor running at 4MHz, with 128Kb of
flash and 4Kb of RAM, RFM TR1000 radio, EEprom and a sensor board which includes
light, temperature, microphone sensors and a sounder. Our experiment makes use of light
sensor data received by the motes. The measured signals are a scalar field produced by
a light source shining on the sensor network from above; the height and intensity of the
light source were constant. Only the position of light sources placed at the base sensors are
given as training data. To be estimated are 81 light source positions distributed uniformly
in a9× 9 grid spread over the whole network.

A range-based algorithm: We compared our algorithm to a state-of-the-art algorithm
that epitomizes a majority of localization algorithms in the literature. This algorithm was
described in[Whitehouse, 2002], and consists of two main steps: (1) a ranging procedure
aimed at establishing a mapping between the signal strength received by a base sensor
and the distance to the light source, and (2) a localization procedure giving the distance
estimates using least-squares methods.

Figure2.9 illustrates the difficulty of the ranging problem—the functional relationship
between distances and signal strengths is very noisy. Much of this noise is device-specific;
as shown in Figure2.9, a few sensors exhibit a clear distance-to-signal-strength pattern,
while most others exhibit a very noisy pattern. As shown in[Whitehouse, 2002], improve-
ment in the ranging step can be achieved by accounting for properties of specific base
sensors. This is done by introducing regression coefficients for each of these base sensors.
Once the ranging step is completed, we have estimates of the distance between the base
sensors and the positions of the light source. The initial position estimates are obtained
using the Bounding-Box algorithm, and are then iteratively updated using a least-squares
method (see[Whitehouse, 2002; Savvideset al., 2001]). Figure2.5.1(a) shows the local-
ization results for this algorithm.

Results for the kernel-based algorithm: Three different kernels are used in our al-
gorithm. The first is a first-tier symmetric positive semidefinite approximation of the sig-
nal matrix. In particular, as discussed in Section2.3, given a signal matrixS, we define
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S ′ := (S + ST )/2 + δI. The remaining kernels are a second-tier linear and third-tier
Gaussian kernel, with the parameterσ fixed to 0.5 in the latter case. For fine-grained local-
ization, coarse localization is repeatedly applied for discs of radiusR = L/2 = 20 inches
that cover part of the network area. The centers of these discs are five inches apart in both
dimensions, and there are 10 discs along each dimension (i.e.,k = 10).

Table2.1 shows that the localization error achieved by the kernel-based approach is
smaller than that of the two-step algorithm. Among the three choices of signal kernels,
the second-tier kernels are much better than the simple first-tier kernel. The localization
results are depicted spatially in Figure2.5.1. Note that the minimum distance between two
neighboring base sensors is about 10 inches, and the localization error of our algorithm
(using second-tier kernels) is slightly over one third of that distance.

2.6 Discussions

We have presented a nonparametric learning algorithm for coarse-grained and fine-grained
localization for ad hoc wireless sensor networks. Our approach treats the signal strength
as measured by sensor motes as a natural coordinate system in which to deploy statistical
classification and regression methods. For the localization problem, this approach avoids
the ranging computation, a computation which requires accurate signal models that are dif-
ficult to calibrate. Instead, we use signal strength either directly to define basis functions
for kernel-based classification algorithms, or indirectly via derived kernels that operate on
top of the signal strength measurements. We show how a kernel-based classification algo-
rithm can be invoked multiple times to achieve accurate localization results, and we present
an error analysis for the accuracy that can be achieved as a function of base sensor den-
sity. Our algorithm is particularly suitable for densely distributed sensor networks, and is
appealing for its computational scaling in such networks: The preprocessing computations
are performed at the base sensors, which are assumed to have sufficient processing and
power capability, while the localizing step at location-unknown sensors can be achieved in
linear time.

We have argued for a simple approach to localization that dispenses with ranging com-
putations and sensor modeling. We do not necessarily believe, however, that our statistical
approach is always to be preferred. In particular, the level of accuracy that we appear
to be able to obtain with our approach is on the order of one third the distance between
the motes. While this accuracy is sufficient for many potential applications of sensor net-
works, in some applications higher accuracy may be required. In this case, ranging-based
approaches offer an alternative, but only in the setting in which highly accurate models of
the relationship between sensor signals and distances are available.
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Chapter 3

Nonparametric decentralized
detection using kernel methods

We consider the problem of decentralized detection under constraints on the number of bits
that can be transmitted by each sensor. In contrast to most previous work, in which the
joint distribution of sensor observations is assumed to be known, we address the problem
when only a set of empirical samples is available. We propose a nonparametric approach
using the framework of empirical risk minimization and marginalized kernels, and analyze
its computational and statistical properties both theoretically and empirically. We provide
a computationally efficient algorithm, and demonstrate its performance on both simulated
and real data sets.1

3.1 Introduction

A decentralized detection system typically involves a set of sensors that receive observa-
tions from the environment, but are permitted to transmit only a summary message (as
opposed to the full observation) back to a fusion center. On the basis of its received mes-
sages, this fusion center then chooses a final decision from some number of alternative
hypotheses about the environment. The problem of decentralized detection is to design
the local decision rules at each sensor, which determine the messages that are relayed to
the fusion center, as well a decision rule for the fusion center itself[Tsitsiklis, 1993b]. A
key aspect of the problem is the presence ofcommunication constraints, meaning that the
sizes of the messages sent by the sensors back to the fusion center must be suitably “small”
relative to the raw observations, whether measured in terms of either bits or power. The
decentralizednature of the system is to be contrasted with a centralized system, in which
the fusion center has access to the full collection of raw observations.

1This chapter has been published in[Nguyenet al., 2005b].
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Such problems of decentralized decision-making have been the focus of considerable
research in the past two decades[Tenney and Sandell, 1981; Tsitsiklis, 1993b; Blum et al.,
1997; Chamberland and Veeravalli, 2003]. Indeed, decentralized systems arise in a variety
of important applications, ranging from sensor networks, in which each sensor operates
under severe power or bandwidth constraints, to the modeling of human decision-making,
in which high-level executive decisions are frequently based on lower-level summaries. The
large majority of the literature is based on the assumption that the probability distributions
of the sensor observations lie within some known parametric family (e.g., Gaussian and
conditionally independent), and seek to characterize the structure of optimal decision rules.
The probability of error is the most common performance criterion, but there has also been
a significant amount of work devoted to other criteria, such as criteria based on Neyman-
Pearson or minimax formulations. See Tsitsiklis[Tsitsiklis, 1993b] and Blum et al.[Blum
et al., 1997] for comprehensive surveys of the literature.

More concretely, letY ∈ {−1,+1} be a random variable, representing the two possible
hypotheses in a binary hypothesis-testing problem. Moreover, suppose that the system con-
sists ofS sensors, each of which observes a single component of theS-dimensional vector
X = {X1, . . . , XS}. One starting point is to assume that the joint distributionP (X,Y )
falls within some parametric family. Of course, such an assumption raises the modeling
issue of how to determine an appropriate parametric family, and how to estimate param-
eters. Both of these problems are very challenging in contexts such as sensor networks,
given highly inhomogeneous distributions and a large numberS of sensors. Our focus in
this chapter is on relaxing this assumption, and developing a method in which no assump-
tion about the joint distributionP (X, Y ) is required. Instead, we posit that a number of
empirical samples(xi, yi)

n
i=1 are given.

In the context ofcentralizedsignal detection problems, there is an extensive line of re-
search on nonparametric techniques, in which no specific parametric form for the joint
distributionP (X, Y ) is assumed (see, e.g., Kassam[Kassam, 1993] for a survey). In
the decentralized setting, however, it is only relatively recently that nonparametric meth-
ods for detection have been explored. Several authors have taken classical nonparamet-
ric methods from the centralized setting, and shown how they can also be applied in a
decentralized system. Such methods include schemes based on Wilcoxon signed-rank
test statistic[Viswanathan and Ansari, 1989; Nasipuri and Tantaratana, 1997], as well as
the sign detector and its extensions[Han et al., 1990; Al-Ibrahim and Varshney, 1989;
Hussainiet al., 1995]. These methods have been shown to be quite effective for certain
types of joint distributions.

Our approach to decentralized detection in this chapter is based on a combination of
ideas fromreproducing-kernel Hilbert spaces[Aronszajn, 1950; Saitoh, 1988], and the
framework ofempirical risk minimizationfrom nonparametric statistics. Methods based
on reproducing-kernel Hilbert spaces (RKHSs) have figured prominently in the litera-
ture on centralized signal detection and estimation for several decades[Weinert, 1982;
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Kailath, 1971, e.g.,]. More recent work in statistical machine learning[Scḧolkopf and
Smola, 2002, e.g.,] has demonstrated the power and versatility of kernel methods for solv-
ing classification or regression problems on the basis of empirical data samples. Roughly
speaking, kernel-based algorithms in statistical machine learning involve choosing a func-
tion, which though linear in the RKHS, induces a nonlinear function in the original space
of observations. A key idea is to base the choice of this function on the minimization of
a regularized empirical riskfunctional. This functional consists of the empirical expec-
tation of a convex loss functionφ, which represents an upper bound on the 0-1 loss (the
0-1 loss corresponds to the probability of error criterion), combined with a regularization
term that restricts the optimization to a convex subset of the RKHS. It has been shown that
suitable choices of margin-based convex loss functions lead to algorithms that are robust
both computationally[Scḧolkopf and Smola, 2002], as well as statistically[Zhang, 2004;
Bartlettet al., 2006]. The use of kernels in such empirical loss functions greatly increases
their flexibility, so that they can adapt to a wide range of underlying joint distributions.

In this chapter, we show how kernel-based methods and empirical risk minimization are
naturally suited to the decentralized detection problem. More specifically, a key component
of the methodology that we propose involves the notion of amarginalized kernel, where
the marginalization is induced by the transformation from the observationsX to the local
decisionsZ. The decision rules at each sensor, which can be either probabilistic or deter-
ministic, are defined by conditional probability distributions of the formQ(Z|X), while the
decision at the fusion center is defined in terms ofQ(Z|X) and a linear function over the
corresponding RKHS. We develop and analyze an algorithm for optimizing the design of
these decision rules. It is interesting to note that this algorithm is similar in spirit to a suite
of locally optimumdetectors in the literature[Blum et al., 1997, e.g.,], in the sense that
one step consists of optimizing the decision rule at a given sensor while fixing the decision
rules of the rest, whereas another step involves optimizing the decision rule of the fusion
center while holding fixed the local decision rules at each sensor. Our development relies
heavily on the convexity of the loss functionφ, which allows us to leverage results from
convex analysis[Rockafellar, 1970] so as to derive an efficient optimization procedure. In
addition, we analyze the statistical properties of our algorithm, and provide probabilistic
bounds on its performance.

While the thrust of this chapter is to explore the utility of recently-developed ideas
from statistical machine learning for distributed decision-making, our results also have
implications for machine learning. In particular, it is worth noting that most of the machine
learning literature on classification is abstracted away from considerations of an underlying
communication-theoretic infrastructure. Such limitations may prevent an algorithm from
aggregating all relevant data at a central site. Therefore, the general approach described in
this chapter suggests interesting research directions for machine learning—specifically, in
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designing and analyzing algorithms for communication-constrained environments.2

The remainder of the chapter is organized as follows. In Section3.2, we provide a
formal statement of the decentralized decision-making problem, and show how it can be
cast as a learning problem. In Section3.3, we present a kernel-based algorithm for solving
the problem, and we also derive bounds on the performance of this algorithm. Section3.4is
devoted to the results of experiments using our algorithm, in application to both simulated
and real data. Finally, we conclude the chapter with a discussion of future directions in
Section3.5.

3.2 Problem formulation and a simple strategy

In this section, we begin by providing a precise formulation of the decentralized detection
problem to be investigated in this chapter, and show how it can be cast in a statistical
learning framework. We then describe a simple strategy for designing local decision rules,
based on an optimization problem involving the empirical risk. This strategy, though naive,
provides intuition for our subsequent development based on kernel methods.

3.2.1 Formulation of the decentralized detection problem

SupposeY is a discrete-valued random variable, representing a hypothesis about the en-
vironment. Although the methods that we describe are more generally applicable, the fo-
cus of this chapter is the binary case, in which the hypothesis variableY takes values in
Y := {−1,+1}. Our goal is to form an estimatêY of the true hypothesis, based on observa-
tions collected from a set ofS sensors. More specifically, for eacht = 1, . . . , S, letX t ∈ X
represent the observation at sensort, whereX denotes the observation space. The full set of
observations corresponds to theS-dimensional random vectorX = (X1, . . . , XS) ∈ X S,
drawn from the conditional distributionP (X|Y ).

We assume that the global estimateŶ is to be formed by afusion center. In thecen-
tralized setting, this fusion center is permitted access to the full vectorX = (X1, . . . , XS)
of observations. In this case, it is well-known[van Trees, 1990] that optimal decision
rules, whether under Bayes error or Neyman-Pearson criteria, can be formulated in terms
of the likelihood ratioP (X|Y = 1)/P (X|Y = −1). In contrast, the defining feature
of the decentralized settingis that the fusion center has access only to some form of
summary of each observationX t, for t = 1, . . . S. More specifically, we suppose that
each sensort = 1 . . . , S is permitted to transmit amessageZt, taking values in some
spaceZ. The fusion center, in turn, applies some decision ruleγ to compute an estimate
Ŷ = γ(Z1, . . . , ZS) of Y based on its received messages.

2For a related problem of distributed learning under communication constraints and its analysis, see a
recent paper by Predd et al.[Preddet al., 2004].
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In this chapter, we focus on the case of a discrete observation space—sayX = {1, 2, . . . ,
M}. The key constraint, giving rise to the decentralized nature of the problem, is that the
corresponding message spaceZ = {1, . . . , L} is considerably smaller than the observation
space (i.e.,L � M ). The problem is to find, for each sensort = 1, . . . , S, a decision
rule γt : X t → Z t, as well as an overall decision ruleγ : ZS → {−1,+1} at the fusion
center so as to minimize theBayes riskP (Y 6= γ(Z)). We assume that the joint distribu-
tion P (X, Y ) is unknown, but that we are givenn independent and identically distributed
(i.i.d.) data points(xi, yi)

n
i=1 sampled fromP (X, Y ).

. . .

. . .

. . .

Y

X1 X2 X3 XS

Z1 Z2 Z3 ZS

γ1 γ2 γ3 γS

γ(Z1, . . . , ZS)

Figure 3.1.Decentralized detection system withS sensors, in whichY is the unknown hy-
pothesis,X = (X1, . . . , XS) is the vector of sensor observations; andZ = (Z1, . . . , ZS)
are the quantized messages transmitted from sensors to the fusion center.

Figure3.1provides a graphical representation of this decentralized detection problem.
The single node at the top of the figure represents the hypothesis variableY , and the outgo-
ing arrows point to the collection of observationsX = (X1, . . . , XS). The local decision
rulesγt lie on the edges between sensor observationsX t and messagesZt. Finally, the
node at the bottom is the fusion center, which collects all the messages.

Although the Bayes-optimal risk can always be achieved by a deterministic decision
rule [Tsitsiklis, 1993b], considering the larger space of stochastic decision rules confers
some important advantages. First, such a space can be compactly represented and parame-
terized, and prior knowledge can be incorporated. Second, the optimal deterministic rules
are often very hard to compute, and a probabilistic rule may provide a reasonable approx-
imation in practice. Accordingly, we represent the rule for the sensorst = 1, . . . , S by a
conditional probability distributionQ(Z|X). The fusion center makes its decision by ap-
plying a deterministic functionγ(z) of z. The overall decision rule(Q, γ) consists of the
individual sensor rules and the fusion center rule.
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The decentralization requirement for our detection/classification system—i.e., that the
decision or quantization rule for sensortmust be a function only of the observationxt—can
be translated into the probabilistic statement thatZ1, . . . , ZS be conditionally independent
givenX:

Q(Z|X) =
S∏

t=1

Qt(Zt|X t). (3.1)

In fact, this constraint turns out to be advantageous from a computational perspective, as
will be clarified in the sequel. We useQ to denote the space of all factorized conditional
distributionsQ(Z|X), andQ0 to denote the subset of factorized conditional distributions
that are also deterministic.

3.2.2 A simple strategy based on minimizing empirical risk

Suppose that we have as our training datan pairs(xi, yi) for i = 1, . . . , n. Note that each
xi, as a particular realization of the random vectorX, is anS dimensional signal vector
xi = (x1

i , . . . , x
S
i ) ∈ X S. Let P be the unknown underlying probability distribution for

(X, Y ). The probabilistic set-up makes it simple to estimate the Bayes risk, which is to be
minimized.

Consider a collection of local quantization rules made at the sensors, which we denote
byQ(Z|X). For each such set of rules, the associated Bayes risk is defined by:

Ropt :=
1

2
− 1

2
E

∣∣∣∣P (Y = 1|Z)− P (Y = −1|Z)

∣∣∣∣. (3.2)

Here the expectationE is with respect to the probability distributionP (X, Y, Z) :=
P (X, Y )Q(Z|X). It is clear that no decision rule at the fusion center (i.e., having access
only toz) has Bayes risk smaller thanRopt. In addition, the Bayes riskRopt can be achieved
by using the decision function

γopt(z) = sign(P (Y = 1|z)− P (Y = −1|z)).

It is key to observe that this optimal decision rulecannotbe computed, becauseP (X,Y )
is not known, andQ(Z|X) is to be determined. Thus, our goal is to determine the rule
Q(Z|X) that minimizes an empirical estimate of the Bayes risk based on the training data
(xi, yi)

n
i=1. In Lemma3.1we show that the following is one such unbiased estimate of the

Bayes risk:

Remp :=
1

2
− 1

2n

∑
z

∣∣ n∑
i=1

Q(z|xi)yi

∣∣. (3.3)
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In addition,γopt(z) can be estimated by the decision function

γemp(z) = sign
( n∑

i=1

Q(z|xi)yi

)
.

SinceZ is a discrete random vector, the following lemma, proved in the Appendix, shows
that the optimal Bayes risk can be estimated easily, regardless of whether the input signal
X is discrete or continuous:

Lemma 3.1. (a) If P (z) > 0 for all z andκ(z) =
Pn

i=1 Q(z|xi)I(yi=1)
Pn

i=1 Q(z|xi)
, thenlimn→∞ κ(z) =

P (Y = 1|z) almost surely.
(b) Asn→∞,Remp andγemp(z) tend toRopt andγopt(z), respectively, almost surely.

The significance of Lemma3.1 is in motivating the goal of finding decision rules
Q(Z|X) to minimize the empirical errorRemp. It is equivalent, using equation (3.3), to
maximize

C(Q) =
∑

z

∣∣∣∣ n∑
i=1

Q(z|xi)yi

∣∣∣∣, (3.4)

subject to the constraints that define a probability distribution:

{
Q(z|x) =

∏S
t=1Q

t(zt|xt) for all values ofz andx,∑
zt Qt(zt|xt) = 1, andQt(zt|xt) ∈ [0, 1] for t = 1, . . . , S.

(3.5)

The major computational difficulty in the optimization problem defined by Eqs (3.4)
and (3.5) lies in the summation over allLS possible values ofz ∈ ZS. One way to avoid
this obstacle is by maximizing instead the following function:

C2(Q) :=
∑

z

( n∑
i=1

Q(z|xi)yi

)2

.

Expanding the square and using the conditional independence condition (3.1) leads to the
following equivalent form forC2:

C2(Q) =
∑
i,j

yiyj

S∏
t=1

L∑
zt=1

Qt(zt|xt
i)Q

t(zt|xt
j). (3.6)

Note that the conditional independence condition (3.1) onQ allow us to computeC2(Q) in
O(SL) time, as opposed toO(LS).

While this simple strategy is based directly on the empirical risk, it does not exploit

49



Chapter 3. Nonparametric decentralized detection using kernel methods

any prior knowledge about the class of discriminant functions forγ(z). As we discuss in
the following section, such knowledge can be incorporated into the classifier using kernel
methods. Moreover, the kernel-based decentralized detection algorithm that we develop
turns out to have an interesting connection to the simple approach based onC2(Q).

3.3 A kernel-based algorithm

In this section, we turn to methods for decentralized detection based on empirical risk min-
imization and kernel methods[Aronszajn, 1950; Saitoh, 1988; Scḧolkopf and Smola, 2002;
Shawe-Taylor and Cristianini, 2004]. We begin by introducing some background and def-
initions necessary for subsequent development. We then motivate and describe a central
component of our decentralized detection system—namely, the notion of amarginalized
kernel. Our method for designing decision rules is based on an optimization problem,
which we show how to solve efficiently. Finally, we derive theoretical bounds on the per-
formance of our decentralized detection system.

3.3.1 Empirical risk minimization and kernel methods

In this section, we provide some background on empirical risk minimization and kernel
methods. We refer the reader to the books[Scḧolkopf and Smola, 2002; Shawe-Taylor and
Cristianini, 2004; Saitoh, 1988; Weinert, 1982] for more details. Our starting point is to
consider estimatingY with a rule of the formŷ(x) = signf(x), wheref : X → R is a
discriminant functionthat lies within some function space to be specified. The ultimate
goal is to choose a discriminant functionf to minimize the Bayes errorP (Y 6= Ŷ ), or
equivalently to minimize the expected value of the following0-1 loss:

φ0(yf(x)) := I[y 6= sign(f(x))]. (3.7)

This minimization is intractable, both because the functionφ0 is not well-behaved (i.e.,
non-convex and non-differentiable), and because the joint distributionP is unknown. How-
ever, since we are given a set of i.i.d. samples{(xi, yi)}n

i=1, it is natural to consider mini-
mizing a loss function based on anempirical expectation, as motivated by our development
in Section3.2.2. Moreover, it turns out to be fruitful, for both computational and statistical
reasons, to design loss functions based onconvex surrogatesto the 0-1 loss.

Indeed, a variety of classification algorithms in statistical machine learning have been
shown to involve loss functions that can be viewed as convex upper bounds on the 0-1 loss.
For example, the support vector machine (SVM) algorithm[Scḧolkopf and Smola, 2002]
uses ahinge lossfunction:

φ1(yf(x)) := (1− yf(x))+ ≡ max{1− yf(x), 0}. (3.8)
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On the other hand, the logistic regression algorithm[Friedmanet al., 2000] is based on the
logistic lossfunction:

φ2(yf(x)) := log
(
1 + exp−yf(x)

)
. (3.9)

Finally, the standard form of the boosting classification algorithm[Freund and Schapire,
1997] uses aexponential lossfunction:

φ3(yf(x)) := exp(−yf(x)). (3.10)

Intuition suggests that a functionf with smallφ-risk Eφ(Y f(X)) should also have a small
Bayes riskP (Y 6= sign(f(X))). In fact, it has been established rigorously that convex sur-
rogates for the (non-convex) 0-1 loss function, such as the hinge (3.8) and logistic loss (3.9)
functions, have favorable properties both computationally (i.e., algorithmic efficiency), and
in a statistical sense (i.e., bounds on both approximation error and estimation error)[Zhang,
2004; Bartlettet al., 2006].

We now turn to consideration of the function class from which the discriminant function
f is to be chosen. Kernel-based methods for discrimination entail choosingf from within
a function class defined by a positive semidefinite kernel, defined as follows (see[Saitoh,
1988]):

Definition 3.2. A real-valued kernel function is a symmetric bilinear mappingKx : X ×
X → R. It is positive semidefinite, which means that for any subset{x1, . . . , xn} drawn
fromX , the Gram matrixKij = Kx(xi, xj) is positive semidefinite.

Given any such kernel, we first define a vector space of functions mappingX to the real
line R through all sums of the form

f(·) =
m∑

j=1

αjKx(·, xj), (3.11)

where{xj}m
j=1 are arbitrary points fromX , m ∈ N, andαj ∈ R. We can equip this

space with akernel-based inner productby defining〈Kx(·, xi), Kx(·, xj)〉 := Kx(xi, xj),
and then extending this definition to the full space by bilinearity. Note that this inner
product induces, for any function of the form (3.11), the kernel-based norm‖f‖2

H =∑m
i,j=1 αiαjKx(xi, xj).

Definition 3.3. Thereproducing kernel Hilbert spaceH associated with a given kernelKx

consists of the kernel-based inner product, and the closure (in the kernel-based norm) of
all functions of the form(3.11).
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As an aside, the term “reproducing” stems from the fact for anyf ∈ H, we have

〈f, Kx(·, xi)〉 = f(xi),

showing that the kernel acts as the representer of evaluation[Saitoh, 1988].
In the framework of empirical risk minimization, the discriminant functionf ∈ H is

chosen by minimizing a cost function given by the sum of theempiricalφ-risk Êφ(Y f(X))
and a suitable regularization term

min
f∈H

n∑
i=1

φ(yif(xi)) +
λ

2
‖f‖2

H, (3.12)

whereλ > 0 is a regularization parameter that serves to limit the richness of the class
of discriminant functions. The Representer Theorem (Thm. 4.2;[Scḧolkopf and Smola,
2002]) guarantees that the optimal solution to problem (3.12) can be written in the form

f̂(x) =
n∑

i=1

αiyiKx(x, xi),

for a particular vectorα ∈ Rn. The key here is that sum rangesonlyover the observed data
points{(xi, yi)}n

i=1.
For the sake of development in the sequel, it will be convenient to express functions

f ∈ H as linear discriminants involving the thefeature mapΦ(x) := Kx(·, x). (Note that
for eachx ∈ X , the quantityΦ(x) ≡ Φ(x)(·) is a function fromX to the real lineR.) Any
functionf in the Hilbert space can be written as a linear discriminant of the form〈w, Φ(x)〉
for some functionw ∈ H. (In fact, by the reproducing property, we havef(·) = w(·)). As
a particular case, the Representer Theorem allows us to write the optimal discriminant as

f̂(x) = 〈ŵ, Φ(x)〉,

whereŵ =
∑n

i=1 αiyiΦ(xi).

3.3.2 Fusion center and marginalized kernels

With this background, we first consider how to design the decision ruleγ at the fusion
center for afixedsettingQ(Z|X) of the sensor quantization rules. Since the fusion center
rule can only depend onz = (z1, . . . , zS), our starting point is a feature space{Φ′(z)}
with associated kernelKz. Following the development in the previous section, we consider
fusion center rules defined by taking the sign of a linear discriminant of the form

γ(z) := 〈w,Φ′(z)〉.
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We then link the performance ofγ to another kernel-based discriminant functionf that acts
directly on x = (x1, . . . , xS), where the new kernelKQ associated withf is defined as a
marginalized kernelin terms ofQ(Z|X) andKz.

The relevant optimization problem is to minimize (as a function ofw) the following
regularized form of the empiricalφ-risk associated with the discriminantγ

min
w

{∑
z

n∑
i=1

φ(yiγ(z))Q(z|xi) +
λ

2
||w||2

}
, (3.13)

whereλ > 0 is a regularization parameter. In its current form, the objective function (3.13)
is intractable to compute (because it involves summing over allLS possible values ofz of a
loss function that is generally non-decomposable). However, exploiting the convexity ofφ
allows us to perform the computation exactly for deterministic rules inQ0, and also leads
to a natural relaxation for an arbitrary decision ruleQ ∈ Q. This idea is formalized in the
following:

Proposition 3.4. Define the quantities

ΦQ(x) :=
∑

z

Q(z|x)Φ′(z), and f(x;Q) := 〈w, ΦQ(x)〉. (3.14)

For any convexφ, the optimal value of the following optimization problem is a lower bound
on the optimal value in problem(3.13):

min
w

∑
i

φ(yif(xi;Q)) +
λ

2
||w||2. (3.15)

Moreover, the relaxation is tight for any deterministic ruleQ(Z|X).

Proof. The lower bound follows by applying Jensen’s inequality to the functionφ yields
φ(yif(xi;Q)) ≤

∑
z φ(yiγ(z))Q(z|xi) for eachi = 1, . . . n.

A key point is that the modified optimization problem (3.15) involves an ordinary reg-
ularized empiricalφ-loss, but in terms of a linear discriminant function

f(x;Q) = 〈w, ΦQ(x)〉

in thetransformedfeature space{ΦQ(x)} defined in equation (3.14). Moreover, the corre-
spondingmarginalized kernelfunction takes the form:

KQ(x, x′) :=
∑
z,z′

Q(z|x)Q(z′|x′) Kz(z, z
′), (3.16)

53



Chapter 3. Nonparametric decentralized detection using kernel methods

whereKz(z, z
′) := 〈Φ′(z), Φ′(z′)〉 is the kernel in{Φ′(z)}-space. It is straightforward to

see that the positive semidefiniteness ofKz implies thatKQ is also a positive semidefinite
function.

From a computational point of view, we have converted the marginalization over loss
function values to a marginalization over kernel functions. While the former is intractable,
the latter marginalization can be carried out in many cases by exploiting the structure
of the conditional distributionsQ(Z|X). (In Section3.3.3, we provide several exam-
ples to illustrate.) From the modeling perspective, it is interesting to note that marginal-
ized kernels, like that of equation (3.16), underlie recent work that aims at combining
the advantages of graphical models and Mercer kernels[Jaakkola and Haussler, 1999;
Tsudaet al., 2002].

As a standard kernel-based formulation, the optimization problem (3.15) can be solved
by the usual Lagrangian dual formulation[Scḧolkopf and Smola, 2002], thereby yielding
an optimal weight vectorw. This weight vector defines the decision rule for the fusion
center by taking the sign of discriminant functionγ(z) := 〈w, Φ′(z)〉. By the Representer
Theorem[Scḧolkopf and Smola, 2002], the optimal solutionw to problem (3.15) has an
expansion of the form

w =
n∑

i=1

αiyiΦQ(xi) =
n∑

i=1

∑
z′

αiyiQ(z′|xi)Φ
′(z′),

whereα is an optimal dual solution, and the second equality follows from the definition of
ΦQ(x) given in equation (3.14). Substituting this decomposition ofw into the definition of
γ yields

γ(z) :=
∑
z′

n∑
i=1

αiyiQ(z′|xi)Kz(z, z
′). (3.17)

Note that there is an intuitive connection between the discriminant functionsf andγ. In
particular, using the definitions off andKQ, it can be seen that

f(x) = E[γ(Z)|x],

where the expectation is taken with respect toQ(Z|X = x). The interpretation is quite
natural: when conditioned on somex, the average behavior of the discriminant function
γ(Z), which doesnot observex, is equivalent to the optimal discriminantf(x), which
does have access tox.
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3.3.3 Design and computation of marginalized kernels

As seen in the previous section, the representation of discriminant functionsf andγ de-
pends on the kernel functionsKz(z, z

′) andKQ(x, x′), andnot on the explicit representa-
tion of the underlying feature spaces{Φ′(z)} and{ΦQ(x)}. It is also shown in the next
section that our algorithm for solvingf and γ requires only the knowledge of the ker-
nel functionsKz andKQ. Indeed, the effectiveness of a kernel-based algorithm typically
hinges heavily on the design and computation of its kernel function(s).

Accordingly, let us now consider the computational issues associated with marginal-
ized kernelKQ, assuming thatKz has already been chosen. In general, the computation of
KQ(x, x′) entails marginalizing over the variableZ, which (at first glance) has computa-
tional complexity on the order ofO(LS). However, this calculation fails to take advantage
of any structure in the kernel functionKz. More specifically, it is often the case that the
kernel functionKz(z, z

′) can be decomposed into local functions, in which case the com-
putational cost is considerably lower. Here we provide a few examples of computationally
tractable kernels.

Computationally tractable kernels:
Perhaps the simplest example is thelinear kernelKz(z, z

′) =
∑S

t=1 z
tz′t, for which it

is straightforward to deriveKQ(x, x′) =
∑S

t=l E[zt|xt] E[z′t|x′t].
A second example, natural for applications in whichX t andZt are discrete random

variables, is thecount kernel. Let us represent each discrete valueu ∈ {1, . . . ,M} as a
M -dimensional vector(0, . . . , 1, . . . , 0), whoseu-th coordinate takes value 1. If we define
the first-order count kernelKz(z, z

′) :=
∑S

t=1 I[zt = z′t], then the resulting marginalized
kernel takes the form:

KQ(x, x′) =
∑
z,z′

Q(z|x)Q(z′|x′)
S∑

t=1

I[zt = z′t] =
S∑

t=1

Q(zt = z′t|xt, x′t). (3.18)

A natural generalization is thesecond-order count kernelKz(z, z
′) =

∑s
t,r=1 I[zt =

z′t]I[zr = z′r] that accounts for the pairwise interaction between coordinateszt andzr. For
this example, the associated marginalized kernelKQ(x, x′) takes the form:

2
∑

1≤t<r≤S

Q(zt = z′t|xt, x′t)Q(zr = z′r|xr, x′r). (3.19)

Remarks: First, note that even for a linear base kernelKz, the kernel functionKQ

inherits additional (nonlinear) structure from the marginalization overQ(Z|X). As a con-
sequence, the associated discriminant functions (i.e.,γ andf ) are certainly not linear. Sec-
ond, our formulation allows any available prior knowledge to be incorporated intoKQ in
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at least two possible ways: (i) The base kernel representing a similarity measure in the
quantized space ofz can reflect the structure of the sensor network, or (ii) More structured
decision rulesQ(Z|X) can be considered, such as chain or tree-structured decision rules.

3.3.4 Joint optimization

Our next task is to perform joint optimization of both the fusion center rule, defined byw
(or equivalentlyα, as in equation (3.17)), and the sensor rulesQ. Observe that the cost
function (3.15) can be re-expressed as a function of bothw andQ as follows:

G(w;Q) :=
1

λ

∑
i

φ

(
yi〈w,

∑
z

Q(z|xi)Φ
′(z)〉

)
+

1

2
||w||2. (3.20)

Of interest is the joint minimization of the functionG in bothw andQ. It can be seen easily
that

(a) G is convex inw with Q fixed; and

(b) G is convex inQt, when bothw and all other{Qr, r 6= t} are fixed.

These observations motivate the use of blockwise coordinate gradient descent to perform
the joint minimization.

Optimization of w: As described in Section3.3.2, whenQ is fixed, thenminw G(w;Q)
can be computed efficiently by a dual reformulation. Specifically, as we establish in the
following result using ideas from convex duality[Rockafellar, 1970], a dual reformulation
of minw G(w;Q) is given by

max
α∈Rn

{
− 1

λ

n∑
i=1

φ∗(−λαi)−
1

2
αT

[
(yyT ) ◦KQ

]
α

}
, (3.21)

whereφ∗(u) := supv∈R
{
u · v − φ(v)} is the conjugate dual ofφ, [KQ]ij := KQ(xi, xj) is

the empirical kernel matrix, and◦ denotes Hadamard product.

Proposition 3.5. For each fixedQ ∈ Q, the value of the primal probleminfw G(w;Q)
is attained and equal to its dual form(3.21). Furthermore, any optimal solutionα to
problem(3.21) defines the optimal primal solutionw(Q) to minw G(w;Q) via

w(Q) =
∑n

i=1 αiyiΦQ(xi).

Proof. It suffices for our current purposes to restrict to the case where the functionsw and
ΦQ(x) can be viewed as vectors in some finite-dimensional space—sayRm. However, it is
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possible to extend this approach to the infinite-dimensional setting by using conjugacy in
general normed spaces[Luenberger, 1969].

A remark on notation before proceeding: sinceQ is fixed, we dropQ from G for no-
tational convenience (i.e., we writeG(w) ≡ G(w;Q)). First, we observe thatG(w) is
convex with respect tow and thatG → ∞ as ||w|| → ∞. Consequently, the infimum
defining the primal probleminfw∈Rm G(w) is attained. We now re-write this primal prob-
lem asinfw∈Rm G(w) = infw∈Rm{G(w) − 〈w, 0〉} = −G∗(0), whereG∗ : Rm → R
denotes the conjugate dual ofG.

Using the notationgi(w) := 1
λ
φ(〈w, yiΦQ(xi)〉) andΩ(w) := 1

2
||w||2, we can decom-

poseG as the sumG(w) =
∑n

i=1 gi(w) + Ω(w). This decomposition allows us to compute
the conjugate dualG∗ via the inf-convolution theorem (Thm. 16.4; Rockafellar[Rockafel-
lar, 1970]) as follows:

G∗(0) = inf
ui,i=1,...,n

{ n∑
i=1

g∗i (ui) + Ω∗(−
n∑

i=1

ui)

}
. (3.22)

The functiongi is the composition of a convex functionφ with the linear functionw 7→
〈w, yiΦQ(xi)〉, so that Theorem 16.3 of Rockafellar[Rockafellar, 1970] yields the conju-
gate dual as follows:

g∗i (ui) =

{
1
λ
φ∗(−λαi) if ui = −αi(yiΦQ(xi)) for someαi ∈ R

+∞ otherwise.
(3.23)

A straightforward calculation yieldsΩ∗(v) = supw{〈v, w〉 − 1
2
||w||2} = 1

2
||v||2. Sub-

stituting these expressions into equation (3.22) leads to:

G∗(0) = inf
α∈Rn

n∑
i=1

1

λ
φ∗(−λiαi) +

1

2

∥∥∥∥ n∑
i

αiyiΦQ(xi)

∥∥∥∥2

,

from which it follows that

inf
w
G(w) = −G∗(0) = sup

α∈Rn

{
− 1

λ

n∑
i=1

φ∗(−λαi)−
1

2

∑
1≤i,j≤n

αiαjyiyjKx(xi, xj)

}
.

Thus, we have derived the dual form (3.21). See the Appendix for the remainder of the
proof, in which we derive the link betweenw(Q) and the dual variablesα.

This proposition is significant in that the dual problem involves only the kernel matrix
(KQ(xi, xj))1≤i,j≤n. Hence, one can solve for the optimal discriminant functionsy = f(x)
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or y = γ(z) without requiring explicit knowledge of the underlying feature spaces{Φ′(z)}
and{ΦQ(x)}. As a particular example, consider the case of hinge loss function (3.8), as
used in the SVM algorithm[Scḧolkopf and Smola, 2002]. A straightforward calculation
yields

φ∗(u) =

{
u if u ∈ [−1, 0]

+∞ otherwise.

Substituting this formula into (3.21) yields, as a special case, the familiar dual formulation
for the SVM:

max
0≤α≤1/λ

{ n∑
i

αi −
1

2
αT

[
(yyT ) ◦KQ

]
α

}
.

Optimization of Q: The second step is to minimizeG overQt, with w and all other
{Qr, r 6= t} held fixed. Our approach is to compute the derivative (or more generally, the
subdifferential) with respect toQt, and then apply a gradient-based method. A challenge
to be confronted is thatG is defined in terms of feature vectorsΦ′(z), which are typically
high-dimensional quantities. Indeed, although it is intractable to evaluate the gradient at an
arbitraryw, the following result, proved in the Appendix, establishes that it can always be
evaluated at the point(w(Q), Q) for anyQ ∈ Q.

Lemma 3.6. Let w(Q) be the optimizing argument ofminw G(w;Q), and letα be an
optimal solution to the dual problem(3.21). Then the following element

−λ
∑

(i,j)(z,z′)

αiαjQ(z′|xj)
Q(z|xi)

Qt(zt|xt
i)
Kz(z, z

′)I[xt
i = x̄t] I[zt = z̄t]

is an element of the subdifferential∂Qt(z̄t|x̄t)G evaluated at(w(Q), Q). 3

Note that this representation of the (sub)gradient involves marginalization overQ of the
kernel functionKz, and therefore can be computed efficiently in many cases, as described
in Section3.3.3. Overall, the blockwise coordinate descent algorithm for optimizing the
local quantization rules has the form:

3Thesubgradientis a generalized counterpart of gradient for non-differentiable convex functions[Rock-
afellar, 1970; Hiriart-Urruty and Lemaŕechal, 2001]; in particular, a vectors ∈ Rm is a subgradientof a
convex functionf : Rm → R meansf(y) ≥ f(x) + 〈s, y − x〉 for all y ∈ Rm. Thesubdifferentialat a
pointx is the set of all subgradients. In our cases,G is non-differentiable whenφ is the hinge loss (3.8), and
differentiable whenφ is the logistic loss (3.9) or exponential loss (3.10).
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Kernel quantization (KQ) algorithm:

(a) With Q fixed, compute the optimizingw(Q) by solving the dual prob-
lem (3.21).

(b) For some indext, fix w(Q) and{Qr, r 6= t} and take a gradient step inQt

using Lemma3.6.

Upon convergence, we define a deterministic decision rule for each sensort via:

γt(xt) := argmaxzt∈ZQ(zt|xt). (3.24)

First, note that the updates in this algorithm consist of alternatively updating the de-
cision rule for a sensor while fixing the decision rules for the remaining sensors and the
fusion center, and updating the decision rule for the fusion center while fixing the deci-
sion rules for all other sensors. In this sense, our approach is similar in spirit to a suite of
practical algorithms[Tsitsiklis, 1993b, e.g.,] for decentralized detection under particular
assumptions on the joint distributionP (X, Y ). Second, using standard results[Bertsekas,
1995b], it is possible to guarantee convergence of such coordinate-wise updates when the
loss functionφ is strictly convex and differentiable (e.g., logistic loss (3.9) or exponential
loss (3.10)). In contrast, the case of non-differentiableφ (e.g., hinge loss (3.8)) requires
more care. We have, however, obtained good results in practice even in the case of hinge
loss. Third, it is interesting to note the connection between the KQ algorithm and the naive
approach considered in Section3.2.2. More precisely, suppose that we fixw such that all
αi are equal to one, and let the base kernelKz be constant (and thus entirely uninforma-
tive). Under these conditions, the optimization ofG with respect toQ reduces to exactly
the naive approach.

3.3.5 Estimation error bounds

This section is devoted to analysis of the statistical properties of the KQ algorithm. In
particular, our goal is to derive bounds on the performance of our classifier(Q, γ) when
applied to new data, as opposed to the i.i.d. samples on which it was trained. It is key to
distinguish between two forms ofφ-risk:

(a) theempiricalφ-risk Êφ(Y γ(Z)) is defined by an expectation overP̂ (X, Y )Q(Z|X),
whereP̂ is the empirical distribution given by the i.i.d. samples{(xi, yi)}n

i=1.

(b) the true φ-risk Eφ(Y γ(Z)) is defined by taking an expectation over the joint distri-
butionP (X, Y )Q(Z|X).
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In designing our classifier, we made use of the empiricalφ-risk as a proxy for the actual
risk. On the other hand, the appropriate metric for assessing performance of the designed
classifier is the trueφ-risk Eφ(Y γ(Z)). At a high level, our procedure for obtaining per-
formance bounds can be decomposed into the following steps:
(1) First, we relate the trueφ-risk Eφ(Y γ(Z)) to the trueφ-risk Eφ(Y f(X)) for the func-
tionsf ∈ F (andf ∈ F0) that are computed at intermediate stages of our algorithm. The
latter quantities are well-studied objects in statistical learning theory.
(2) The second step to relate the empiricalφ-risk Ê(Y f(X)) to the trueφ-risk E(Y f(X)).
In general, the trueφ-risk for a functionf in some classF is bounded by the empirical
φ-risk plus a complexity term that captures the “richness” of the function classF [Zhang,
2004; Bartlettet al., 2006]. In particular, we make use of theRademacher complexityas a
measure of this richness.
(3) Third, we combine the first two steps so as to derive bounds on the trueφ-riskEφ(Y γ(Z))
in terms of the empiricalφ-risk of f and the Rademacher complexity.
(4) Finally, we derive bounds on the Rademacher complexity in terms of the number of
training samplesn, as well as the number of quantization levelsL andM .

Step 1: For eachQ ∈ Q, the class of functionsFQ over which we optimize is given
by: {

f : x 7→ 〈w,ΦQ(x)〉 =
∑

i

αiyiKQ(x, xi)
∣∣ s. t. ||w|| ≤ B

}
, (3.25)

whereB > 0 is a constant. Note thatFQ is simply the class of functions associated with
the marginalized kernelKQ. The function class over which our algorithm performs the
optimization is defined by the unionF := ∪Q∈QFQ, whereQ is the space of all factorized
conditional distributionsQ(Z|X). Lastly, we define the function classF0 := ∪Q∈Q0FQ,
corresponding to the union of the function spaces defined by marginalized kernels with
deterministic distributionsQ.

Any discriminant functionf ∈ F (orF0), defined by a vectorα, induces an associated
discriminant functionγf via equation (3.17). Relevant to the performance of the classifier
γf is the expectedφ-lossEφ(Y γf (Z)), whereas the algorithm actually minimizes (the em-
pirical version of)Eφ(Y f(X)). The relationship between these two quantities is expressed
in the following proposition.

Proposition 3.7.
(a) We haveEφ(Y γf (Z)) ≥ Eφ(Y f(X)), with equality whenQ(Z|X) is deterministic.
(b) Moreover, there holds

inf
f∈F

Eφ(Y f(X))
(i)

≤ inf
f∈F

Eφ(Y γf (Z))
(ii)

≤ inf
f∈F0

Eφ(Y f(X)) (3.26)

The same statements also hold for empirical expectations.
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Proof. Applying Jensen’s inequality to the convex functionφ yields

Eφ(Y γf (Z)) = EXY E[φ(Y γf (Z))|X, Y ] ≥ EXY φ(E[Y γf (Z)|X, Y ]) = Eφ(Y f(X)),

where we have used the conditional independence ofZ andY givenX. This establishes
inequality (ii), and the lower bound (i) follows directly. Moreover, part (a) also implies that
inff∈F0 Eφ(Y γf (Z)) = inff∈F0 Eφ(Y f(X)), and the upper bound (3.26) follows since
F0 ⊂ F .

Step 2:The next step is to relate the empiricalφ-risk for f (i.e.,Ê(Y f(X))) to the true
φ-risk (i.e.,E(Y f(X))). Recall that theRademacher complexityof the function classF is
defined[van der Vaart and Wellner, 1996] as

Rn(F) = E sup
f∈F

2

n

n∑
i=1

σif(Xi),

where theRademacher variablesσ1, . . . , σn are independent and uniform on{−1,+1},
andX1, . . . , Xn are i.i.d. samples selected according to distributionP . In the case thatφ
is Lipschitz with constant̀, the empirical and true risk can be related via the Rademacher
complexity as follows[Koltchinskii and Panchenko, 2002]. With probability at least1− δ
with respect to training samples(Xi, Yi)

n
i=1, drawn according to the empirical distribution

P n, there holds

sup
f∈F

|Êφ(Y f(X))− Eφ(Y f(X))| ≤ 2`Rn(F) +

√
ln(2/δ)

2n
. (3.27)

Moreover, the same bound applies toF0.
Step 3: Combining the bound (3.27) with Proposition3.7 leads to the following the-

orem, which provides generalization error bounds for the optimalφ-risk of the decision
function learned by our algorithm in terms of the Rademacher complexitiesRn(F0) and
Rn(F):

Theorem 3.8.Givenn i.i.d. labeled data points(xi, yi)
n
i=1, with probability at least1−2δ,

inf
f∈F

1

n

n∑
i=1

φ(yif(xi))− 2`Rn(F)−
√

ln(2/δ)

2n
≤ inf

f∈F
Eφ(Y γf (Z))

inf
f∈F

Eφ(Y γf (Z)) ≤ inf
f∈F0

1

n

n∑
i=1

φ(yif(xi)) + 2`Rn(F0) +

√
ln(2/δ)

2n
.
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Proof. Using bound (3.27), with probability at least1− δ, for anyf ∈ F ,

Eφ(Y f(X)) ≥ 1

n

n∑
i=1

φ(yif(xi))− 2`Rn(F)−
√

ln(2/δ)

2n
.

Combining with bound (i) in equation (3.26), we have, with probability1− δ,

inf
f∈F

Eφ(Y γf (Z)) ≥ inf
f∈F

Eφ(Y f(X)) ≥ inf
f∈F

1

n

n∑
i=1

φ(yif(xi))−2`Rn(F)−
√

ln(2/δ)

2n
,

which proves the lower bound of the theorem with probability at least1 − δ. The upper
bound is similarly true with probability at least1− δ. Hence, both are true with probability
at least1− 2δ, by the union bound.

Step 4: So that Theorem3.8 has useful meaning, we need to derive upper bounds on
the Rademacher complexity of the function classesF andF0. Of particular interest is the
decrease in the complexity ofF andF0 with respect to the number of training samplesn,
as well as their growth rate with respect to the number of discrete signal levelsM , number
of quantization levelsL, and the number of sensorsS. The following proposition, proved in
the Appendix, derives such bounds by exploiting the fact that the number of 0-1 conditional
probability distributionsQ(Z|X) is finite (namely,(LMS)).

Proposition 3.9.

Rn(F0) ≤
2B

n

[
E sup

Q∈Q0

n∑
i=1

KQ(Xi, Xi)+2(n−1)
√
n/2 sup

z,z′
Kz(z, z

′)
√

2MS logL

]1/2

.

(3.28)

Note that the upper bound involves a linear dependence on constantB, assuming that
‖w‖ ≤ B—this provides a statistical justification of minimizing‖w‖2 in the formula-
tion (3.13). Although the rate given in equation (3.28) is not tight in terms of the number
of data samplesn, the bound is nontrivial and is relatively simple. (In particular, it depends
directly on the kernel functionK, the number of samplesn, quantization levelsL, number
of sensorsS, and size of observation spaceM .)

We can also provide a more general and possibly tighter upper bound on the Rademacher
complexity based on the concept ofentropy number[van der Vaart and Wellner, 1996].
Indeed, an important property of the Rademacher complexity is that it can be estimated
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reliably from a single sample(x1, . . . , xn). Specifically, if we define

R̂n(F) := E[
2

n
sup
f∈F

n∑
i=1

σif(xi)]

(where the expectation is w.r.t. the Rademacher variables{σi} only), then it can be shown
using McDiarmid’s inequality that̂Rn(F) is tightly concentrated aroundRn(F) with high
probability [Bartlett and Mendelson, 2002]. Concretely, assuming that‖f‖∞ is bounded
from above for all∈ F , then for anyη > 0, there holds:

P

{
|Rn(F)− R̂n(F)| ≥ η

}
≤ 2e−η2n/8. (3.29)

Hence, the Rademacher complexity is closely related to its empirical versionR̂n(F), which
can be related to the concept of entropy number. In general, define the covering number
N(ε, S, ρ) for a setS to be the minimum number of balls of diameterε that completely cover
S (according to a metricρ). Theε-entropy number ofS is then defined aslogN(ε, S, ρ).
In particular, if we define theL2(Pn) metric on an empirical sample(x1, . . . , xn) as

‖f1 − f2‖L2(Pn) :=

[
1

n

n∑
i=1

(f1(xi)− f2(xi))
2

]1/2

,

then it is well known[van der Vaart and Wellner, 1996] that for some absolute constantC,
there holds:

R̂n(F) ≤ C

∫ ∞

0

√
logN(ε,F , L2(Pn))

n
dε. (3.30)

The following result, proved in the Appendix, relates the entropy number forF to the
supremum of the entropy number taken over a restricted function classFQ.

Proposition 3.10.The entropy numberlogN(ε,F , L2(Pn)) ofF is bounded above by

sup
Q∈Q

logN(ε/2,FQ, L2(Pn)) + (L− 1)MS log
2LS sup ||α||1 supz,z′ Kz(z, z

′)

ε
. (3.31)

Moreover, the same bound holds forF0.

This proposition guarantees that the increase in the entropy number in moving from
someFQ to the larger classF is onlyO((L − 1)MS log(LS/ε)). Consequently, we incur
at most anO([MS2(L− 1) logL/n]

1
2 ) increase in the upper bound (3.30) for Rn(F) (as

well asRn(F0)). Moreover, the Rademacher complexity increases with the square root of
the numberL logL of quantization levelsL.
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3.4 Experimental Results

We evaluated our algorithm using both data from simulated and real sensor networks and
real-world data sets. First, we consider three types of simulated sensor network configura-
tions:

Conditionally independent observations:In this example, the observationsX1, . . . , XS

are independent conditional onY , as illustrated in Figure3.1. We consider networks with
10 sensors (S = 10), each of which receive signals with 8 levels (M = 8). We applied the
algorithm to compute decision rules forL = 2. In all cases, we generaten = 200 training
samples, and the same number for testing. We performed 20 trials on each of 20 randomly
generated modelsP (X, Y ).

Chain-structured dependency: A conditional independence assumption for the ob-
servations, though widely employed in most work on decentralized detection, may be un-
realistic in many settings. For instance, consider the problem of detecting a random signal
in noise[van Trees, 1990], in whichY = 1 represents the hypothesis that a certain random
signal is present in the environment, whereasY = −1 represents the hypothesis that only
i.i.d. noise is present. Under these assumptionsX1, . . . , XS will be conditionally indepen-
dent givenY = −1, since all sensors receive i.i.d. noise. However, conditioned onY = +1
(i.e., in the presence of the random signal), the observations at spatially adjacent sensors
will be dependent, with the dependence decaying with distance.

In a 1-D setting, these conditions can be modeled with a chain-structured dependency,
and the use of a count kernel to account for the interaction among sensors. More precisely,
we consider a set-up in which five sensors are located in a line such that only adjacent sen-
sors interact with each other. More specifically, the sensorsXt−1 andXt+1 are independent
givenXt andY , as illustrated in Figure3.2. We implemented the kernel-based quantization
algorithm using either first- or second-order count kernels, and the hinge loss function (3.8),
as in the SVM algorithm. The second-order kernel is specified in equation (3.19) but with
the sum taken over onlyt, r such that|t− r| = 1.

Spatially-dependent sensors:As a third example, we consider a 2-D layout in which,
conditional on the random target being present (Y = +1), all sensors interact but with the
strength of interaction decaying with distance. ThusP (X|Y = 1) is of the form:

P (X|Y = 1) ∝ exp
{ ∑

t

ht;uIu(X
t) +

∑
t6=r;uv

θtr;uvIu(X
t)Iv(X

r)
}
.

Here the parameterh represents observations at individual sensors, whereasθ controls
the dependence among sensors. The distributionP (X|Y = −1) can be modeled in the
same way with observationsh′, and settingθ′ = 0 so that the sensors are conditionally
independent. In simulations, we generateθtr;uv ∼ N(1/dtr, 0.1), wheredtr is the distance
between sensort andr, and the observationsh andh′ are randomly chosen in[0, 1]S. We
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Figure 3.2. Examples of graphical modelsP (X, Y ) of our simulated sensor networks. (a)
Chain-structured dependency. (b) Fully connected (not all connections shown).

consider a sensor network with 9 nodes (i.e.,S = 9), arrayed in the3×3 lattice illustrated in
Figure3.2(b). Since computation of this density is intractable for moderate-sized networks,
we generated an empirical data set(xi, yi) by Gibbs sampling.

We compare the results of our algorithm to an alternative decentralized classifier based
on performing a likelihood-ratio (LR) test at each sensor. Specifically, for each sensort,

the estimatesP̂ (Xt=u|Y =1)

P̂ (Xt=u|Y =−1)
for u = 1, . . . ,M of the likelihood ratio are sorted and grouped

evenly intoL bins, resulting in a simple and intuitive likelihood-ratio based quantization
scheme. Note that the estimatesP̂ are obtained from the training data. Given the quantized
input signal and labelY , we then construct a naive Bayes classifier at the fusion center. This
choice of decision rule provides a reasonable comparison, since thresholded likelihood ratio
tests are optimal in many cases[Tsitsiklis, 1993b].

The KQ algorithm generally yields more accurate classification performance than the
likelihood-ratio based algorithm (LR). Figure3.3provides scatter plots of the test error of
the KQ versus LQ methods for four different set-ups, usingL = 2 levels of quantization.
Panel (a) shows the naive Bayes setting and the KQ method using the first-order count
kernel. Note that the KQ test error is below the LR test error on the large majority of ex-
amples. Panels (b) and (c) show the case of chain-structured dependency, as illustrated in
Figure3.2(a), using a first- and second-order count kernel respectively. Again, the perfor-
mance of KQ in both cases is superior to that of LR in most cases. Finally, panel (d) shows
the fully-connected case of Figure3.2(b) with a first-order kernel. The performance of KQ
is somewhat better than LR, although by a lesser amount than the other cases.

Real sensor network data set:We evaluated our algorithm on a real sensor network
using Berkeley tiny sensor motes (Mica motes) as the base stations. The goal of the exper-
iment is to determine the locations of light sources given the light signal strength received
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Figure 3.3. Scatter plots of the test error of the LR versus KQ methods. (a) Condition-
ally independent network. (b) Chain model with first-order kernel. (c) Chain model with
second-order kernel. (d) Fully connected model.
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by a number of sensors deployed in the network. Specifically, we fix a particular region
in the plane (i.e., sensor field) and ask whether the light source’s projection onto the plane
is within this region or not (see Figure3.4(a)). The light signal strength received by each
sensor mote requires 10 bits to store, and we wish to reduce the size of each sensor message
being sent to the fusion center to only 1 or 2 bits. Our hardware platform consists of 25
sensors placed 10 inches apart on a5 × 5 grid in an indoor environment. We performed
25 detection problems corresponding to 25 circular regions of radius 30 inches distributed
uniformly over the sensor field. For each problem instance, there are 25 training positions
(i.e., empirical samples), and 81 test positions.
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Figure 3.4. (a) Illustration of a sensor field. (b) a Mica sensor mote. (c) Comparison of
test errors of the decentralized KQ algorithm and centralized SVM and NBC algorithms on
different problem instances.
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The performance of the KQ algorithm is compared tocentralizeddetection algorithms
based on a Naive Bayes classifier (NBC), and the SVM algorithm using a Gaussian kernel.4

The test errors of these algorithms are shown in Figure3.4(b). Note that the test algorithm
of the KQ algorithm improves considerably by relaxing the communication constraints
from 1 to 2 bits. Furthermore, with the 2-bit bandwidth constraint, the KQ’s test errors are
comparable to that of the centralized SVM algorithm on most problem instances. On the
other hand, the centralized NBC algorithm does not perform well on this data set.

UCI repository data sets: We also applied our algorithm to several data sets from the
machine learning data repository at the University of California Irvine[Blake and Merz,
1998]. In contrast to the sensor network detection problem, in which communication con-
straints must be respected, the problem here can be viewed as that of finding a good quanti-
zation scheme that retains information about the class label. Thus, the problem is similar in
spirit to work on discretization schemes for classification[Doughertyet al., 1995]. The dif-
ference is that we assume that the data have already been crudely quantized (we usem = 8
levels in our experiments), and that we retain no topological information concerning the
relative magnitudes of these values that could be used to drive classical discretization al-
gorithms. Overall, the problem can be viewed as hierarchical decision-making, in which
a second-level classification decision follows a first-level set of decisions concerning the
features. We used75% of the data set for training and the remainder for testing. The results

Data L = 2 4 6 NB CK
Pima 0.212 0.217 0.212 0.223 0.212
Iono 0.091 0.034 0.079 0.056 0.125

Bupa 0.368 0.322 0.345 0.322 0.345
Ecoli 0.082 0.176 0.176 0.235 0.188
Yeast 0.312 0.312 0.312 0.303 0.317
Wdbc 0.083 0.097 0.111 0.083 0.083

Table 3.1: Experimental results for the UCI data sets.

for our algorithm withL = 2, 4, and6 quantization levels are shown in Table3.1. Note
that in several cases the quantized algorithm actually outperforms a naive Bayes algorithm
(NB) with access to the real-valued features. This result may be due in part to the fact that
our quantizer is based on a discriminative classifier, but it is worth noting that similar im-
provements over naive Bayes have been reported in earlier empirical work using classical
discretization algorithms[Doughertyet al., 1995].

4The sensor observations are initially quantized intom = 10 bins, which then serves as input to the NBC
and KQ algorithm.
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3.5 Discussions

We have presented a new approach to the problem of decentralized decision-making under
constraints on the number of bits that can be transmitted by each of a distributed set of
sensors. In contrast to most previous work in an extensive line of research on this problem,
we propose a nonparametric solution: in particular, we assume that the joint distribution
of sensor observations is unknown, and that a set of data samples is available. We have
proposed a novel algorithm based on kernel methods, and shown that it is quite effective
on both simulated and real-world data sets.

This line of work described here can be extended in a number of directions. First,
although we have focused on discrete observationsX, it is natural to consider continu-
ous signal observations. Doing so would require considering parameterized distributions
Q(Z|X). Second, our kernel design so far makes use of only rudimentary information from
the sensor observation model, and could be improved by exploiting such knowledge more
thoroughly. Third, we have considered only the so-calledparallel configuration of the sen-
sors, which amounts to the conditional independence ofQ(Z|X). One direction to explore
is the use of kernel-based methods for richer configurations, such as tree-structured and
tandemconfigurations[Tsitsiklis, 1993b]. Finally, the work described here falls within the
area offixed sample sizedetectors. An alternative type of decentralized detection procedure
is asequentialdetector, in which there is usually a large (possibly infinite) number of ob-
servations that can be taken in sequence (e.g.[Veeravalliet al., 1993]). It is also interesting
to consider extensions our method to this sequential setting.

On the theoretical front, although we have provided an estimation error analysis with
respect to the surrogateφ-risk, no guarantee is given with respect to the Bayes error per
se. Specifically, does the quantizer-classifier pair(Q, γ) obtained our learning procedure
is (asymptotically) optimal in the sense of 0-1 loss? A complete answer to this question is
given in Chapter4.
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Appendix 3.A Proof of Lemma 3.1

(a) Sincex1, . . . , xn are independent realizations of the random vectorX, the quantities
Q(z|x1), . . . , Q(z|xn) are independent realizations of the random variableQ(z|X). (This
statement holds for each fixedz ∈ ZS.) The strong law of large numbers yields

1

n

n∑
i=1

Q(z|xi)
a.s.−→ EQ(z|xi) = P (z)

asn→ +∞. Similarly, we have

1

n

n∑
i=1

Q(z|xi)I(yi = 1)
a.s.−→ EQ(z|X)I(Y = 1).

Therefore, asn→∞,

κ(z)
a.s.−→ EQ(z|X)I(Y = 1)

P (z)
=

∑
x

Q(z|X = x)P (X = x, Y = 1)

P (z)
= P (Y = 1|z),

here we have exploited the fact thatZ is independent ofY givenX.
(b) For eachz ∈ ZS, we have

sign

(∑n
i=1Q(z|xi)I(yi = 1)∑n

i=1Q(z|xi)
−

∑n
i=1Q(z|xi)I(yi = −1)∑n

i=1Q(z|xi)

)
= sign

(∑n
i=1Q(z|xi)yi∑n
i=1Q(z|xi)

)
= γemp(z).

Thus, part (a) impliesγemp(z) → γopt(z) for eachz. Similarly,Remp → Ropt.

Appendix 3.B Proof of Proposition 3.5

Here we complete the proof of Proposition3.5. It remains to show that the optimum
w(Q) of the primal problem is related to the optimalα of the dual problem viaw(Q) =∑n

i=1 αiyiΦQ(xi). Indeed, sinceG(w) is a convex function with respect tow, w(Q) is an
optimum solution forminw G(w;Q) if and only if 0 ∈ ∂wG(w(Q)). By definition of the
conjugate dual, this condition is equivalent tow(Q) ∈ ∂G∗(0).

Recall thatG∗ is an inf-convolution ofn functions g∗1, . . . , g
∗
n and Ω∗. Let α̂ :=

(α̂1, . . . , α̂n) be an optimum solution to the dual problem, andû := (û1, . . . , ûn) be the
corresponding value in which the infimum operation in the definition ofG∗ is attained. Ap-
plying the subdifferential operation rule on a inf-convolution function (Cor. 4.5.5,[Hiriart-
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Urruty and Lemaŕechal, 2001]), we have

∂G∗(0) = ∂g∗1(û1) ∩ . . . ∩ ∂g∗n(ûn) ∩ ∂Ω∗(−
n∑

i=1

ûi).

But Ω∗(v) = 1
2
‖v‖2, and so∂Ω∗(−

∑n
i=1 ûi) reduces to a singleton

−
n∑

i=1

ûi =
n∑

i=1

α̂iyiΦQ(xi).

This implies thatw(Q) =
∑n

i=1 α̂iyiΦQ(xi) is the optimum solution to the primal problem.
To conclude, it will be useful for the proof of Lemma3.6 to calculate∂g∗i (ûi), and

derive several additional properties relatingw(Q) and α̂. The expression forg∗i in equa-
tion (3.23) shows that it is the image of the function1

λ
φ∗ under the linear mappingαi 7→

1
λ
αi(yiΦQ(xi)). Consequently, by Theorem 4.5.1 of Urruty and Lemarechal[Hiriart-Urruty

and Lemaŕechal, 2001]), we have∂g∗i (ûi) = {w : 〈w, yiΦQ(xi)〉 ∈ ∂φ∗(−λα̂i)}, which
implies thatbi := 〈w(Q), yiΦQ(xi)〉 ∈ ∂φ∗(−λα̂i) for eachi = 1, . . . , n. By convex
duality, this also implies that−λα̂i ∈ ∂φ(bi) for i = 1, . . . , n.

Appendix 3.C Proof of Lemma 3.6

We shall show that the subdifferential∂Qt(z̄t|x̄t)G can be computed directly in terms of the
optimal solutionα of the dual optimization problem (3.21) and the kernel functionKz.
Our approach is to first derive a formula for∂Q(z̄|x̄)G, and then to compute∂Qt(z̄t|x̄t)G by
applying the chain rule.

Define bi := 〈w(Q), yiΦQ(xi)〉. Using Theorem 23.8 of Rockafellar[Rockafellar,
1970], the subdifferential∂Q(z̄|x̄)G evaluated at(w(Q);Q) can be expressed as

∂Q(z̄|x̄)G =
n∑

i=1

∂Q(z̄|x̄)gi =
n∑

i=1

∂φ(bi)yi〈w, Φ′(z̄)〉I[xi = x̄].

Earlier in the proof of Proposition3.5we proved that−λαi ∈ ∂φ(bi) for eachi = 1, . . . , n,
whereα is the optimal solution of (3.21). Therefore,∂Q(z̄|x̄)G evaluated at(w(Q);Q)
contains the element:

n∑
i=1

−λαiyi〈w(Q), Φ′(z̄)〉I[xi = x̄] =
∑
i,j

−λαiαjyiyjI[xi = x̄]
∑

z

K(z, z̄)Q(z|xj).
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For eacht = 1, . . . , S, ∂Qt(z̄t|x̄t)G is related to∂Q(z̄|x̄)G by the chain rule. Note that for
Q(z̄|x̄) =

∏S
t=1Q

t(z̄t|x̄t), we have

∂Qt(z̄t|x̄t)G =
∑
z,x

∂Qt(z̄t|x̄t)Q(z|x)∂Q(z|x)G =
∑
z,x

Q(z|x)
Qt(z̄t|x̄t)

I[xt = x̄t]I[zt = z̄t]∂Q(z|x)G,

which contains the following element as one of its subgradients:∑
z,x

Q(z|x)
Qt(z̄t|x̄t)

I[xt = x̄t]I[zt = z̄t]

{ ∑
i,j

−λαiαjyiyjI[xi = x]
∑
z′

Kz(z
′, z)Q(z′|xj)

}
=

∑
i,j,z,z′

−λαiαjyiyjI[xt
i = x̄t]I[zt = z̄t]

Q(z|xi)

Qt(z̄t|x̄t
i)
Q(z′|xj)Kz(z

′, z).

This completes the proof of the lemma.

Appendix 3.D Proof of Proposition 3.9

By definition [van der Vaart and Wellner, 1996], the Rademacher complexityRn(F0) is
given by

E sup
f∈F0

2

n

n∑
i=1

σif(Xi) = E sup
‖w‖≤B;Q∈Q0

2

n

n∑
i=1

σi〈w, ΦQ(Xi)〉

=
2B

n
E sup

Q∈Q0

‖
n∑

i=1

σiΦQ(Xi)‖.

Applying the Cauchy-Schwarz inequality yields thatRn(F0) is upper bounded as

2B

n

√√√√E sup
Q∈Q0

||
n∑

i=1

σiΦQ(Xi)||2

=
2B

n

(
E sup

Q∈Q0

n∑
i=1

KQ(Xi, Xi) + 2E sup
Q∈Q0

∑
1≤i<j≤n

σiσjKQ(Xi, Xj)

)1/2

.

It remains to upper bound the second term inside the square root in the RHS. The trick is
to partition then(n− 1)/2 pairs of(i, j) into n− 1 subsets each of which hasn/2 pairs of
differenti andj (assumingn is even for simplicity). The existence of such a partition can
be shown by induction onn. Now, for eachi = 1, . . . , n− 1, denote the subset indexed by
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i by n/2 pairs(πi(j), π
′
i(j))

n/2
j=1, where all

{πi(1), . . . , πi(n/2)} ∩ {π′i(1), . . . , π′i(n/2)} = ∅.

Therefore,

E sup
Q∈Q0

∑
1≤i<j≤n

σiσjKQ(Xi, Xj) = E sup
Q∈Q0

n−1∑
i=1

n/2∑
j=1

σπi(j)σπ′i(j)
KQ(Xπi(j), Xπ′i(j)

)

≤
n−1∑
i=1

E sup
Q∈Q0

n/2∑
j=1

σπi(j)σπ′i(j)
KQ(Xπi(j), Xπ′i(j)

).

Our final step is to bound the terms inside the summation overi by invoking Massart’s
lemma[Massart, 2000] for bounding Rademacher averages over a finite setA ⊂ Rd to
conclude thatE supa∈A

∑d
i=1 σiai ≤ max ||a||2

√
2 log |A|. Now, for eachi and a real-

ization ofX1, . . . , Xn, treatσπi(j)σπ′i(j)
for j = 1, . . . , n/2 asn/2 Rademacher variables,

and then/2 dimensional vector(KQ(Xπi(j), Xπ′i(j)
))

n/2
j=1 takes on onlyLMS possible values

(since there areLMS possible choices forQ ∈ Q0). Then we have,

E sup
Q∈Q0

n/2∑
j=1

σπi(j)σπ′i(j)
KQ(Xπi(j), Xπ′i(j)

) ≤
√
n/2 sup

z,z′
Kz(z, z

′)
√

2 log(LMS),

from which the lemma follows.

Appendix 3.E Proof of Proposition 3.10

We treat eachQ(Z|X) ∈ Q as a function over all possible values(z, x). Recall thatX
is anS-dimensional vectorX = (X1, . . . , XS). For each fixed realizationxt of X t, for
t = 1, . . . , S, the set of all discrete conditional probability distributionsQ(Zt|xt) is a
(L− 1) simplex∆L. Since eachX t takes onM possible values, andX hasS dimensions,
we have:N(ε,Q, L∞) ≤ N(ε,∆L, l∞)MS ≤ (1/ε)(L−1)MS. Recall that eachf ∈ F can be
written as:

f(x) =
n∑

i=1

αi

∑
z,zi

Q(z|x)Q(zi|xi)Kz(z, zi). (3.32)

We now defineε0 := ε [2LS sup ||α||1 supz,z′ Kz(z, z
′)]−1. Given each fixed conditional

distributionQ in the ε0-coveringG(ε0,Q, L∞) for Q, we can construct anε/2-covering
in L2(Pn) for FQ. It is straightforward to verify that the union of all coverings forFQ

indexed byQ ∈ G(ε0,Q, L∞) forms anε-covering forF . Indeed, given any function
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f ∈ F that is expressed in the form (3.32) with a correspondingQ ∈ Q, there exists
someQ∗ ∈ G(ε0,Q, L∞) such that‖Q−Q∗‖∞ ≤ ε0. Let f1 be a function inFQ∗ using
the same coefficientsα as those off . GivenQ∗ there exists somef2 ∈ FQ∗ such that
‖f1− f2‖L2(Pn) ≤ ε/2. The triangle inequality yields that‖f − f2‖L2(Pn) is upper bounded
by

‖f − f1‖L2(Pn) + ‖f1 − f2‖L2(Pn) ≤ ‖f − f1‖∞ + ε/2

≤ LS sup ||α||1 sup
z,z′

Kz(z, z
′)‖Q−Q∗‖∞ + ε/2,

which is less thanε. In summary, we have constructed anε-covering inL2(Pn) for F
whose number of coverings is no more thanN(ε0,Q, L∞) supQN(ε/2,FQ, L2(Pn)). This
implies that

logN(ε,F , L2(Pn)) ≤ log

{
N(ε0,Q, L∞) sup

Q
N(ε/2,FQ, L2(Pn))

}
≤ log

{ (
2LS sup ||α||1 supz,z′ Kz(z, z

′)

ε

)(L−1)MS

sup
Q
N(ε/2,FQ, L2(Pn))

}
= sup

Q∈Q
logN(ε/2,FQ, L2(Pn)) + (L− 1)MS log

2LS sup ||α||1 supz,z′ Kz(z, z
′)

ε
,

which completes the proof.
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Chapter 4

Surrogate convex losses and
f -divergences

In this chapter we develop a general correspondence between a family of loss functions
that act as surrogates to 0-1 loss, and the class of Ali-Silvey orf -divergence function-
als. This correspondence provides the basis for choosing and evaluating various surrogate
losses frequently used in statistical learning (e.g., hinge loss, exponential loss, logistic loss);
conversely, it provides a decision-theoretic framework for the choice of divergences in sig-
nal processing and quantization theory. We exploit this correspondence to characterize
the statistical behavior of the nonparametric decentralized detection algorithm described in
Chapter3 that operate by minimizing convex surrogate loss functions. In particular, we
specify the family of loss functions that are equivalent to 0-1 loss in the sense of producing
the same quantization rules and discriminant functions.

4.1 Introduction

Over the past several decades, the classical topic of discriminant analysis has undergone
significant and sustained development in various scientific and engineering fields. Much
of this development has been driven by the physical, informational and computational con-
straints imposed by specific problem domains. Incorporating such constraints leads to in-
teresting extensions of the basic discriminant analysis paradigm that involve aspects of
experimental design. As one example, research in the area of “decentralized detection”
focuses on problems in which measurements are collected by a collection of devices dis-
tributed over space (e.g., arrays of cameras, acoustic sensors, wireless nodes). Due to
power and bandwidth limitations, these devices cannot simply relay their measurements
to the common site where a hypothesis test is to be performed; rather, the measurements
must be compressed prior to transmission, and the statistical test at the central site is per-

75



Chapter 4. Surrogate convex losses and f -divergences

formed on the transformed data[Tsitsiklis, 1993b; Blum et al., 1997]. The problem of
designing such compression rules is of substantial current interest in the field of sensor
networks[Chong and Kumar, 2003; Chamberland and Veeravalli, 2003]. A closely related
set of “signal selection” problems, arising for instance in radar array processing, also blend
discriminant analysis with aspects of experimental design[Kailath, 1967].

The standard formulation of these problems—namely, as hypothesis-testing within ei-
ther a Neyman-Pearson or Bayesian framework—rarely leads to computationally tractable
algorithms. The main source of difficulty is the intractability of minimizing the probability
of error, whether as a functional of the discriminant function or of the compression rule.
Consequently, it is natural to consider loss functions that act as surrogates for the proba-
bility of error, and lead to practical algorithms. For example, the Hellinger distance has
been championed for decentralized detection problems[Longoet al., 1990], due to the fact
that it yields a tractable algorithm both for the experimental design aspect of the problem
(i.e., the choice of compression rule) and the discriminant analysis aspect of the problem.
More broadly, a class of functions known asAli-Silvey distancesor f-divergences[Ali and
Silvey, 1966; Csiszár, 1967]—which includes not only the Hellinger distance, but also the
variational distance, Kullback-Leibler (KL) divergence and Chernoff distance—have been
explored as surrogate loss functions for the probability of error in a wide variety of applied
discrimination problems.

Theoretical support for the use off -divergences in discrimination problems comes from
two main sources. First, a classical result of[Blackwell, 1951] asserts that if procedure
A has a smallerf -divergence than procedure B (for some particularf -divergence), then
there exists some set of prior probabilities such that procedure A has a smaller probability
of error than procedure B. This fact, though a relatively weak justification, has nonethe-
less proven useful in designing signal selection and quantization rules[Kailath, 1967;
Poor and Thomas, 1977; Longo et al., 1990]. Second,f -divergences often arise as ex-
ponents in asymptotic (large-deviation) characterizations of the optimal rate of conver-
gence in hypothesis-testing problems; examples include Kullback-Leibler divergence for
the Neyman-Pearson formulation, and the Chernoff distance for the Bayesian formula-
tion [Cover and Thomas, 1991].

A parallel and more recent line of research in the field of statistical machine learning
has also focused on computationally-motivated surrogate functions in discriminant anal-
ysis. In statistical machine learning, the formulation of the discrimination problem (also
known asclassification) is decision-theoretic, with the Bayes error interpreted as risk under
a 0-1 loss. The algorithmic goal is to design discriminant functions by minimizing the em-
pirical expectation of 0-1 loss, wherein empirical process theory provides the underlying
analytic framework. In this setting, the non-convexity of the 0-1 loss renders intractable a
direct minimization of probability of error, so that various researchers have studied algo-
rithms based on replacing the 0-1 loss with “surrogate loss functions.” These alternative
loss functions are convex, and represent upper bounds or approximations to the 0-1 loss
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(see Figure4.2for an illustration). A wide variety of practically successful machine learn-
ing algorithms are based on such a strategy, including support vector machines[Cortes and
Vapnik, 1995; Scḧolkopf and Smola, 2002], the AdaBoost algorithm[Freund and Schapire,
1997], the X4 method[Breiman, 1998], and logistic regression[Friedmanet al., 2000].
More recent work by[Jiang, 2004], [Lugosi and Vayatis, 2004], [Mannoret al., 2003],
[Zhang, 2004], [Bartlett et al., 2006], [Steinwart, 2005] and others provides theoretical
support for these algorithms, in particular by characterizing statistical consistency and con-
vergence rates of the resulting estimation procedures in terms of the properties of surrogate
loss functions.

4.1.1 Our contributions

As mathematical objects, thef -divergences studied in information theory and the sur-
rogate loss functions studied in statistical machine learning are fundamentally different:
the former are functions on pairs of measures, whereas the latter are functions on values
of discriminant functions and class labels. However, their underlying role in obtaining
computationally-tractable algorithms for discriminant analysis suggests that they should
be related. Indeed, Blackwell’s result hints at such a relationship, but its focus on 0-1
loss does not lend itself to developing a general relationship betweenf -divergences and
surrogate loss functions. The primary contribution of this chapter is to provide a detailed
analysis of the relationship betweenf -divergences and surrogate loss functions, developing
a full characterization of the connection, and explicating its consequences. We show that
for any surrogate loss, regardless of its convexity, there exists a corresponding convexf
such that minimizing the expected loss is equivalent to maximizing thef -divergence. We
also provide necessary and sufficient conditions for anf -divergence to be realized from
some (decreasing) convex loss function. More precisely, given a convexf , we provide
a constructive procedure to generateall decreasing convex loss functions for which the
correspondence holds.

The relationship is illustrated in Figure4.1; whereas each surrogate lossφ induces only one
f -divergence, note that in general there are many surrogate loss functions that correspond to
the samef -divergence. As particular examples of the general correspondence established
in this chapter, we show that the hinge loss corresponds to the variational distance, the
exponential loss corresponds to the Hellinger distance, and the logistic loss corresponds to
the capacitory discrimination distance.

This correspondence—in addition to its intrinsic interest as an extension of Blackwell’s
work—has several specific consequences. First, there are numerous useful inequalities re-
lating the variousf -divergences[Topsoe, 2000]; our theorem allows these inequalities to
be exploited in the analysis of loss functions. Second, the minimizer of the Bayes error
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φ1

φ2

φ3

f1

f2

f3

Class of loss functions Class of f -divergences

Figure 4.1. Illustration of the correspondence betweenf -divergences and loss functions.
For each loss functionφ, there exists exactly one correspondingf -divergence (induced
by some underlying convex functionf ) such that theφ-risk is equal to the negativef -
divergence. Conversely, for eachf -divergence, there exists a whole set of surrogate loss
functionsφ for which the correspondence holds. Within the class of convex loss functions
and the class off -divergences, one can construct equivalent loss functions and equivalent
f -divergences, respectively. For the class of classification-calibrated decreasing convex loss
functions, we can characterize the correspondence precisely.

and the maximizer off -divergences are both known to possess certain extremal proper-
ties [Tsitsiklis, 1993a]; our result provides a natural connection between these properties.
Third, our theorem allows a notion of equivalence to be defined among loss functions: in
particular, we say that loss functions are equivalent if they induce the samef -divergence.
We then exploit the constructive nature of our theorem to exhibit all possible convex loss
functions that are equivalent (in the sense just defined) to the 0-1 loss. Finally, we illustrate
the application of this correspondence to the problem of decentralized detection. Whereas
the more classical approach to this problem is based onf -divergences[Kailath, 1967;
Poor and Thomas, 1977], our method instead builds on the framework of statistical ma-
chine learning. The correspondence allows us to establish consistency results for a novel
algorithmic framework for decentralized detection: in particular, we prove that for any sur-
rogate loss function equivalent to 0-1 loss, our estimation procedure is consistent in the
strong sense that it will asymptotically choose Bayes-optimal quantization rules.

The remainder of the chapter is organized as follows. In Section4.2, we define a ver-
sion of discriminant analysis that is suitably general so as to include problems that involve
a component of experiment design (such as in decentralized detection, and signal selec-
tion). We also provide a formal definition of surrogate loss functions, and present exam-
ples of optimized risks based on these loss functions. In Section4.3, we state and prove the
correspondence theorem between surrogate loss functions andf -divergences. Section4.4
illustrates the correspondence using well-known examples of loss functions and theirf -
divergence counterparts. In Section4.5, we discuss connections between the choice of
quantization designs and Blackwell’s classic results on comparisons of experiments. We
introduce notions of equivalence among surrogate loss functions, and explore their proper-
ties. In Section4.6, we establish the consistency of schemes for choosing Bayes-optimal
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classifiers based on surrogate loss functions that are equivalent to 0-1 loss. We conclude
with a discussion in Section4.7.

4.2 Background and problem set-up

4.2.1 Binary classification and its extension

We begin by defining a classical discriminant analysis problem, in particular thebinary
classification problem. LetX be a covariate taking values in a compact topological space
X , and letY ∈ Y := {−1,+1} be a binary random variable. The product space(X × Y )
is assumed to be endowed with a Borel regular probability measureP. A discriminant
function is a measurable functionf mapping fromX to the real line, whose sign is used
to make a classification decision. The goal is to choose the discriminant functionf so as
to minimize the probability of making the incorrect classification, also known as theBayes
risk. This risk is defined as follows

P(Y 6= sign(f(X))) = E
[
I[Y 6= sign(f(X))

]
, (4.1)

whereI is a 0-1-valued indicator function.
The focus of this chapter is an elaboration of this basic problem in which the decision-

maker, rather than having direct access toX, observes a random variableZ with rangeZ
that is obtained via a (possibly stochastic) mappingQ : X → Z. In a statistical context,
the choice of the mappingQ can viewed as choosing a particularexperiment; in the signal
processing literature, whereZ is generally taken to be discrete, the mappingQ is often
referred to as aquantizer. In any case, the mappingQ can be represented by conditional
probabilitiesQ(z|x).

LetQ denote the space of all stochasticQ, and letQ0 denote the subset of determin-
istic mappings. When the underlying experimentQ is fixed, then we simply have a binary
classification problem on the spaceZ: that is, our goal is to find a real-valued measurable
functionγ onZ so as to minimize the Bayes riskP(Y 6= sign(γ(Z))). We useΓ to repre-
sent the space of all such possible discriminant functions onZ. This chapter is motivated
by the problem of specifying the classifierγ ∈ Γ, as well as the experiment choiceQ ∈ Q,
so as to minimize the Bayes risk.

Throughout the chapter, we assume thatZ is a discrete space for simplicity. We note in
passing that this requirement is not essential to our analysis. It is only needed in Section4.6,
where we require thatQ andQ0 be compact. This condition is satisfied whenZ is discrete.

79



Chapter 4. Surrogate convex losses and f -divergences

4.2.2 Surrogate loss functions

As shown in equation (4.1), the Bayes risk corresponds to the expectation of the 0-1 loss

φ(y, γ(z)) = I[y 6= sign(γ(z))]. (4.2)

Given the nonconvexity of this loss function, it is natural to consider a surrogate loss func-
tion φ that we optimize in place of the 0-1 loss. In particular, we focus on loss functions of
the formφ(y, γ(z)) = φ(yγ(z)), whereφ : R → R is typically a convex upper bound on
the 0-1 loss. In the statistical learning literature, the quantityyγ(z) is known as themargin
andφ(yγ(z)) is often referred to as a “margin-based loss function.” Given a particular loss
functionφ, we denote the associatedφ-risk byRφ(γ,Q) := Eφ(Y γ(Z)).

A number of such loss functions are used commonly in the statistical learning litera-
ture. See Figure4.2 for an illustration of some different surrogate functions, as well as the
original 0-1 loss. First, thehinge lossfunction

φhinge(yγ(z)) := max{1− yγ(z), 0} (4.3)

underlies the so-called support vector machine (SVM) algorithm[Scḧolkopf and Smola,
2002]. Second, thelogistic lossfunction

φlog(yγ(z)) := log
(
1 + exp−yγ(z)

)
(4.4)

forms the basis of logistic regression[Friedmanet al., 2000]. As a third example, the
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Figure 4.2. Illustrations of the 0-1 loss function, and three surrogate loss functions: hinge
loss, logistic loss, and exponential loss.

Adaboost algorithm[Freund and Schapire, 1997] uses aexponential lossfunction:

φexp(yγ(z)) := exp(−yγ(z)). (4.5)
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Finally, another possibility (though less natural for a classification problem) is theleast
squaresfunction:

φsqr(yγ(z)) := (1− yγ(z))2. (4.6)

[Bartlett et al., 2006] have provided a general definition of surrogate loss functions.
Their definition is crafted so as to permit the derivation of a general bound that links theφ-
risk and the Bayes risk, thereby permitting an elegant general treatment of the consistency
of estimation procedures based on surrogate losses. The definition is essentially a pointwise
form of a Fisher consistency condition that is appropriate for the classification setting; in
particular, it takes the following form:

Definition 4.1. A loss functionφ is classification-calibratedif for anya, b ≥ 0 anda 6= b:

inf
{α∈R |α (a−b)<0}

[
φ(α)a+ φ(−α)b

]
> inf

α∈R

[
φ(α)a+ φ(−α)b

]
. (4.7)

As will be clarified subsequently, this definition ensures that the decision ruleγ behaves
equivalently to the Bayes decision rule in the (binary) classification setting.

For our purposes we will find it useful to consider a somewhat more restricted definition
of surrogate loss functions. In particular, we impose the following three conditions on any
surrogate loss functionφ : R → R ∪ {+∞}:

A1: φ is classification-calibrated.

A2: φ is continuous and convex.

A3: Let α∗ = inf
{
α ∈ R ∪ {+∞}

∣∣ φ(α) = inf φ
}

. If α∗ < +∞, then for anyε > 0,

φ(α∗ − ε) ≥ φ(α∗ + ε). (4.8)

The interpretation of Assumption A3 is that one should penalize deviations away fromα∗

in the negative direction at least as strongly as deviations in the positive direction; this re-
quirement is intuitively reasonable given the margin-based interpretation ofα. Moreover,
this assumption is satisfied by all of the loss functions commonly considered in the liter-
ature; in particular, any decreasing functionφ (e.g., hinge loss, logistic loss, exponential
loss) satisfies this condition, as does the least squares loss (which is not decreasing).

[Bartlett et al., 2006] also derived a simple lemma that characterizes classification-
calibration for convex functions:

Lemma 4.2. Letφ be a convex function. Thenφ is classification-calibrated if and only if
it is differentiable at0 andφ′(0) < 0.

Consequently, Assumption A1 is equivalent to requiring thatφ be differentiable at 0 and
φ′(0) < 0. These facts also imply that the quantityα∗ defined in Assumption A3 is strictly
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positive. Finally, althoughφ is not defined for−∞, we shall use the convention that
φ(−∞) = +∞.

4.2.3 Examples of optimum φ-risks

For each fixed experimentQ, we define theoptimalφ-risk (a function ofQ) as follows:

Rφ(Q) := inf
γ∈Γ

Rφ(γ,Q). (4.9)

Let p = P(Y = 1) andq = P(Y = −1), wherep, q > 0 andp + q = 1, define a prior on
the hypothesis space. Any fixed experimentQ induces positive measuresµ andπ overZ
as follows:

µ(z) := P(Y = 1, Z = z) = p

∫
x

Q(z|x)dP(x|Y = 1) (4.10a)

π(z) := P(Y = −1, Z = z) = q

∫
x

Q(z|x)dP(x|Y = −1). (4.10b)

The integrals are defined with respect to a dominating measure, e.g.,P(x|Y = 1) +
P(x|Y = −1). It can be shown using Lyapunov’s theorem that the space of{(µ, π)}
by varyingQ ∈ Q (or Q0) is both convex and compact under an appropriately defined
topology(see,[Tsitsiklis, 1993a]).

For simplicity, in this chapter, we assume that the spacesQ andQ0 are restricted such
that bothµ andπ are strictly positive measures. Note that the measuresµ andπ are con-
strained by the following simple relations:∑
z∈Z

µ(z) = P(Y = 1),
∑
z∈Z

π(z) = P(Y = −1),andµ(z)+π(z) = P(z) for eachz ∈ Z .

Note thatY andZ are independent conditioned onX. Therefore, lettingη(x) = P(Y =
1|x), we can write

Rφ(γ,Q) = EX

[∑
z

φ(γ(z))η(X)Q(z|X) + φ(−γ(z))(1− η(X))Q(z|X)
]
. (4.11)
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On the basis of this equation, theφ-risk can be written in the following way:

Rφ(γ,Q) = Eφ(Y γ(Z)) (4.12)

=
∑

z

φ(γ(z))EX

[
η(X)Q(z|X)

]
+ φ(−γ(z))EX

[
(1− η(X))Q(z|X)

]
=

∑
z

φ(γ(z))µ(z) + φ(−γ(z))π(z). (4.13)

This representation allows us to compute the optimal value forγ(z) for all z ∈ Z, as well
as the optimalφ-risk for a fixedQ. We illustrate this procedure with some examples:

0-1 loss. In this case, it is straightforward to see from equation (4.12) that γ(z) =
sign(µ(z)− π(z)). As a result, the optimal Bayes risk given a fixedQ takes the form:

Rbayes(Q) =
∑
z∈Z

min{µ(z), π(z)} =
1

2
− 1

2

∑
z∈Z

|µ(z)− π(z)|

=
1

2
(1− V (µ, π)),

whereV (µ, π) denotes the variational distanceV (µ, π) :=
∑

z∈Z |µ(z)− π(z)| between
the two measuresµ andπ.

Hinge loss.If φ is hinge loss, then equation (4.12) again yields thatγ(z) = sign(µ(z)−
π(z)). As a result, the optimal risk for hinge loss takes the form:

Rhinge(Q) =
∑
z∈Z

2 min{µ(z), π(z)} = 1−
∑
z∈Z

|µ(z)− π(z)|

= 1− V (µ, π) = 2Rbayes(Q).

Least squares loss.If φ is least squares loss, thenγ(z) = µ(z)−π(z)
µ(z)+π(z)

, so that the optimal
risk for least squares loss takes the form:

Rsqr(Q) =
∑
z∈Z

4µ(z)π(z)

µ(z) + π(z)
= 1−

∑
z∈Z

(µ(z)− π(z))2

µ(z) + π(z)

= 1−∆(µ, π),

where∆(µ, π) denotes thetriangular discriminationdistance defined by∆(µ, π) :=∑
z∈Z

(µ(z)−π(z))2

µ(z)+π(z)
.

Logistic loss.If φ is logistic loss, thenγ(z) = log µ(z)
π(z)

. As a result, the optimal risk for
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logistic loss takes the form:

Rlog(Q) =
∑
z∈Z

µ(z) log
µ(z) + π(z)

µ(z)
+ π(z) log

µ(z) + π(z)

π(z)

= log 2−KL(µ||µ+ π

2
)−KL(π||µ+ π

2
)

= log 2− C(µ, π),

whereKL(U, V ) denotes the Kullback-Leibler divergence between two measuresU and
V , andC(U, V ) denotes thecapacitory discriminationdistance defined by

C(U, V ) := KL(U ||U + V

2
) +KL(V ||U + V

2
).

Exponential loss.If φ is exponential loss, thenγ(z) = 1
2
log µ(z)

π(z)
. The optimal risk for

exponential loss takes the form:

Rexp(Q) =
∑
z∈Z

2
√
µ(z)π(z) = 1−

∑
z∈Z

(
√
µ(z)−

√
π(z))2

= 1− 2h2(µ, π),

whereh(µ, π) := 1
2

∑
z∈Z(

√
µ(z)−

√
π(z))2 denotes the Hellinger distance between mea-

suresµ andπ.
It is worth noting that in all of these cases, the optimumφ-risk takes the form of a

well-known “distance” or “divergence” function. This observation motivates a more gen-
eral investigation of the relationship between surrogate loss functions and the form of the
optimum risk.

4.3 Correspondence between surrogate loss func-
tions and divergences

The correspondence exemplified in the previous section turns out to be quite general. So as
to make this connection precise, we begin by defining the class off -divergence functions,
which includes all of the examples discussed above as well as numerous others[Csiszár,
1967; Ali and Silvey, 1966]:

Definition 4.3. Given any continuous convex functionf : [0,+∞) → R ∪ {+∞}, the
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f -divergence between measuresµ andπ is given by

If (µ, π) :=
∑

z

π(z)f

(
µ(z)

π(z)

)
. (4.14)

As particular cases, the variational distance is given byf(u) = |u−1|, Kullback-Leibler
divergence byf(u) = u lnu, triangular discrimination byf(u) = (u − 1)2/(u + 1), and
Hellinger distance byf(u) = 1

2
(
√
u − 1)2. Other well-knownf -divergences include the

(negative) Bhattacharyya distance (f(u) = −2
√
u), and the (negative) harmonic distance

(f(u) = − 4u
u+1

).
As discussed in the introduction, these functions are widely used in the engineering

literature to solve problems in decentralized detection and signal selection. Specifically,
for a pre-specified joint distributionP(X, Y ) and a given quantizerQ, one defines anf -
divergence on the class-conditional distributionsP(Z|Y = 1) andP(Z|Y = −1). This
f -divergence is then viewed as a function of the underlyingQ, and the optimum quantizer
is chosen by maximizing thef -divergence. Typically, the discriminant functionγ—which
acts on the quantized spaceZ— has an explicit form in terms of the distributionsP (Z|Y =
1) andP (Z|Y = −1). As we have discussed, the choice of the class off -divergences as
functions to optimize is motivated both by Blackwell’s classical theorem[Blackwell, 1951]
on the design of experiments, as well as by the computational intractability of minimizing
the probability of error, a problem rendered particularly severe in practice whenX is high
dimensional[Kailath, 1967; Poor and Thomas, 1977; Longoet al., 1990].

4.3.1 From φ-risk to f -divergence

In the following two sections, we develop a general relationship between optimalφ-risks
andf -divergences. The easier direction, on which we focus in the current section, is mov-
ing fromφ-risk tof -divergence. In particular, we begin with a simple result that shows that
anyφ-risk induces a correspondingf -divergence.

Proposition 4.4. For each fixedQ, let γQ be the optimal decision rule for the fusion cen-
ter. Then theφ-risk for (Q, γQ) is a f -divergencebetweenµ andπ, as defined in equa-
tion (4.10), for some convex functionf :

Rφ(Q) = −If (µ, π). (4.15)

Moreover, this relation holds whether or notφ is convex.

Proof. The optimalφ-risk has the form

Rφ(Q) =
∑
z∈Z

min
α

(φ(α)µ(z) + φ(−α)π(z)) =
∑

z

π(z) min
α

(
φ(−α) + φ(α)

µ(z)

π(z)

)
.
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For eachz, defineu := µ(z)
π(z)

. With this notation, the functionminα(φ(−α) + φ(α)u)
is concave as a function ofu (since the minimum of a collection of linear functions is
concave). Thus, if we define

f(u) := −min
α

(φ(−α) + φ(α)u). (4.16)

then the claim follows. Note that the argument does not require convexity ofφ.

Remark: We can also writeIf (µ, π) in terms of anf -divergence between the two condi-
tional distributionsP(Z|Y = 1) ∼ P1(Z) andP(Z|Y = −1) ∼ P−1(Z). Recalling the
notationq = P(Y = −1), we have:

If (µ, π) = q
∑

z

P−1(z)f

(
(1− q)P1(z)

qP−1(z)

)
= Ifq(P1,P−1), (4.17)

wherefq(u) := qf((1 − q)u/q). Although it is equivalent to study either form of diver-
gences, we focus primarily on the representation (4.15) because the prior probabilities are
absorbed in the formula. It will be convenient, however, to use the alternative (4.17) when
the connection to the general theory of comparison of experiments is discussed.

4.3.2 From f -divergence to φ-risk

In this section, we develop the converse of Proposition4.4. Given a divergenceIf (µ, π) for
some convex functionf , does there exists a loss functionφ for whichRφ(Q) = −If (µ, π)?
We establish that such a correspondence indeed holds for a general class of margin-based
convex loss functions; in such cases, it is possible to constructφ to induce a givenf -
divergence.

4.3.2.1 Some intermediate functions

Our approach to establishing the desired correspondence proceeds via some intermediate
functions, which we define in this section. First, let us define, for eachβ, the inverse
mapping

φ−1(β) := inf{α : φ(α) ≤ β}, (4.18)

whereinf ∅ := +∞. The following result summarizes some useful properties ofφ−1:

Lemma 4.5. (a) For all β ∈ R such thatφ−1(β) < +∞, the inequalityφ(φ−1(β)) ≤ β
holds. Furthermore, equality occurs whenφ is continuous atφ−1(β).

(b) The functionφ−1 : R → R is strictly decreasing and convex.

Proof. See Appendix4.A.
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Using the functionφ−1, we then define a new functionΨ : R → R by

Ψ(β) :=

{
φ(−φ−1(β)) if φ−1(β) ∈ R,
+∞ otherwise.

(4.19)

Note that the domain ofΨ is Dom(Ψ) = {β ∈ R : φ−1(β) ∈ R}. Now define

β1 := inf{β : Ψ(β) < +∞} and β2 := inf{β : Ψ(β) = inf Ψ}. (4.20)

It is simple to check thatinf φ = inf Ψ = φ(α∗), andβ1 = φ(α∗), β2 = φ(−α∗). Further-
more, by construction, we haveΨ(β2) = φ(α∗) = β1, as well asΨ(β1) = φ(−α∗) = β2.
The following properties ofΨ are particularly useful for our main results.

Lemma 4.6. (a) Ψ is strictly decreasing in(β1, β2). If φ is decreasing, thenΨ is also
decreasing in(−∞,+∞). In addition,Ψ(β) = +∞ for β < β1.

(b) Ψ is convex in(−∞, β2]. If φ is a decreasing function, thenΨ is convex in(−∞,+∞).

(c) Ψ is lower semi-continuous, and continuous in its domain.

(d) For anyα ≥ 0, φ(α) = Ψ(φ(−α)). In particular, there existsu∗ ∈ (β1, β2) such that
Ψ(u∗) = u∗.

(e) The functionΨ satisfiesΨ(Ψ(β)) ≤ β for all β ∈ Dom(Ψ). Moreover, ifφ is a
continuous function on its domain{α ∈ R |φ(α) < +∞}, thenΨ(Ψ(β)) = β for all
β ∈ (β1, β2).

Proof. See Appendix4.B.

Remark: With reference to statement (b), ifφ is not a decreasing function, then the func-
tion Ψ need not be convex on the entire real line. See Appendix4.B for an example.

The following result provides the necessary connection between the functionΨ and the
f -divergence associated withφ, as defined in equation (4.16):

Proposition 4.7. (a) Given a loss functionφ, the associatedf -divergence(4.16) satisfies
the relation

f(u) = Ψ∗(−u), (4.21)

whereΨ∗ denotes the conjugate dual ofΨ. If the surrogate lossφ is decreasing, then
Ψ(β) = f ∗(−β).
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(b) For a givenΨ, there exists a pointu∗ ∈ (β1, β2) such thatΨ(u∗) = u∗. All loss
functionsφ that induceΨ via (4.19) take the form:

φ(α) =


u∗ if α = 0

Ψ(g(α+ u∗)) if α > 0

g(−α+ u∗) if α < 0,

(4.22)

whereg : [u∗,+∞) → R is some increasing continuous convex function such that
g(u∗) = u∗, andg is right-differentiable atu∗ with g′(u∗) > 0.

Proof. (a) From equation (4.16), we have

f(u) = − inf
α∈R

(
φ(−α) + φ(α)u)

)
= − inf{

α,β

∣∣φ−1(β)∈R, φ(α)=β
}(

φ(−α) + βu

)
.

Forβ such thatφ−1(β) ∈ R, there might be more than oneα such thatφ(α) = β. However,
our assumption (4.8) ensures thatα = φ−1(β) results in minimumφ(−α). Hence,

f(u) = − inf
β:φ−1(β)∈R

(
φ(−φ−1(β)) + βu

)
= − inf

β∈R
(βu+ Ψ(β))

= sup
β∈R

(−βu−Ψ(β)) = Ψ∗(−u).

If φ is decreasing, thenΨ is convex. By convex duality and the lower semicontinuity ofΨ
(from Lemma4.6), we can also write:

Ψ(β) = Ψ∗∗(β) = f ∗(−β). (4.23)

(b) From Lemma4.6, we haveΨ(φ(0)) = φ(0) ∈ (β1, β2). As a consequence,u∗ := φ(0)
satisfies the relationΨ(u∗) = u∗. Sinceφ is decreasing and convex on the interval(−∞, 0],
for anyα ≥ 0, φ(−α) can be written as the form:

φ(−α) = g(α+ u∗),

whereg is some increasing convex function. From Lemma4.6, we haveφ(α) = Ψ(φ(−α)) =
Ψ(g(α + u∗) for α ≥ 0. To ensure the continuity at 0, there holdsu∗ = φ(0) = g(u∗).
To ensure thatφ is classification-calibrated, we require thatφ is differentiable at 0 and
φ′(0) < 0. These conditions in turn imply thatg must be right-differentiable atu∗ with
g′(u∗) > 0.
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4.3.2.2 A converse theorem

One important aspect of Proposition4.7(a) is that it suggests a route—namely via convex
duality [Rockafellar, 1970]—to recover the functionΨ from f , assuming thatΨ is lower
semi-continuous. We exploit this intuition in the following:

Theorem 4.8. Given a lower semicontinuous convex functionf : R → R, consider the
function:

Ψ(β) = f ∗(−β). (4.24)

Defineβ1 := inf{β : Ψ(β) < +∞} andβ2 := inf{β : Ψ(β) ≤ inf Ψ}, and suppose that
Ψ is decreasing, and satisfiesΨ(Ψ(β)) = β for all β ∈ (β1, β2).

(a) Thenany continuous loss functionφ of the form(4.22) must inducef -divergence
with respect tof in the sense of(4.15) and (4.16).

(b) Moreover, ifΨ is differentiable at the pointu∗ ∈ (β1, β2) such thatΨ(u∗) = u∗, then
any suchφ is classification-calibrated.

Proof. (a) Sincef is lower semicontinuous by assumption, convex duality allows us to
write

f(u) = f ∗∗(u) = Ψ∗(−u) = sup
β∈R

(−βu−Ψ(β)) = − inf
β∈R

(βu+ Ψ(β)).

Proposition4.7(b) guarantees that all convex loss functionφ for which equations (4.15)
and (4.16) hold must have the form (4.22). Note thatΨ is lower semicontinuous and convex
by definition. It remains to show that any convex loss functionφ of form (4.22) must be
linked toΨ via the relation

Ψ(β) =

{
φ(−φ−1(β)) if φ−1(β) ∈ R,
+∞ otherwise.

(4.25)

SinceΨ is assumed to be a decreasing function, the functionφ defined in equation (4.22)
is also a decreasing function. By assumption, we also haveΨ(Ψ(β)) = β for any β ∈
(β1, β2). Therefore, it is straightforward to verify that there existsu∗ ∈ (β1, β2) such that
Ψ(u∗) = u∗. Using the valueu∗, we divide our analysis into three cases:

• For β ≥ u∗, there existsα ≥ 0 such thatg(α + u∗) = β. Choose the largestα that
is so. From our definition ofφ, φ(−α) = β. Thusφ−1(β) = −α. It follows that
φ(−φ−1(β)) = φ(α) = Ψ(g(α+ u∗)) = Ψ(β).

• Forβ < β1 = infu∈R Ψ(u), we haveΨ(β) = +∞.
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• Lastly, forβ1 ≤ β < u∗ < β2, then there existsα > 0 such thatg(α+ u∗) ∈ (u∗, β2)
andβ = Ψ(g(α + u∗)), which implies thatβ = φ(α) from our definition. Choose
that smallestα that satisfies these conditions. Thenφ−1(β) = α, and it follows that
φ(−φ−1(β)) = φ(−α) = g(α + u∗) = Ψ(Ψ(g(α + u∗))) = Ψ(β), where we have
used the fact thatg(α+ u∗) ∈ (β1, β2)).

The proof is complete.
(b) From Lemma4.6(e), we haveΨ(Ψ(β)) = β for β ∈ (β1, β2). This fact, in conjunc-

tion with the assumption thatΨ is differentiable atu∗, implies thatΨ′(u∗) = −1. Therefore,
by choosingg to be differentiable atu∗ with g′(u∗) > 0, as dictated by Proposition4.7(b),
ensures thatφ is also differentiable at 0 andφ′(0) < 0. Thus, by Lemma4.2, the function
φ is classification-calibrated.

Remark: One interesting consequence of Theorem4.8 that anyf -divergence can be
obtained from a fairly large set of surrogate loss functions. More precisely, from the pro-
cedure (4.22), we see that any validφ is specified by a functiong that need satisfy only a
mild set of conditions. It is important to note that not allφ losses of the form (4.22) are
convex, but they still satisfy (4.16). We illustrate this flexibility with several examples in
Section4.4.

4.3.2.3 Some additional properties

Theorem4.8 provides one set of conditions for anf -divergence to be realized by some
surrogate lossφ, as well as a constructive procedure for finding all such loss functions. The
following result provides a related set of conditions that can be easier to verify. We say that
anf -divergence issymmetricif If (µ, π) = If (π, µ) for any measuresµ andπ. With this
definition, we have the following:

Corollary 4.9. The following are equivalent:

(a) f is realizable by some surrogate loss functionφ (via Proposition4.4).

(b) f -divergenceIf is symmetric.

(c) For anyu > 0, f(u) = uf(1/u).

Proof. (a)⇒ (b): From Proposition4.4, we have the representationRφ(Q) = −If (µ, π).
Alternatively, we can write:

Rφ(Q) =
∑

z

µ(z) min
α

(
φ(α) + φ(−α)

π(z)

µ(z)

)
= −

∑
z

µ(z)f

(
π(z)

µ(z)

)
,

which is equal to−If (π, µ), thereby showing that thef -divergence is symmetric.

90



Chapter 4. Surrogate convex losses and f -divergences

(b)⇒ (c): By assumption, the following relation holds for any measuresµ andπ:∑
z

π(z)f(µ(z)/π(z)) =
∑

z

µ(z)f(π(z)/µ(z)). (4.26)

Take any instance ofz = l ∈ Z, and consider measuresµ′ andπ′, which are defined on
the spaceZ − {l} such thatµ′(z) = µ(z) andπ′(z) = π(z) for all z ∈ Z − {l}. Since
Equation (4.26) also holds forµ′ andπ′, it follows that

π(z)f(µ(z)/π(z)) = µ(z)f(π(z)/µ(z))

for all z ∈ Z and anyµ andπ. Hence,f(u) = uf(1/u) for anyu > 0.
(c)⇒ (a): It suffices to show that all sufficient conditions specified by Theorem4.8are

satisfied.
Since anyf -divergence is defined by applyingf to a likelihood ratio (see defini-

tion (4.14)), we can assumef(u) = +∞ for u < 0 without loss of generality. Since
f(u) = uf(1/u) for anyu > 0, it can be verified using subdifferential calculus[Rockafel-
lar, 1970] that for anyu > 0, there holds:

∂f(u) = f(1/u) + ∂f(1/u)
−1

u
. (4.27)

Given someu > 0, consider anyv1 ∈ ∂f(u). Combined with (4.27), we have

f(u)− v1u ∈ ∂f(1/u). (4.28)

By definition of conjugate duality,

f ∗(v1) = v1u− f(u).

DefineΨ(β) = f ∗(−β). Then,

Ψ(Ψ(−v1)) = Ψ(f ∗(v1)) = Ψ(v1u− f(u))

= f ∗(f(u)− v1u) = sup
β∈R

(βf(u)− βv1u− f(β)).

Note that the supremum is achieved atβ = 1/u because of (4.28). Therefore,Ψ(Ψ(−v1)) =
−v1 for anyv1 ∈ ∂f(u) for u > 0. In other words,Ψ(Ψ(β)) = β for anyβ ∈ {−∂f(u), u >
0}. By convex duality,β ∈ −∂f(u) for someu > 0 if and only if−u ∈ ∂Ψ(β) for some
u > 0 [Rockafellar, 1970]. This condition onβ is equivalent to∂Ψ(β) containing some
negative value. This is satisfied by anyβ ∈ (β1, β2). Hence,Ψ(Ψ(β)) = β for β ∈ (β1, β2).
In addition,f(u) = +∞ for u < 0, Ψ is a decreasing function. Now, as an application of
Theorem4.8, If is realizable by some (decreasing) surrogate loss function.
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Remarks. It is worth noting that not allf -divergences are symmetric; well-known
cases of asymmetric divergences include the Kullback-Leibler divergencesKL(µ, π) and
KL(π, µ), which correspond to the functionsf(u) = − log u andf(u) = u log u, respec-
tively. Corollary4.9 establishes that such asymmetricf -divergences cannot be generated
by any(margin-based) surrogate loss functionφ. Therefore, margin-based surrogate losses
can be considered as symmetric loss functions. It is important to note that our analysis
can be extended to show that asymmetricf -divergences can be realized by general (asym-
metric) loss functions. Finally, from the proof of Corollary4.9, it can be deduced that if
an f -divergence is realized by some surrogate loss function, it is also realized by some
decreasing surrogate loss function.

Most surrogate loss functionsφ considered in statistical learning are bounded from
below (e.g.,φ(α) ≥ 0 for all α ∈ R). The following result establishes a link between
(un)boundedness and the properties of the associatedf :

Corollary 4.10. Assume thatφ is a decreasing (continuous convex) loss function corre-
sponding to anf -divergence, wheref is a continuous convex function that is bounded from
below by an affine function. Thenφ is unboundedfrom below if and only iff is 1-coercive,
i.e.,f(x)/||x|| → +∞ as||x|| → ∞.

Proof. φ is unbounded from below if and only ifΨ(β) = φ(−φ−1(β)) ∈ R for all β ∈ R,
which is equivalent to the dual functionf(β) = Ψ∗(−β) being 1-coercive(cf.[Hiriart-
Urruty and Lemaŕechal, 2001]).

Therefore, for any decreasing and lower-boundedφ loss (which includes the hinge,
logistic and exponential losses), the associatedf -divergence isnot 1-coercive. Other inter-
estingf -divergences such as thesymmetricKL divergence considered in[Bradt and Karlin,
1956] are 1-coercive, meaning that any associated surrogate lossφ cannot be bounded be-
low. We illustrate such properties off -divergences and their corresponding loss functions
in the following section.

4.4 Examples of loss functions and f -divergences

In this section, we consider a number of specific examples in order to illustrate the cor-
respondence developed in the previous section. As a preliminary remark, it is simple to
check that iff1 andf2 are related byf1(u) = cf2(u) + au + b for some constantsc > 0
anda, b, thenIf1(µ, π) = If2(µ, π)+ aP(Y = 1)+ bP(Y = −1). This relationship implies
that thef -divergencesIf1 andIf2, when viewed as functions ofQ, are equivalent (up to
an additive constant). For this reason, in the following development, we consider diver-
gences so related to be equivalent. We return to a more in-depth exploration of this notion
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of equivalence in Section4.5.

Example 1 (Hellinger distance).The Hellinger distance is equivalent to the negative
of the Bhattacharyya distance, which is anf -divergence withf(u) = −2

√
u for u ≥

0. Let us augment the definition off with f(u) = +∞ for u < 0; doing so does not
alter the Hellinger (or Bhattacharyya) distances. Following the constructive procedure of
Theorem4.8, we begin by recoveringΨ from f :

Ψ(β) = f ∗(−β) = sup
u∈R

(−βu− f(u)) =

{
1/β whenβ > 0

+∞ otherwise.

Thus, we see thatu∗ = 1. If we let g(u) = u, then a possible surrogate loss function that
realizes the Hellinger distance takes the form:

φ(α) =


1 if α = 0

1
α+1

if α > 0

−α+ 1 if α < 0.

On the other hand, if we setg(u) = exp(u − 1), then we obtain the exponential loss
φ(α) = exp(−α), agreeing with what was shown in Section4.2.3. See Figure4.4 for
illustrations of these loss functions using difference choices ofg.
Example 2 (Variational distance). In Section4.2.3, we established that the hinge loss as
well as the 0-1 loss both generate the variational distance. Thisf -divergence is based on
the functionf(u) = −2 min(u, 1) for u ≥ 0. As before, we can augment the definition by
settingf(u) = +∞ for u < 0, and then proceed to recoverΨ from f :

Ψ(β) = f ∗(−β) = sup
u∈R

(−βu− f(u)) =


0 if β > 2

2− β if 0 ≤ β ≤ 2

+∞ if β < 0.

By inspection, we see thatu∗ = 1. If we setg(u) = u, then we recover the hinge loss
φ(α) = (1− α)+. On the other hand, choosingg(u) = eu−1 leads to the following loss:

φ(α) =

{
(2− eα)+ for α ≤ 0

e−α for α > 0.
(4.29)

Note that this choice ofg does not lead to a convex lossφ, although this non-convex
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loss still inducesf in the sense of Proposition4.4. To ensure thatφ is convex,g is any
increasing convex function in[1,+∞) such thatg(u) = u for u ∈ [1, 2]. See Figure4.4for
illustrations.
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Figure 4.3.Panels (a) and (b) show examples ofφ losses that induce the Hellinger distance
and variational distance, respectively, based on different choices of the functiong. Panel
(c) shows a loss function that induces the symmetric KL divergence; for the purposes of
comparison, the 0-1 loss is also plotted.

Example 3 (Capacitory discrimination distance). The capacitory discrimination dis-
tance is equivalent to anf -divergence withf(u) = −u log u+1

u
− log(u + 1), for u ≥ 0.

Augmenting this function withf(u) = +∞ for u < 0, we have

Ψ(β) = sup
u∈R

−βu− f(u) =

{
β − log(eβ − 1) for β ≥ 0

+∞ otherwise.

This representation shows thatu∗ = log 2. If we chooseg(u) = log(1+ eu

2
), then we obtain

the logistic lossφ(α) = log(1 + e−α).

Example 4 (Triangular discrimination distance). Triangular discriminatory distance is
equivalent to the negative of the harmonic distance; it is anf -divergence withf(u) = − 4u

u+1

for u ≥ 0. Let us augmentf with f(u) = +∞ for u < 0. Then we can write

Ψ(β) = sup
u∈R

(−βu− f(u)) =

{
(2−

√
β)2 for β ≥ 0

+∞ otherwise.

Clearlyu∗ = 1. In this case, settingg(u) = u2 gives the least square lossφ(α) = (1−α)2.

Example 5 (Another Kullback-Leibler based divergence).Recall that both the KL diver-
gences (i.e.,KL(µ||π) andKL(π||π)) are asymmetric; therefore, Corollary4.9(b) implies
that they arenot realizable by any margin-based surrogate loss. However, a closely related
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functional is thesymmetric Kullback-Leiblerdivergence[Bradt and Karlin, 1956]:

KLs(µ, π) := KL(µ||π) +KL(π||µ). (4.30)

It can be verified that this symmetrized KL divergence is anf -divergence, generated by
the functionf(u) = − log u + u log u for u ≥ 0, and+∞ otherwise. Therefore, Corol-
lary 4.9(a) implies that it can be generated by some surrogate loss function, but the form of
this loss function is not at all obvious. Therefore, in order to recover an explicit form for
someφ, we follow the constructive procedure of Theorem4.8, first defining

Ψ(β) = sup
u≥0

{
− βu+ log u− u log u

}
.

In order to compute the value of this supremum, we take the derivative with respect tou
and set it to zero; doing so yields the zero-gradient condition−β + 1/u − log u − 1 = 0.
To capture this condition, we define a functionr : [0,+∞) → [−∞,+∞] via r(u) =
1/u− log u. It is easy to see thatr(u) is a strictly decreasing function whose range covers
the whole real line; moreover, the zero-gradient condition is equivalent tor(u) = β + 1.
We can thus writeΨ(β) = u+ log u− 1 whereu = r−1(β + 1), or equivalently

Ψ(β) = r(1/u)− 1 = r

(
1

r−1(β + 1)

)
− 1.

It is straightforward to verify that the functionΨ thus specified is strictly decreasing and
convex withΨ(0) = 0, and thatΨ(Ψ(β)) = β for anyβ ∈ R. Therefore, Proposition4.7
and Theorem4.8 allow us to specify the form of any convex surrogate loss function that
generate the symmetric KL divergence; in particular, any such functions must be of the
form (4.22):

φ(α) =

{
g(−α) for α ≤ 0

Ψ(g(α)) otherwise,

whereg : [0,+∞) → [0,+∞) is some increasing convex function satisfyingg(0) = 0. As
a particular example (and one that leads to a closed form expression forφ), let us choose
g(u) = eu + u− 1. Doing so leads to the surrogate loss function

φ(α) = e−α − α− 1.

It can be verified by some calculations that the optimizedφ-risk is indeed the symmetrized
KL divergence. See Figure4.4(c) for an illustration of this loss function.
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4.5 On comparison of surrogate loss functions and
quantizer designs

The previous section was devoted to study of the correspondence betweenf -divergences
and the optimalφ-risk Rφ(Q) for a fixed experimentQ. Our ultimate goal, however, is
that of choosing an optimalQ, which can be viewed as a problem of experimental de-
sign [Blackwell, 1953]. Accordingly, the remainder of this chapter is devoted to the joint
optimization ofφ-risk (or more precisely, its empirical version) over both the discriminant
functionγ as well as the choice of experimentQ (hereafter referred to as a quantizer). In
particular, we address the fundamental question associated with such an estimation pro-
cedure: for what loss functionsφ does such joint optimization lead to minimum Bayes
risk? Note that this question is not covered by standard consistency results[Jiang, 2004;
Lugosi and Vayatis, 2004; Zhang, 2004; Steinwart, 2005; Bartlettet al., 2006; Mannoret
al., 2003] on classifiers obtained from surrogate loss functions, because the optimization
procedure involves both the discriminant functionγ and the choice of quantizerQ.

4.5.1 Inequalities relating surrogate losses and f -divergences

The correspondence between surrogate loss functions andf -divergence allows one to com-
pare surrogateφ-risks by comparing the correspondingf -divergences, and vice versa. For
instance, since the optimalφ-risk for hinge loss is equivalent to the optimalφ-risk for 0-1
loss, we can say affirmatively that minimizing risk for hinge loss is equivalent to mini-
mizing the Bayes risk. Moreover, it is well-known that thef -divergences are connected
via various inequalities, some of which are summarized in the following lemma, proved in
Appendix4.C:

Lemma 4.11.The following inequalities amongf -divergences hold:

(a) V 2 ≤ ∆ ≤ V .

(b) 2h2 ≤ ∆ ≤ 4h2. As a result,1
2
V 2 ≤ 2h2 ≤ V .

(c) 1
2
∆ ≤ C ≤ log 2 ·∆. As a result,1

2
V 2 ≤ C ≤ (log 2) V .

Using this lemma and our correspondence theorem, it is straightforward to derive the
following connection between different risks.

Lemma 4.12.The following inequalities among optimizedφ-risks hold:

(a) Rhinge(Q) = 2Rbayes(Q).

(b) 2Rbayes(Q) ≤ Rsqr(Q) ≤ 1− (1− 2Rbayes(Q))2.
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(c) 2 · log 2Rbayes(Q) ≤ Rlog(Q) ≤ log 2− 1
2
(1− 2Rbayes(Q))2.

(d) 2Rbayes(Q) ≤ Rexp(Q) ≤ 1− 1
2
(1− 2Rbayes(Q))2.

Note that Lemma4.12shows that all theφ-risks considered (i.e., hinge, square, logis-
tic, and exponential) are bounded below by the variational distance (up to some constant
multiplicative term). However, with the exception of hinge loss, these results donot tell us
whether minimizingφ-risk leads to a classifier-quantizer pair (γ,Q) with minimal Bayes
risk. We explore this issue in more detail in the sequel: more precisely, we specify all
surrogate lossesφ such that minimizing the associatedφ-risk leads to the same optimal
decision rule(Q, γ) as minimizing the Bayes risk.

4.5.2 Connection between 0-1 loss and f -divergences

The connection betweenf -divergences and 0-1 loss can be traced back to seminal work on
comparison of experiments, pioneered by Blackwell and others[Blackwell, 1951; Black-
well, 1953; Bradt and Karlin, 1956].

Definition 4.13. The quantizerQ1 dominatesQ2 if RBayes(Q1) ≤ RBayes(Q2) for any
choice of prior probabilitiesq = P(Y = −1) ∈ (0, 1).

Recall that a choice of quantizer designQ induces two conditional distributionsP (Z|Y =
1) ∼ P1 andP (Z|Y = −1) ∼ P−1. Hence, we shall usePQ

−1 andPQ
1 to denote the fact

that bothP−1 andP1 are determined by the specific choice ofQ. By “parameterizing” the
decision-theoretic criterion in terms of loss functionφ and establishing a precise correspon-
dence betweenφ and thef -divergence, we can derive the following theorem that relates
0-1 loss andf -divergences:

Theorem 4.14.[Blackwell, 1951; Blackwell, 1953] For any two quantizer designsQ1 and
Q2, the following statement are equivalent:

(a) Q1 dominatesQ2 (i.e., Rbayes(Q1) ≤ Rbayes(Q2) for any prior probabilitiesq ∈
(0, 1)).

(b) If (P
Q1

1 , PQ1

−1 ) ≥ If (P
Q2

1 , PQ2

−1 ), for all functionsf of the formf(u) = −min(u, c)
for somec > 0.

(c) If (P
Q1

1 , PQ1

−1 ) ≥ If (P
Q2

1 , PQ2

−1 ), for all convex functionsf .

We include a short proof of this result in Appendix4.D, using the tools developed in
this chapter. In conjunction with our correspondence betweenf -divergences andφ-risks,
this theorem implies the following
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Corollary 4.15. The quantizerQ1 dominatesQ2 if and only ifRφ(Q1) ≤ Rφ(Q2) for any
loss functionφ.

Proof. By Proposition4.4, we haveRφ(Q) = −If (µ, π) = −Ifq(P1, P−1), from which the
corollary follows using Theorem4.14.

Corollary4.15implies that if

Rφ(Q1) ≤ Rφ(Q2)

for some loss functionφ, then

Rbayes(Q1) ≤ Rbayes(Q2)

for some set of prior probabilities on the hypothesis space. This implication justifies the
use of a given surrogate loss functionφ in place of the 0-1 loss forsomeprior probability;
however, for a given prior probability, it gives no guidance on how to chooseφ. Moreover,
in many applications (e.g., decentralized detections), it is usually the case that the prior
probabilities on the hypotheses are fixed, and the goal is to determine optimum quantizer
designQ for this fixed set of priors. In such a setting, the Blackwell’s notion ofQ1 dom-
inatingQ2 has limited usefulness. With this motivation in mind, the following section is
devoted to development of a more stringent method for assessing equivalence between loss
functions.

4.5.3 Universal equivalence

In the following definition, the loss functionsφ1 andφ2 realize thef -divergences associated
with the convex functionf1 andf2, respectively.

Definition 4.16. The surrogate loss functionsφ1 andφ2 areuniversally equivalent, denoted
byφ1

u
≈ φ2, if for anyP(X, Y ) and quantization rulesQ1, Q2, there holds:

Rφ1(Q1) ≤ Rφ1(Q2) ⇔ Rφ2(Q1) ≤ Rφ2(Q2).

In terms of the correspondingf -divergences, this relation is denoted byf1
u
≈ f2.

Observe that this definition is very stringent, in that it requires that the ordering between
optimizedφ1 andφ2 risks holds for all probability distributionsP onX ×Y. However, this
notion of equivalence is needed for nonparametric approaches to classification, in which
the underlying distributionP is not available in parametric form.

The following result provides necessary and sufficient conditions for twof -divergences
to be universally equivalent:
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Theorem 4.17. Let f1 and f2 be convex functions on[0,+∞) → R and differentiable

almost everywhere. Thenf1
u
≈ f2 if and only if f1(u) = cf2(u) + au + b for some

constantsc > 0 anda, b.

Proof. One direction of the theorem (”if”) is easy. We focus on the other direction. The
proof relies on the following technical result (see Appendix4.Efor a proof):

Lemma 4.18.Given a continuous convex functionf : R+ → R, define, for anyu, v ∈ R+,
define:

Tf (u, v) :={
uα− vβ − f(u) + f(v)

α− β
=
f ∗(α)− f ∗(β)

α− β

∣∣∣∣α ∈ ∂f(u), β ∈ ∂f(v), α 6= β

}
.

If f1
u
≈ f2, then for anyu, v > 0, one of the following must be true:

1. Tf (u, v) are non-empty for bothf1 andf2, andTf1(u, v) = Tf2(u, v).

2. Bothf1 andf2 are linear in(u, v).

Note that if functionf is differentiable atu andv andf ′(u) 6= f ′(v), thenTf (u, v) is
reduced to a number:

uf ′(u)− vf ′(v)− f(u) + f(v)

f ′(u)− f ′(v)
=
f ∗(α)− f ∗(β)

α− β
,

whereα = f ′(u), β = f ′(v), andf ∗ denotes the conjugate dual off .
Let v is a point where bothf1 andf2 are differentiable. Letd1 = f ′1(v), d2 = f ′2(v).
Without loss of generality, assumef1(v) = f2(v) = 0 (if not, we can consider functions
f1(u)− f1(v) andf2(u)− f2(v)).

Now, for anyu where bothf1 andf2 are differentiable, applying Lemma4.18 for v
andu, then eitherf1 andf2 are both linear in[v, u] (or [u, v] if u < v), in which case
f1(u) = cf2(u) for some constantc, or the following is true:

uf ′1(u)− f1(u)− vd1

f ′1(u)− d1

=
uf ′2(u)− f2(u)− vd2

f ′2(u)− d2

.

In either case, we have

(uf ′1(u)− f1(u)− vd1)(f
′
2(u)− d2) = (uf ′2(u)− f2(u)− vd2)(f

′
1(u)− d1).

Let f1(u) = g1(u) + d1u, f2(u) = g2(u) + d2u. Then,(ug′1(u) − g1(u) − vd1)g
′
2(u) =

(ug′2(u)− g2(u)− vd2)g
′
1(u), implying that(g1(u) + vd1)g

′
2(u) = (g2(u) + vd2)g

′
1(u) for

99



Chapter 4. Surrogate convex losses and f -divergences

anyu wheref1 andf2 are both differentiable. It follows thatg1(u) + vd1 = c(g2(u) + vd2)
for some constantc and this constantc has to be the same for anyu due to the continuity
of f1 andf2. Hence, we havef1(u) = g1(u) + d1u = cg2(u) + d1u + cvd2 − vd1 =
cf2(u) + (d1 − cd2)u + cvd2 − vd1. It is now simple to check thatc > 0 is necessary and
sufficient forIf1 andIf2 to have the same monotonicity.

An important special case is when one of thef -divergences is the variational distance.
In this case, we have the following

Proposition 4.19. (a) All f -divergences based on continuous convexf : [0,+∞) →∞
that are universally equivalent to the variational distance have the form

f(u) = −cmin(u, 1) + au+ b for somec > 0. (4.31)

(b) The 0-1 loss is universally equivalent only to those loss functions whose correspond-
ing f -divergence is based on a function of the form(4.31).

Proof. Note that statement (b) follows immediately from statement (a). The proof in Theo-
rem4.17does not exactly apply here, because it requires bothf1 andf2 to be differentiable
almost everywhere. We provide a modified argument in Appendix4.F.

Theorem4.17 shows that each class of equivalentf -divergences are restricted by a
strong linear relationship. It is important to note, however, that this restrictiveness doesnot
translate over to the classes of universally equivalent loss functions (by Theorem4.8).

4.5.4 Convex loss functions equivalent to 0-1 loss

This section is devoted to a more in-depth investigation of the class of surrogate loss func-
tionsφ that are universally equivalent to the 0-1 loss.

4.5.4.1 Explicit construction

We begin by presenting several examples of surrogate loss functions equivalent to 0-1 loss.
From Proposition4.19, any such loss must realize anf -divergence based on a function
of the form (4.31). For simplicity, we leta = b = 0; these constants do not have any
significant effect on the corresponding loss functionsφ (only simple shifting and translation
operations). Hence, we will be concerned only with loss functions whose correspondingf
has the formf(u) = −cmin(u, 1) for u ≥ 0. Suppose that we augment the definition by
settingf(u) = +∞ for u < 0; with this modification,f remains a lower semicontinuous
convex function. In Section4.4, we considered this particular extension, and constructed
all loss functions that were equivalent to the 0-1 loss (in particular, see equation (4.29)). As
a special case, this class of loss functions includes the hinge loss function.
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Choosing an alternative extension off for u < 0 leads to a different set of loss func-
tions, also equivalent to 0-1 loss. For example, if we setf(u) = −kmin(u, 1) for u < 0
wherek ≥ c, then the resultingΨ takes the form

Ψ(β) =

{
(c− β)+ for 0 ≤ β ≤ k

+∞ otherwise.

In this case, the associated loss functionsφ has the form:

φ(α) =


g(c/2− α) for α ≤ 0

(c− g(c/2 + α))+ wheng(c/2 + α) ≤ k

+∞ otherwise,

(4.32)

whereg is a increasing convex function such thatg(c/2) = c/2. However, to ensure that
φ is a convex function, it is simple to see thatg has to be linear in the interval[c/2, u] for
someu such thatg(u) = k.

4.5.4.2 A negative result

Thus, varying the extension off for u < 0 (and subsequently the choice ofg) leads to a
large class of possible loss functions equivalent to the 0-1 loss. What are desirable prop-
erties of a surrogate loss function? Properties can be desirable either for computational
reasons (e.g., convexity, differentiablity), or for statistical reasons (e.g., consistency). Un-
fortunately, in this regard, the main result of this section is a negative one: in particular, we
prove that there is no differentiable surrogate loss that is universally equivalent to the 0-1
loss.

Proposition 4.20.There does not exist a continuous and differentiable convex loss function
φ that is universally equivalent to the 0-1 loss.

Proof. From Proposition4.19, anyφ that is universally equivalent to 0-1 loss must generate
an f -divergence of the form (4.31). Let a = b = 0 without loss of generality; the proof
proceeds in the same way for the general case. First, we claim that regardless of howf is
augmented foru < 0, the functionΨ always has the following form:

Ψ(β) = f ∗(−β) = sup
u∈R

{
− βu− f(u)

}
=


+∞ for β < 0

c− β for 0 ≤ β ≤ c

≥ 0 otherwise.

(4.33)
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Indeed, forβ < 0, we have

Ψ(β) ≥ supu≥0

{
− βu+ cmin(u, 1)

}
= +∞.

Turning to the caseβ ∈ [0, c], we begin by observing that we must havef(u) ≥ −cu for
u ≤ 0 (sincef is a convex function). Therefore,

sup
u<0

{
− βu− f(u)

}
≤ sup

u<0

{
− βu+ cu

}
= 0.

On the other hand, we havesupu≥0

{
−βu+cmin(u, 1)

}
= c−β ≥ 0, so that we conclude

thatΨ(β) = c − β for β ∈ [0, c]. Finally, for β ≥ c, we haveΨ(β) ≥ supu≥0

{
− βu +

cmin(u, 1)
}

= 0.
Given the form (4.33), Theorem4.7 implies that the loss functionφ must have the

following form:

φ(α) =


g(c/2− α) whenα ≤ 0

(c− g(c/2 + α))+ whenα > 0 andg(c/2 + α) ≤ c,

≥ 0 otherwise,

(4.34)

whereg is an increasing continuous convex function from[c/2,+∞) toR satisfyingg(c/2) =
c/2.

For φ to be differentiable, the functiong has to be differentiable everywhere in its
domain. Leta > 0 be the value such thatc = g(c/2 + a). Sinceφ achieves its minimum at
a, φ′(a) = 0. This implies thatg has to satisfyg′(c/2 + a) = 0. That would imply thatg
attains its minimum atc/2+a, butg(c/2+a) = c > g(c/2), which leads to a contradiction.

4.6 Empirical risk minimization with surrogate con-
vex loss functions

As discussed in Section4.1, surrogate loss functions are widely used in statistical learning
theory, where the goal is to learn a discriminant function given only indirect access to the
distributionP(X, Y ) via empirical samples. In this section, we demonstrate the utility of
our correspondence betweenf -divergences and surrogate loss functions in the setting of
the elaborated version of the classical discriminant problem, in which the goal is to choose
both a discriminant functionγ as well as a quantizerQ. As described in the previous
chapter, our strategy is the natural one given empirical data: in particular, we choose(Q, γ)
by minimizing the empirical version of theφ-risk. It is worthwhile noting that without
direct access to the distributionP(X, Y ), it is impossible to compute or manipulate the
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associatedf -divergences. In particular, without closed form knowledge ofµ(z) andπ(z),
it is impossible to obtain closed-form solution for the optimal discriminantγ, as required
to compute thef -divergence (see Proposition4.4). Nonetheless, the correspondence tof -
divergences turns out to be useful, in that it allows us to establish Bayes consistency of the
procedure based onφ-risks for choosing the quantizer and discriminant function.

4.6.1 Decentralized detection problem

We begin by recalling the set-up and notations for the decentralized detection problem;
see the previous chapter for further details. LetS be an integer, representing some num-
ber of sensors that collect observations from the environment. More precisely, for each
t = 1, . . . , S, let X t ∈ X t represent the observation at sensort, whereX t denotes the
observation space. The covariate vectorX = (X t, t = 1, . . . , S) is obtained by concate-
nating all of these observations together. We assume that the global estimateŶ is to be
formed by afusion center. In the centralized setting, this fusion center is permitted ac-
cess to the full vectorX of observations. In this case, it is well-known[van Trees, 1990]
that optimal decision rules, whether under Bayes error or Neyman-Pearson criteria, can
be formulated in terms of the likelihood ratioP(X|Y = 1)/P(X|Y = −1). In contrast,
the defining feature of thedecentralized settingis that the fusion center has access only
to some form of summary of each observationX t. More specifically, we suppose that
each sensort = 1 . . . , S is permitted to transmit amessageZt, taking values in some
spaceZ t. The fusion center, in turn, applies some decision ruleγ to compute an estimate
Ŷ = γ(Z1, . . . , ZS) of Y based on its received messages.

For simplicity, let us assume that the input spaceX t is identical for eacht = 1, . . . , S,
and similarly, that the quantized spaceZ t is the same for allt. The original observation
spaceX t can be either finite (e.g, havingM possible values), or continuous (e.g., Gaussian
measurements). The key constraint, giving rise to the decentralized nature of the problem,
is that the corresponding message spaceZ = {1, . . . , L}S is discrete with finite number of
values, and hence “smaller” than the observation space (i.e.,L�M in the case of discrete
X ). The problem is to find, for each sensort = 1, . . . , S, a decision rule represented as a
measurable functionQt : X t → Z t, as well as an overall decision rule represented by a
measurable functionγ : Z → {−1,+1} at the fusion center so as to minimize theBayes
risk P(Y 6= γ(Z)).

Figure4.4provides a graphical representation of this decentralized detection problem.
The single node at the top of the figure represents the hypothesis variableY , and the outgo-
ing arrows point to the collection of observationsX = (X1, . . . , XS). The local decision
rulesQt lie on the edges between sensor observationsX t and messagesZt. Finally, the
node at the bottom is the fusion center, which collects all the messages.
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Y

X1 X2 X3 XS

Z1 Z2 Z3 ZS

γ1 γ2 γ3 γS

γ(Z1, . . . , ZS)

Figure 4.4.Decentralized detection system withS sensors, in whichY is the unknown hy-
pothesis,X = (X1, . . . , XS) is the vector of sensor observations; andZ = (Z1, . . . , ZS)
are the quantized messages transmitted from sensors to the fusion center.

Recall that the quantizerQ can be conveniently viewed as conditional probability dis-
tributionQ(z|x), which implies that an aggregate observationx is mapped to an aggregate
quantized messagez with probabilityQ(z|x). In particular, the decentralization constraints
require that the conditional probability distributionsQ(z|x) factorize; i.e., for any realiza-
tion z of Z, Q(z|X) =

∏S
t=1Q

t(zt|X t) with probability one. For the remainder of this
section, however, we shall useQz(x) to denoteQ(z|x), to highlight the formal view that
the quantizer ruleQ is a collection of measurable functionsQz : X → R for z ∈ Z.

In summary, our decentralized detection problem is a particular case of the elaborated
discriminant problem—namely, a hypothesis testing problem with an additional component
of experiment design, corresponding to the choice of the quantizerQ.

A learning algorithm for decentralized detection. In Chapter3 we introduced an al-
gorithm for designing a decentralized detection system (i.e., both the quantizer and the
classifier at the fusion center) based on surrogate loss functions. The algorithm operates
on an i.i.d. set of data samples, and makes no assumptions about the underlying prob-
ability distributionP(X, Y ). Such an approach is fundamentally different from the bulk
of previous work on decentralized decentralization, which typically are based on restric-
tive parametric assumptions. This type of nonparametric approach is particularly useful
in practical applications of decentralized detection (e.g., wireless sensor networks), where
specifying an accurate parametric model for the probability distributionP(X, Y ) may be
difficult or infeasible.

Let (xi, yi)
n
i=1 be a set of i.i.d. samples from the (unknown) underlying distribution

P(X, Y ) over the covariateX and hypothesisY ∈ {−1,+1}. Let Cn ⊆ Γ andDn ⊆
Q represent subsets of classifiers and quantizers, respectively. The algorithm chooses an
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optimum decision rule(γ,Q) ∈ (Cn,Dn) by minimizing an empirical version ofφ-risk:

R̂φ(γ,Q) :=
1

n

n∑
i=1

∑
z

φ(yiγ(z))Qz(xi). (4.35)

It is worth noting that the perspective of surrogateφ-loss (as opposed tof -divergence)
is the most natural in this nonparametric setting. Given that the minimization takes place
over the subset(Cn,Dn), there is no closed-form solution for the minimizerγ ∈ Cn of
problem (4.35) (even when the optimumQ is known). Hence, it is not even possible to for-
mulate an equivalent closed-form problem in terms off -divergences. Despite this fact, we
demonstrate that the connection tof -divergences is nonetheless useful, in that it allows to
address the consistency of the estimation procedure (4.35). In particular, we prove that for
all φ that are universally equivalent to the 0-1 loss, this estimation procedure is indeed con-
sistent (for suitable choices of the sequences of function classesCn andDn). The analysis is
inspired by frameworks recently developed by a number of authors (see, e.g.,[Zhang, 2004;
Steinwart, 2005; Bartlettet al., 2006]) for the standard case of classification (i.e., without
any component of experiment design) in statistical machine learning.

4.6.2 A consistency theorem

For eachz ∈ Z, let us endow the space of functionsQz : X → R with an appropriate
topology, specifically that defined in the proof of Proposition 2.1 in[Tsitsiklis, 1993a],
and endow the space ofQ with the product topology, under which it is shown to be com-
pact[Tsitsiklis, 1993a]. In addition, the space of measurable functionsγ : Z → {−1, 1} is
endowed with the uniform-norm topology.

Consider sequences of increasing compact function classesC1 ⊆ C2 ⊆ . . . ⊆ Γ and
D1 ⊆ D2 ⊆ . . . ⊆ Q. This analysis supposes that there exists oracle that outputs an
optimal solution to the minimization problem

min
(γ,Q)∈(Cn,Dn)

R̂φ(γ,Q), (4.36)

and let(γ∗n, Q
∗
n) denote one such solution. LetR∗

bayes denote the minimum Bayes risk
achieved over the space of decision rules(γ,Q) ∈ (Γ,Q). We refer to the non-negative
quantityRbayes(γ

∗
n, Q

∗
n) − R∗

bayes the excess Bayes riskof our estimation procedure. We
say that such an estimation procedure isuniversally consistentif the excess Bayes risk
converges to zero (in probability) asn → ∞. More precisely, we require that for any
(unknown) Borel probability measureP(X, Y )

lim
n→∞

Rbayes(γ
∗
n, Q

∗
n) = R∗

bayes. (4.37)
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In order to analyze statistical behavior of this algorithm and to establish universal con-
sistency for appropriate sequences(Cn,Dn) of function classes, we follow a standard strat-
egy of decomposing the Bayes error in terms of two types of errors:

• theapproximation errorintroduced by the bias of the function classesCn ⊆ Γ, and
Dn ⊆ Q, and

• theestimation errorintroduced by the variance of using finite sample sizen.

These quantities are defined as follows:

Definition 4.21. The approximation error of the procedure is given by

E0(Cn,Dn) = inf
(γ,Q)∈(Cn,Dn)

{Rφ(γ,Q)} −R∗
φ, (4.38)

whereR∗
φ := inf(γ,Q)∈(Γ,Q)Rφ(γ,Q).

Definition 4.22. The estimation error is given by

E1(Cn,Dn) = E sup
(γ,Q)∈(Cn,Dn)

∣∣∣∣R̂φ(γ,Q)−Rφ(γ,Q)

∣∣∣∣, (4.39)

where the expectation is taken with respect to the (unknown) measureP(X,Y ).

Conditions on loss functionφ. Our consistency result applies to the class of surrogate
losses that are universally equivalent to the 0-1 loss. From Proposition4.19, all such loss
functionsφ correspond to anf -divergence of the form

f(u) = −cmin(u, 1) + au+ b, (4.40)

for some constantsc > 0, a, b. For any suchφ, a straightforward calculation (see the proof
of Proposition4.4) shows that the optimum risk (for fixed quantizerQ) takes the form

Rφ(Q) = −If (µ, π) = c
∑
z∈Z

min{µ(z), π(z)} − ap− bq, (4.41)

wherep = P(Y = 1) andq = P(Y = −1) = 1− p.
Recall that any surrogate lossφ is assumed to be continuous, convex, and classification-

calibrated (see Definition4.1). For our proof, we require the additional technical condi-
tions, expressed in terms ofφ as well as its inducedf -divergence (4.40):

(a− b)(p− q) ≥ 0 and φ(0) ≥ 0. (4.42)
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Intuitively, these technical conditions are needed so that the approximation error due to
varyingQ dominates the approximation error due to varyingγ (because the optimumγ is
determined only afterQ is). Simply letting, say,a = b would suffice.

Any surrogate loss that satisfies all of these conditions (continuous, convex, classification-
calibrated, universally equivalent to 0-1 loss, and condition (4.42)) is said to satisfyprop-
ertyP. Throughout this section, we shall assume that the loss functionφ has propertyP.
In addition, for eachn = 1, 2, . . ., we assume that

Mn := max
y∈{−1,+1}

sup
(γ,Q)∈(Cn,Dn)

sup
z∈Z

|φ(yγ(z))| < +∞. (4.43)

The following theorem ties together the Bayes error with the approximation error and
estimation error, and provides sufficient conditions for universal consistency:

Theorem 4.23.Let C1 ⊆ C2 ⊆ . . . ⊆ Γ andD1 ⊆ D2 ⊆ . . . ⊆ Q be nested sequences of
compact function classes, and consider the estimation procedure(4.36) using a surrogate
lossφ that satisfies propertyP.

(a) For any Borel probability measureP(X, Y ), with probability at least1 − δ, there
holds:

Rbayes(γ
∗
n, Q

∗
n)−R∗

bayes ≤ 2

c

{
2E1(Cn,Dn) + E0(Cn,Dn) + 2Mn

√
2
ln(2/δ)

n

}
.

(b) Universal Consistency:Suppose that the function classes satisfy the following prop-
erties:

Approximation condition: limn→∞ E0(Cn,Dn) = 0.

Estimation condition: limn→∞ E1(Cn,Dn) = 0 and limn→∞Mn

√
lnn/n = 0.

Then the estimation procedure(4.36) is universally consistent:

lim
n→∞

Rbayes(γ
∗
n, Q

∗
n) = R∗

bayes in probability. (4.44)

The proof of this theorem relies on an auxiliary result that is of independent interest.
In particular, we prove that for any function classesC andD, and surrogate loss satisfying
propertyP, the excessφ-risk is related to the excess Bayes risk as follows:

Proposition 4.24. Let φ be a loss function that has propertyP. Then any classifier-
quantizer pair(γ,Q) ∈ (C,D), we have

c

2

[
Rbayes(γ,Q)−R∗

bayes

]
≤ Rφ(γ,Q)−R∗

φ. (4.45)
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See Appendix4.Gfor a proof of this result. A consequence of equation (4.45) is that in
order to achieve Bayes consistency (i.e., driving the excess Bayes risk to zero), it suffices
to drive the excessφ-risk to zero.

With Proposition4.24, we are now equipped to prove Theorem4.23:

Proof. (a) First observe that the value ofsupγ∈Cn,Q∈Dn
|R̂φ(γ,Q)−Rφ(γ,Q)| varies by at

most2Mn/n if one changes the values of(xi, yi) for some indexi ∈ {1, . . . , n}. Hence,
applying McDiarmid’s inequality yields concentration around the expected value, or (alter-
natively stated) that with probability at least1− δ,∣∣∣∣ sup

γ∈Cn,Q∈Dn

|R̂φ(γ,Q)−Rφ(γ,Q)| − E1(Cn,Dn)

∣∣∣∣ ≤Mn

√
2 ln(1/δ)/n. (4.46)

Suppose thatRφ(γ,Q) attains its minimum over the compact subset(Cn,Dn) at(γ†n, Q
†
n).

Then, using Proposition4.24, we have

c

2
(Rbayes(γ

∗
n, Q

∗
n)−R∗

bayes) ≤ Rφ(γ
∗
n, Q

∗
n)−R∗

φ

= Rφ(γ
∗
n, Q

∗
n)−Rφ(γ

†
n, Q

†
n) +Rφ(γ

†
n, Q

†
n)−R∗

φ)

= Rφ(γ
∗
n, Q

∗
n)−Rφ(γ

†
n, Q

†
n) + E0(Cn,Dn)

Hence, using equation (4.46), we have with probability at least1− δ:

c

2
(Rbayes(γ

∗
n, Q

∗
n)−R∗

bayes) ≤ R̂φ(γ
∗
n, Q

∗
n)− R̂φ(γ

†
n, Q

†
n) + 2E1(Cn,Dn)

+ 2Mn

√
2 ln(2/δ)/n+ E0(Cn,Dn)

≤ 2E1(Cn,Dn) + E0(Cn,Dn) + 2Mn

√
2 ln(2/δ)/n,

from which Theorem4.23(a) follows.
(b) This statement follows by applying (a) withδ = 1/n, and noting thatRbayes(γ

∗
n, Q

∗
n)−

R∗
bayes is bounded.

A natural question is under what conditions the approximation and estimation condi-
tions of Theorem4.23hold. We conclude this section by stating some precise conditions
on the function classes that ensure that the approximation condition holds. LetU be a Borel
subset ofX such thatPX(U) = 1, and letC(U) denote the Banach space of continuous
functionsQz(x) mappingU to R. If ∪∞n=1Dn is dense inQ∩C(U) and if∪∞n=1Cn is dense in
Γ, then the approximation condition in Theorem4.23holds. In order to establish this fact,
note thatRφ(γ,Q) is a continuous function with respect to(γ,Q) over the compact space
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(Γ,Q). (Here compactness is defined with respect to the topology defined in the proof of
Proposition 2.1 in[Tsitsiklis, 1993a].) The approximation condition then follows by ap-
plying Lusin’s approximation theorem for regular measures, using an argument similar to
the proof of Theorem 4.1 in[Zhang, 2004].

4.6.3 Estimation error for kernel classes

For the estimation condition in Theorem4.23(b) to hold the sequence of function classes
(Cn,Dn)∞n=1 has to increase sufficiently slowly in “size” with respect ton. In this section,
we analyze the behavior of this estimation error for a certain kernel-based function class.
Throughout this section, in addition to the conditions imposed onφ in the preceding sec-
tion, we assume that the loss functionφ is Lipschitz with constantLφ. We also assume
without loss of generality thatφ(0) = 0 (otherwise, one could consider the modified loss
functionφ(α)− φ(0)).

First of all, we require a technical definition of a particular measure of function class
complexity:

Definition 4.25. LetF be a class of measurable functions mapping from its domain toR.
TheRademacher complexityofF is given by

Rn(F) =
2

n
E sup

f∈F

∣∣∣∣ n∑
i=1

σif(Xi)

∣∣∣∣, (4.47)

whereσi, i = 1, . . . n are i.i.d. Bernoulli variables (taking values{−1,+1} equiprobably),
and the expectation is taken over bothσ1, . . . , σn andX1, . . . , Xn.

For analyzing the estimation error, the relevant class of functions takes the form

G :=
{
g : X → R

∣∣g(x) = γ(argmaxzQz(x)) for some (γ,Q) ∈ (C,D ∩Q0)
}
.(4.48)

We now show that the Rademacher complexity of this class can be used to upper bound the
estimation error:

Lemma 4.26.For a Lipschitzφ (with constantLφ), the estimation error is upper bounded
by the Rademacher complexity ofG as follows:

E1(C,D) ≤ 2LφRn(G). (4.49)

Proof. Using the standard symmetrization method[van der Vaart and Wellner, 1996], we
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have:

E1(C,D) ≤ Rn(H)

=
2

n
E sup

(γ,Q)∈(C,D)

∣∣∣∣ n∑
i=1

σi

∑
z∈Z

φ(yiγ(z))Qz(xi)

∣∣∣∣
whereH is the function class given by

H :=
{
h : X × {±1} → R

∣∣ h(x, y) =
∑
z∈Z

φ(yγ(z))Qz(x) for some(γ,Q) ∈ (C,D)
}

LetH0 be the subset ofH defined by restricting toQ ∈ Q0. SinceQ = coQ0 (where
co denotes the convex hull), it follows thatH = coH0, from which it follows from a
result in [Bartlett and Mendelson, 2002] thatRn(H) = Rn(H0). For h ∈ H0, we have
h(x, y) = φ(yγ(argmaxzQz(x))). Using results from[Bartlett and Mendelson, 2002]
again, we conclude thatRn(H0) ≤ 2LφRn(G),

Using Lemma4.26, in order for the estimation condition to hold, it is sufficient to
choose the function classes so that the Rademacher complexity converges to zero asn
tends to infinity. The function classes used in practice often correspond to classes defined
by reproducing kernel Hilbert spaces (RKHS). Accordingly, herein we focus our analysis
on such a kernel class.

Briefly, a kernel class of functions is defined as follows. LetK : Z ×Z → R be a pos-
itive semidefinite kernel function withsupz,z′ K(z, z′) < +∞. Given a kernel functionK,
we can associate a feature mapΦ : Z → H, whereH is a Hilbert space with inner product
〈., .〉 and for allz, z′ ∈ Z, K(z, z′) = 〈Φ(z), Φ(z′)〉. As a reproducing kernel Hilbert
space, any functionγ ∈ H can be expressed as an inner productγ(z) = 〈w, Φ(z)〉, where
w can be expressed asw =

∑m
i=1 αiΦ(zi) for someα1, . . . , αm andz1, . . . , zm ∈ Z for

somem. See[Aronszajn, 1950] and[Saitoh, 1988] for general mathematical background
on reproducing kernel Hilbert spaces, and[Scḧolkopf and Smola, 2002] for more details
on learning approaches using kernel methods.

If we use this type of kernel class, then the classification ruleγ can be written asγ(z) =∑m
i=1 αiK(z, zi). Suppose thatC is the subset ofH given by

C :=

{
γ

∣∣ γ(z) = 〈w, Φ(z)〉, ||w|| ≤ B

}
, (4.50)

whereB > 0 is a constant that controls the “size” of the space. Assume further that the
spaceX is discrete withMS possible values, and thatZ hasLS possible values. (Recall
thatS is the total number of covariates(X1, . . . , XS)). In Chapter3, Prop.3.9we proved
that for the function classG defined in (4.48), the Rademacher complexityRn(G) is upper
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bounded by

2B

n

[
E sup

Q∈D0

n∑
i=1

K(argmaxzQz(Xi), argmaxzQz(Xi))+

2(n− 1)
√
n/2 sup

z,z′
K(z, z′)

√
2MS logL

]1/2

, (4.51)

which decays with orderO(1/n1/4). (We note in passing that thisO(1/n1/4) rate is not
tight, but the bound is nonetheless useful for its particularly simple form).

It follows from Lemma4.26and equation (4.51) thatE1(C,D) = O(B/n1/4), whereB
is the constant used to control the “size” of the function classC defined in equation (4.50).
LetBn denote the constant for the corresponding function classCn, and let(Bn)∞n=1 be an
increasing sequence such thatBn → +∞. Then, we see from the bound (4.51) that ifBn

increases sufficiently slowly (i.e., slower thann1/4), then the estimation errorE1(Cn,Dn) →
0. Note also that

|γ(z)| ≤ ||w|| · ||Φ(z)|| = O(Bn),

so thatMn = O(Bn) (whereMn is defined in equation (4.43)). As a consequence, we have
Mn

√
lnn/n→ 0, so that the estimation condition of condition of Theorem4.23(b) holds.

4.7 Discussions

The main contribution of this chapter is a precise explication of the correspondence be-
tween loss functions that act as surrogates to the 0-1 loss (which are widely used in statisti-
cal machine learning), and the class off -divergences (which are widely used in information
theory and signal processing, and arise as error exponents in the large deviations setting).
The correspondence helps explicate the use of various divergences in signal processing
and quantization theory, as well as explain the behavior of surrogate loss functions often
used in machine learning and statistics. Building on this foundation, we defined the notion
of universal equivalence among divergences (and their associated loss functions). As an
application of these ideas, we investigated the statistical behavior of a practical nonpara-
metric kernel-based algorithm for designed decentralized hypothesis testing rules proposed
in Chapter3, and in particular proved that it is strongly consistent under appropriate con-
ditions.
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Appendix 4.A Proof of Lemma 4.5

(a) Sinceφ−1(β) < +∞, we haveφ(φ−1(β)) = φ(inf{α : φ(α) ≤ β}) ≤ β, where the
final inequality follows from the lower semi-continuity ofφ. If φ is continuous atφ−1(β),
then we haveφ−1(β) = min{α : φ(α) = β}, in which case we haveφ(φ−1(β)) = β.
(b) Due to convexity and the inequalityφ′(0) < 0, it follows thatφ is a strictly decreasing
function in(−∞, α∗]. Furthermore, for allβ ∈ R such thatφ−1(β) < +∞, we must have
φ−1(β) ≤ α∗. Therefore, definition (4.18) and the (decreasing) monotonicity ofφ imply
that for anya, b ∈ R, if b ≥ a ≥ inf φ, thenφ−1(a) ≥ φ−1(b), which establishes thatφ−1

is a decreasing function. In addition, we havea ≥ φ−1(b) if and only if φ(a) ≤ b.
Now, due to the convexity ofφ, applying Jensen’s inequality for any0 < λ < 1, we

haveφ(λφ−1(β1)+(1−λ)φ−1(β2)) ≤ λφ(φ−1(β1)+(1−λ)φ(φ−1(β2)) ≤ λβ1+(1−λ)β2.
Therefore,

λφ−1(β1) + (1− λ)φ−1(β2) ≥ φ−1(λβ1 + (1− λ)β2),

implying the convexity ofφ−1.

Appendix 4.B Proof of Lemma 4.6

(a) We first prove the statement for the case of a decreasing functionφ. First, if a ≥ b and
φ−1(a) /∈ R, thenφ−1(b) /∈ R, henceΨ(a) = Ψ(b) = +∞. If only φ−1(b) /∈ R, then
clearlyΨ(b) ≥ Ψ(a) (sinceΨ(b) = +∞). If a ≥ b, and bothφ−1(α), φ−1(β) ∈ R, then
from the previous lemma,φ−1(a) ≤ φ−1(b), so thatφ(−φ−1(a)) ≤ φ(−φ−1(b)), implying
thatΨ is a decreasing function.

We next consider the case of a general functionφ. Forβ ∈ (β1, β2), we haveφ−1(β) ∈
(−α∗, α∗), and hence−φ−1(β) ∈ (−α∗, α∗). Sinceφ is strictly decreasing in(−∞, α∗],
thenφ(−φ−1(β)) is strictly decreasing in(β1, β2). Finally, whenβ < inf Ψ = φ(α∗),
φ−1(β) /∈ R, soΨ(β) = +∞ by definition.

(b) First of all, assume thatφ is decreasing. By applying Jensen’s inequality, for any0 <
λ < 1, andγ1, γ2, we have:

λΨ(γ1) + (1− λ)Ψ(γ2)) = λφ(−φ−1(γ1)) + (1− λ)φ(−φ−1(γ2)

≥ φ(−λφ−1(γ1)− (1− λ)φ−1(γ2)) due to convexity ofφ

≥ φ(−φ−1(λγ1 + (1− λ)γ2))

= Ψ(λγ1 + (1− λ)γ2),

where the last inequality is due to the convexity ofφ−1 and decreasingφ. Hence,Ψ is a
convex function.
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In general, the above arguments go through for anyγ1, γ2 ∈ [β1, β2]. SinceΨ(β) =
+∞ for β < β1, this implies thatΨ is convex in(−∞, β2].

(c) For anya ∈ R, from the definition ofφ−1, and due to the continuity ofφ,

{β
∣∣ Ψ(β) = φ(−φ−1(β)) ≤ a} = {β

∣∣ − φ−1(β) ≥ φ−1(a)}
= {β

∣∣φ−1(β) ≤ −φ−1(a)}
= {β

∣∣ β ≥ φ(−φ−1(a))}

is a closed set. Similarly,{β ∈ R
∣∣ Ψ(β) ≥ a} is a closed set. HenceΨ is continuous in its

domain.

(d) Sinceφ is assumed to be classification-calibrated, Lemma4.2 implies thatφ is differ-
entiable at 0 andφ′(0) < 0. Sinceφ is convex, this implies thatφ is strictly decreasing
for α ≤ 0. As a result, for anyα ≥ 0, let β = φ(−α), then we obtainα = −φ−1(β).
SinceΨ(β) = φ(−φ−1(β)), we haveΨ(β) = φ(α). Hence,Ψ(φ(−α)) = φ(α). Letting
u∗ = φ(0), then we haveΨ(u∗) = u∗, andu∗ ∈ (β1, β2).

(e) Letα = Ψ(β) = φ(−φ−1(β). Then from (4.18), φ−1(α) ≤ −φ−1(β). Therefore,

Ψ(Ψ(β)) = Ψ(α) = φ(−φ−1(α)) ≤ φ(φ−1(β)) ≤ β.

We have proved thatΨ is strictly decreasing forβ ∈ (β1, β2). As such,φ−1(α) =
−φ−1(β). We also haveφ(φ−1(β)) = β. It follows thatΨ(Ψ(β)) = β for all β ∈ (β1, β2).
Remark: With reference to statement (b), ifφ is not a decreasing function, then the func-
tion Ψ need not be convex on the entire real line. For instance, the following loss function
generates a functionΨ that is not convex:

φ(α) =


(1− α)2 whenα ≤ 1

0 when1 ≤ α ≤ 2

α− 2 otherwise.

We haveΨ(9) = φ(2) = 0,Ψ(16) = φ(3) = 1,Ψ(25/2) = φ(−1+5/
√

2) = −3+5/
√

2 >
(Ψ(9) + Ψ(16))/2.
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Appendix 4.C Proof of Lemma 4.11

(a) The inequality∆ ≤ V is trivial. On the other hand, the inequalityV 2 ≤ ∆ follows by
applying the Cauchy-Schwarz inequality:

∆ =
∑

z

(
|µ(z)− π(z)|√
µ(z) + π(z)

)2 ∑
z

(√
µ(z) + π(z)

)2

≥
( ∑

z

|µ(z)−π(z)|
)2

= V 2(µ, π).

(b) Note that for anyz ∈ Z, we have1 ≤ (
√

µ(z)+
√

π(z))2

µ(z)+π(z)
≤ 2. Applying these inequalities

in the following expression

∆(µ, π) =
∑
z∈Z

(
√
µ(z)−

√
π(z))2 (

√
µ(z) +

√
π(z))2

µ(z) + π(z)

yields2h2 ≤ ∆ ≤ 4h2.
(c) See[Topsoe, 2000] for a proof.

Appendix 4.D Proof of Theorem 4.14

We first establish the equivalence (a)⇔ (b). By the correspondence between 0-1 loss
and anf -divergence withf(u) = −min(u, 1), and the remark following Proposition4.4,
we haveRbayes(Q) = −If (µ, π) = −Ifq(P1, P−1), wherefq(u) := qf(1−q

q
u) = −(1 −

q) min(u, q
1−q

). Hence, (a)⇔ (b).
Next, we prove the equivalence (b)⇔ (c). The implication (c)⇒ (b) is immediate.

Considering the reverse implication (b)⇒ (c), we note that any convex functionf(u)
can be uniformly approximated over a bounded interval as a sum of a linear function and
−

∑
k αk min(u, ck), whereαk > 0, ck > 0 for all k. For a linear functionf , If (P−1, P1)

does not depend onP−1, P1. Using these facts, Statement (c) follows from Statement (b).

Appendix 4.E Proof of Lemma 4.18

Consider a joint distributionP(X, Y ) defined byP(Y = −1) = q = 1− P(Y = 1) and

P(X|Y = −1) ∼ Uniform[0, b], and P(X|Y = 1) ∼ Uniform[a, c],

where0 < a < b < c. Let Z ∈ {1, 2} be a quantized version ofX. We assumeZ
is produced by a deterministic quantizer designQ specified by a thresholdt ∈ (a, b); in
particular, we setQ(z = 1|x) = 1 whenx ≥ t, andQ(z = 2|x) = 1 whenx < t. Under
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this quantizer design, we have

µ(1) = (1− q)
t− a

c− a
; µ(2) = (1− q)

c− t

c− a

π(1) = q
t

b
; π(2) = q

b− t

b
.

Therefore, thef -divergence betweenµ andπ takes the form:

If (µ, π) =
qt

b
f

(
(t− a)b(1− q)

(c− a)tq

)
+
q(b− t)

b
f

(
(c− t)b(1− q)

(c− a)(b− t)q

)
.

If f1
u
≈ f2, thenIf1(µ, π) andIf1(µ, π) have the same monotonicity property for anyq ∈

(0, 1) as well for for any choice of the parametersq anda < b < c. Let γ = b(1−q)
(c−a)q

, which
can be chosen arbitrarily positive, and then define the function

F (f, t) = tf

(
(t− a)γ

t

)
+ (b− t)f

(
(c− t)γ

b− t

)
.

Note that the functionsF (f1, t) andF (f2, t) have the same monotonicity property, for any
positive parametersγ anda < b < c.

We now claim thatF (f, t) is a convex function oft. Indeed, using convex dual-
ity [Rockafellar, 1970], F (f, t) can be expressed as follows:

F (f, t) = t sup
r∈R

{
(t− a)γ

t
r − f ∗(r)

}
+ (b− t) sup

s∈R

{
(c− t)γ

b− t
s− f ∗(s))

}
= sup

r,s

{
(t− a)r

γ
− tf∗(r) +

(c− t)s

γ
− tf∗(s)

}
,

which is a supremum over a linear function oft, thereby showing thatF (f, t) is convex of
t.

It follows that bothF (f1, t) andF (f2, t) are subdifferentiable everywhere in their do-
mains; since they have the same monotonicity property, we must have

0 ∈ ∂F (f1, t) ⇔ 0 ∈ ∂F (f2, t). (4.52)

It can be verified using subdifferential calculus (e.g,,[Hiriart-Urruty and Lemaŕechal, 2001])
that:

∂F (f, t) =
aγ

t
∂f

(
(t− a)γ

t

)
+f

(
(t− a)γ

t

)
−f

(
(c− t)γ

b− t

)
+

(c− b)γ

b− t
∂f

(
(c− t)γ

b− t

)
.
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Lettingu = (t−a)γ
t

, v = (c−t)γ
b−t

, we have

0 ∈ ∂F (f, t) ⇔ 0 ∈ (γ − u)∂f(u) + f(u)− f(v) + (v − γ)∂f(v) (4.53a)

⇔ ∃α ∈ ∂f(u), β ∈ ∂f(v) s.t.0 = (γ − u)α+ f(u)− f(v) + (v − γ)β(4.53b)

⇔ ∃α ∈ ∂f(u), β ∈ ∂f(v) s.t.γ(α− β) = uα− f(u) + f(v)− vβ(4.53c)

⇔ ∃α ∈ ∂f(u), β ∈ ∂f(v) s.t.γ(α− β) = f ∗(α)− f ∗(β). (4.53d)

By varying our choice ofq ∈ (0, 1), the numberγ can take any positive value. Similarly,
by choosing different positive values ofa, b, c (such thata < b < c), we can ensure that
u andv can take on any positive real values such thatu < γ < v. Since equation (4.52)
holds for anyt, it follows that for any triplesu < γ < v, equation (4.53d) holds forf1 if
and only if it also holds forf2.

Considering a fixed pairu < v, first suppose that the functionf1 is linear on the interval
[u, v] with a slopes. In this case, equation (4.53d) holds forf1 and anyγ by choosing
α = β = s, which implies that equation (4.53d) also holds forf2 for any γ. Thus, we
deduce thatf2 is also a linear function on the interval[u, v].

Suppose, on the other hand, thatf1 andf2 are both non-linear in[u, v]. Due to the
monotonicity of subdifferentials, we have∂f1(u) ∩ ∂f1(v) = ∅ and∂f2(u) ∩ ∂f2(v) = ∅.
Consequently, it follows that bothTf1(u, v) andTf2(u, v) are non-empty. Ifγ ∈ Tf1(u, v),
then (4.53d) holds forf1 for someγ. Thus, it must also hold forf2 using the sameγ, which
implies thatγ ∈ Tf2(u, v). The same argument can also be applied with the roles off1 and
f2 reversed, so that we conclude thatTf1(u, v) = Tf2(u, v).

Appendix 4.F Proof of Proposition 4.19

Using Lemma4.18, the proof of Proposition4.19follows relatively easily. Note that the
variational distance corresponds tof1(u) = |u− 1| = u+ 1− 2 min{u, 1}, which is linear
above and below1. Therefore, the same must be true for any continuous convex function
f2. All such functions can indeed be written as−cmin(u, 1) + au + b, for some constant
c, a, b. In order forf2 to have the same monotonicity asf1, it is necessary and sufficient
thatc > 0.
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Appendix 4.G Proof of Proposition 4.24

Following a similar construction as in the proof of Proposition4.20, all φ satisfying prop-
ertyP haveφ(0) = (c− a− b)/2. Now, note that

Rbayes(γ,Q)−R∗
bayes = Rbayes(γ,Q)−Rbayes(Q) +Rbayes(Q)−R∗

bayes

=
∑
z∈Z

π(z)I(γ(z) > 0) + µ(z)I(γ(z) < 0)−min{µ(z), π(z)}+Rbayes(Q)−R∗
bayes

=
∑

z:(µ(z)−π(z))γ(z)<0

|µ(z)− π(z)|+Rbayes(Q)−R∗
bayes.

In addition,
Rφ(γ,Q)−R∗

φ = Rφ(γ,Q)−Rφ(Q) +Rφ(Q)−R∗
φ.

By Proposition4.4,

Rφ(Q)−R∗
φ = −If (µ, π)− inf

Q∈Q
(−If (µ, π))

= c
∑
z∈Z

min{µ(z), π(z)} − inf
Q∈Q

c
∑
z∈Z

min{µ(z), π(z)}

= c(Rbayes(Q)−R∗
bayes).

Therefore, the lemma would be immediate once we could show that

c

2

∑
z:(µ(z)−π(z))γ(z)<0

|µ(z)− π(z)| ≤ Rφ(γ,Q)−Rφ(Q)

=
∑
z∈Z

π(z)φ(−γ(z)) + µ(z)φ(γ(z))− cmin{µ(z), π(z)}+ ap+ bq. (4.54)

It is simple to check that for anyz ∈ Z such that(µ(z)− π(z))γ(z) < 0, there holds:

π(z)φ(−γ(z)) + µ(z)φ(γ(z)) ≥ π(z)φ(0) + µ(z)φ(0). (4.55)

Indeed, w.o.l.g., supposeµ(z) > π(z). Sinceφ is classification-calibrated, the convex
function (with respect toα) π(z)φ(−α) + µ(z)φ(α) achieves its minimum at someα ≥ 0.
Hence, for anyα ≤ 0, π(z)φ(−α) + µ(z)φ(α) ≥ π(z)φ(0) + µ(z)φ(0). Hence, (4.55) is
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proven. The RHS of Eqn. (4.54) is lower bounded by:∑
z:(µ(z)−π(z))γ(z)<0

(π(z) + µ(z))φ(0)− cmin{µ(z), π(z)}+ ap+ bq

=
∑

z:(µ(z)−π(z))γ(z)<0

(π(z) + µ(z))
c− a− b

2
− cmin{µ(z), π(z)}+ ap+ bq

=
c

2

∑
z:(µ(z)−π(z))γ(z)<0

|µ(z)− π(z)| − (a+ b)(p+ q)/2 + ap+ bq

=
c

2

∑
z:(µ(z)−π(z))γ(z)<0

|µ(z)− π(z)|+ 1

2
(a− b)(p− q)

≥ c

2

∑
z:(µ(z)−π(z))γ(z)<0

|µ(z)− π(z)|.

This completes the proof.
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Chapter 5

Decentralized sequential detection

In this chapter we consider the problem of sequential decentralized detection, a problem
that entails several interdependent choices: the choice of a stopping rule (specifying the
sample size), a global decision function (a choice between two competing hypotheses), and
a set of quantization rules (the local decisions on the basis of which the global decision is
made). We resolve an open problem concerning whether optimal local decision functions
for the Bayesian formulation of sequential decentralized detection can be found within the
class of stationary rules. We develop an asymptotic approximation to the optimal cost of
stationary quantization rules and show how this approximation yields a negative answer to
the stationarity question. We also consider the class of blockwise stationary quantizers and
show that asymptotically optimal quantizers are likelihood-based threshold rules.

5.1 Introduction

In Chapter3 and Chapter4 we have studied the problem of non-sequential decentralized
detection. Detection is a classical discrimination or hypothesis-testing problem, in which
observations{X1, X2, . . .} are assumed to be drawn i.i.d. from the (multivariate) condi-
tional distributionP( · |H ) and the goal is to infer the value of the random variableH,
which takes values in{0, 1}. In a typical engineering application, the case{H = 1}
represents the presence of some target to be detected, whereas{H = 0} represents its
absence. Placing this problem in a communication-theoretic context, a decentralized de-
tection problem is a hypothesis-testing problem in which the decision-maker is not given
access to the raw data pointsXn, but instead must inferH based only on the output of
a set of quantization rules or local decision functions, say{Un = φn(Xn)}, which map
the raw data to quantized values. Of interest in this chapter is the extension to an-online
setting: more specifically, thesequential decentralized detectionproblem[Tsitsiklis, 1986;
Veeravalli, 1999; Mei, 2003] involves a data sequence,{X1, X2, . . .}, and a corresponding
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sequence of summary statistics,{U1, U2, . . .}, determined by a sequence of local decision
rules{φ1, φ2, . . .}. The goal is to design both the local decision functions and to specify
a global decision rule so as to predictH in a manner that optimally trades off accuracy
and delay. In short, the sequential decentralized detection problem is the communication-
constrained extension of classical formulation of sequential centralized decision-making
problems; see, e.g.,[Chernoff, 1972; Shiryayev, 1978; Lai, 2001] to the decentralized set-
ting.

In setting up a general framework for studying sequential decentralized problems, Veer-
avalli et al. [Veeravalli et al., 1993] defined five problems, denoted “Case A” through
“Case E”, distinguished from one another by the amount of information available to the
local sensors. In applications such as power-constrained sensor networks, we gener-
ally do not wish to assume that there are high-bandwidth feedback channels from the
decision-maker to the sensors, nor do we wish to assume that the sensors have unbounded
memory. Most suited to this perspective—and the focus of this thesis—is Case A, in
which the local decisions are of the simplified formφn(Xn); i.e., neither local mem-
ory nor feedback are assumed to be available. Noting that Case A is not amenable to
dynamic programming and is presumably intractable, Veeravalli et al.[Veeravalliet al.,
1993] suggested restricting the analysis to the class ofstationarylocal decision functions;
i.e., local decision functionsφn that are independent ofn. They conjectured that sta-
tionary decision functions may actually be optimal in the setting of Case A (given the
intuitive symmetry and high degree of independence of the problem in this case), even
though it is not possible to verify this optimality via DP arguments. This conjecture
has remained open since it was first posed by Veeravalli et al.[Veeravalli et al., 1993;
Veeravalli, 1999].

The main contribution of this chapter is to resolve this question by showing that station-
ary decision functions are, in fact,not optimal for decentralized problems of type A. Our
argument is based on an asymptotic characterization of the optimal Bayesian risk as the cost
per sample goes to zero. In this asymptotic regime, the optimal cost can be expressed as
a simple function of priors and Kullback-Leibler (KL) divergences. This characterization
allows us to construct counterexamples to the stationarity conjecture, both in an exact and
an asymptotic setting. In the latter setting, we present a class of problems in which there
always exists a range of prior probabilities for which stationary strategies, either determin-
istic or randomized, are suboptimal. We note in passing that an intuition for the source of
this suboptimality is easily provided—it is due to the asymmetry of the KL divergence.

It is well known that optimal quantizers when unrestricted are necessarily likelihood-
based threshold rules[Tsitsiklis, 1986]. Our counterexamples and analysis imply that op-
timal thresholds are not generally stationary (i.e., the threshold may differ from sample to
sample). We also provide a partial converse to this result: specifically, if we restrict our-
selves to stationary (or blockwise stationary) quantizer designs, then there exists an optimal
design that is a threshold rule based on the likelihood ratio. We prove this result by estab-
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lishing a quasiconcavity result for the asymptotically optimal cost function. In this chapter,
this result is proven for the space of deterministic quantizers with arbitrary output alpha-
bets, as well as for the space of randomized quantizers with binary ouputs. We conjecture
that the same result holds more generally for randomized quantizers with arbitrary output
alphabets.

The remainder of this chapter is organized as follows. We begin in Section5.2 with
background on the Bayesian formulation of sequential detection problems, and Wald’s ap-
proximation. Section5.3 provides a simple asymptotic approximation of the optimal cost
that underlies our main analysis in Section5.4. In Section5.5, we establish the existence
of optimal decision rules that are likelihood-based threshold rules, under the restriction to
blockwise stationarity. We conclude with a discussion in Section5.61

5.2 Background

This chapter provides background on the Bayesian formulation of sequential (centralized)
detection problems. Of particular use in our subsequent analysis is Wald’s approximation
of the cost of optimal sequential test.

Let P0 and P1 represent the distribution ofX, when conditioned on{H = 0} and
{H = 1} respectively. Assume thatP0 andP1 are absolutely continuous with respect to
one another. We usef 0(x) andf 1(x) to denote the respective density functions with respect
to some dominating measure (e.g., Lebesgue for continuous variables, or counting measure
for discrete-valued variables).

Our focus is the Bayesian formulation of the sequential detection problem[Shiryayev,
1978; Veeravalli, 1999]; accordingly, we letπ1 = P(H = 1) andπ0 = P(H = 0) denote
the prior probabilities of the two hypotheses. LetX1, X2, . . . be a sequence of conditionally
i.i.d. realizations ofX. A sequential decision rule consists of astopping timeN defined
with respect to the sigma fieldσ(X1, . . . , XN), and a decision functionγ measurable with
respect toσ(X1, . . . , XN). The cost function is the expectation of a weighted sum of the
sample sizeN and the probability of incorrect decision—namely

J(N, γ) := E
{
cN + I[γ(X1, . . . , XN) 6= H]

}
, (5.1)

wherec > 0 is the incremental cost of each sample. The overall goal is to choose the pair
(N, γ) so as to minimize the expected loss (5.1).

It is well known that the optimal solution of the sequential decision problem can be
characterized recursively using dynamic programming (DP) arguments[Arrow et al., 1949;
Wald and Wolfowitz, 1948; Shiryayev, 1978; Bertsekas, 1995a]. Although useful in clas-
sical (centralized) sequential detection, the DP approach is not always straightforward to

1This work has been published in[Nguyenet al., 2006].
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apply todecentralizedversions of sequential detection[Veeravalli, 1999]. In the remainder
of this section, we describe an asymptotic approximation of the optimal sequential cost,
originally due to Wald (cf.[Siegmund, 1985]), valid asc → 0. To sketch out Wald’s ap-
proximation, we begin by noting the optimal stopping rule for the cost function (5.1) takes
the form

N = inf
{
n ≥ 1

∣∣ Ln(X1, . . . , Xn) :=
n∑

i=1

log
f 1(Xi)

f 0(Xi)
/∈ (a, b)

}
, (5.2)

for some real numbersa < b. Given this stopping rule, the optimal decision function has
the form

γ(LN) =

{
1 if LN ≥ b,

0 if LN ≤ a.
(5.3)

Consider the two types of error:

α = P0(γ(LN) 6= H) = P0(LN ≥ b)

β = P1(γ(LN) 6= H) = P1(LN ≤ a).

As c → 0, it can be shown that the optimal choice ofa andb satisfiesa → −∞, b → ∞,
and the correspondingα, β satisfyα + β → 0. Ignoring the overshoot ofLN upon the
optimal stopping timeN (i.e., instead assumingLN attains precisely the valuea or b) we
can expressa, b, EN and the cost functionJ in terms ofα andβ as follows[Wald, 1947]:

a ≈ a(α, β) := log
β

1− α
and b ≈ b(α, β) := log

1− β

α
(5.4)

E0[LN ] ≈ (1− α)a+ αb and E1[LN ] ≈ (1− β)b+ βa (5.5)

Now define the Kullback-Leibler divergences

µ1 = E1[log
f 1(X1)

f 0(X1)
] = D(f 1||f 0), and µ0 = −E0[log

f 1(X1)

f 0(X1)
] = D(f 0||f 1).

(5.6)
With a slight abuse of notation, we shall also useD(α, β) to denote a function in[0, 1]2 →
R such that:

D(α, β) := α log
α

β
+ (1− α) log

1− α

1− β
.

With the above approximations, the cost functionJ of the decision rule based on envelopes
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a andb can be written as

J = π1E1(cN + I[LN ≤ a]) + π0E0(cN + I[LN ≥ b])

= cπ1 E1LN

µ1
+ cπ0 E0LN

−µ0
+ π0α+ π1β, (5.7)

≈ cπ0D(α, 1− β)

µ0
+ cπ1D(1− β, α)

µ1
+ π0α+ π1β, (5.8)

where the third line follows from Wald’s equation[Wald, 1947].
Let J∗ denote the cost of an optimal sequential test. Sinceα + β → 0, D(1− β, α) =

log(1/α) + o(1), andD(1− α, β) = log(1/β) + o(1). We approximateJ∗ by minimizing
J overα andβ. The minimum is achieved atα∗ = cπ1

µ1
φπ0 andβ∗ = cπ0

µ0
φπ1 , yielding:

J∗ ≈ inf
α,β

{
π0α+ π1β + cπ0 log(1/β)

µ0
+ cπ1 log(1/α)

µ1

}
+ o(c)

≈ (
π0

µ0
+
π1

µ1
)c log c−1 +O(c). (5.9)

The approximations described here can be made rigorous using the results of Chernoff[Cher-
noff, 1959].

5.3 Characterization of optimal stationary quantiz-
ers

Turning now to the decentralized setting, the primary challenge lies in the design of the
quantization rulesφn applied to dataXn. WhenXn is univariate, a deterministic quantiza-
tion ruleφn is a function that mapsX to the discrete spaceU = {0, . . . , K − 1} for some
natural numberK. For multivariateXn with d dimension arising from the multiple sensor
setting, a deterministic quantizerφn is defined as a mapping from thed-dim product space
X to U = {0, . . . , K − 1}d. In the decentralized problem defined as Case A by Veeravalli
et al. [Veeravalliet al., 1993], the functionφn is composed ofd separate quantizer func-
tions, one each for each dimension. A randomized quantizerφn is obtained by placing a
distribution over the space of deterministic quantizers.

Any fixed set of quantization rulesφn yields a sequence of compressed dataUn =
φn(Xn), to which the classical theory can be applied. We are thus interested in choosing
quantization rulesφ1, φ2, . . . so that the error resulting from applying the optimal sequential
test to the sequence of statisticsU1, U2, . . ., is minimized over some spaceΦ of quantization
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rules. For a given quantizerφn we use

f i
φn

(u) := Pi(φn(Xn) = u), for i = 0, 1,

to denote the distributions of the compressed data, conditioned on the hypothesis. In gen-
eral, when randomized quantizers are allowed, the vector(f 0

φn
(.), f1

φn
(.)) ranges over a

convex set, denotedConvΦ, whose extreme points correspond to deterministic quantizers
based on likelihood ratio threshold rules[Tsitsiklis, 1993a].

We say that a quantizer design isstationaryif the ruleφn is independent ofn; in this
case, we simplify the notation tof 1

φ andf 0
φ. In addition, we define the KL divergences

µ1
φ := D(f 1

φ||f 0
φ) andµ0

φ := D(f 0
φ||f 1

φ). Moreover, letJφ andJ∗φ denote the analogues of
the functionsJ in Eq. (5.7) andJ∗ in (5.9), respectively, defined usingµi

φ, for i = 0, 1. In
this scenario, the sequence of compressed dataU1, . . . , Un, . . . are drawn i.i.d. from either
f 0

φ or f 1
φ. Thus we can use the approximation (5.9) to characterize the asymptotically

optimal stationary quantizer design. This is stated formally in the lemma to follow.
We begin by stating the assumptions underlying the lemma. For a given class of quan-

tizersΦ, we assume that the Kullback-Leibler divergences are uniformly bounded away
from zero

D(f 1
φ||f 0

φ) > 0, D(f 0
φ||f 1

φ) > 0 for all φ ∈ Φ (5.10)

and moreover that the variance of the log likelihood ratios are bounded

sup
φ∈Φ

Varf1
φ
log(f 1

φ/f
0
φ)) <∞, and sup

φ∈Φ
Varf0

φ
log(f 1

φ/f
0
φ)) <∞. (5.11)

Examples of distributions that satisfy these assumptions include pairs of discrete distribu-
tions, pairs of Gaussian distributions, and so on.

Lemma 5.1. Under assumptions(5.10) and (5.11), the optimal stationary cost takes the
form

J∗φ =

(
π0

µ0
φ

+
π1

µ1
φ

)
c log c−1 (1 + o(1)) (5.12)

asc→ 0.

Proof: We prove the lemma using results originally due to Chernoff[Chernoff, 1959],
restricted to a simple binary hypothesis test betweenf 0

φ andf 1
φ. By Theorem 1 from Cher-

noff [Chernoff, 1959], under conditions (5.10) and (5.11), there is a sequential test(N, γ)
for which:

J∗ ≤ J(N, γ) = π0(α+ cE0N) + π1(β + cE1N)

≤ π0(1 + o(1))c log c−1/µ0
φ + π1(1 + o(1))c log c−1/µ1

φ.
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But then the optimal test with the costJ∗ (i.e., the likelihood ratio based test) must satisfies
thatα+cE0N = O(c log c−1) andβ+cE1N = O(c log c−1). Theorem 2 of Chernoff[Cher-
noff, 1959] implies that

J∗ ≥
(
π0

µ0
φ

+
π1

µ1
φ

)
(1 + o(1))c log c−1,

concluding the proof.
Remarks:

1. The preceding approximation of the optimal cost essentially ignores the overshoot of
the likelihood ratioLN . While it is possible to analyze this overshoot to obtain a finer
approximation (cf.[Lorden, 1970; Siegmund, 1985; Lai, 2001; Poor, 1994]), we see
that this is not needed for our purpose. Lemma5.1 shows that given a fixed prior
(π0, π1), among all stationary quantizer designs inΦ, φ is optimal for sufficiently
smallc if andonly if φ minimizes what we shall call thesequential cost coefficient:

Gφ :=
π0

µ0
φ

+
π1

µ1
φ

.

2. As a consequence of Lemma5.7 to be proved in the sequel, if we consider the class
Φ of all binary randomized quantizers, then sequential cost coefficientGφ is a qua-
siconcave function with respect to(f 0

φ(.), f1
φ(.)). (A functionF is quasiconcave if

and only if for anyη, the level set{F (x) ≥ η} is a convex set; see Boyd and Van-
denberghe[Boyd and Vandenberghe, 2004] for further background). The minimum
of a quasiconcave function lies in the set of extreme points in its domain. For the
set ConvΦ, these extreme points correspond to deterministic quantizers based on
likelihood ratios[Tsitsiklis, 1993b]. Consequently, we conclude that for quantizers
with binary outputs, the optimal cost is not decreased by considering randomized
quantizers. We conjecture that this statement also holds beyond the binary case.

Section5.5 is devoted to a more detailed study of asymptotically optimal stationary
quantizers. In the meantime, we turn to the question whether stationary quantizers are
optimal in either finite-sample or asymptotic settings.

5.4 Suboptimality of stationary designs

It was shown by Tsitsiklis[Tsitsiklis, 1986] that optimal quantizersφn take the form of
threshold rules based on the likelihood ratiof 1(Xn)/f0(Xn). Veeravalli et al.[Veeravalliet
al., 1993; Veeravalli, 1999] asked whether these rules can always be taken to be stationary, a
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conjecture that has remained open. In this section, we resolve this question with a negative
answer for both the finite-sample and asymptotic settings.

5.4.1 Suboptimality in exact setting

We begin by providing a numerical counterexample for which stationary designs are sub-
optimal. Consider a problem in whichX ∈ X = {1, 2, 3} and the conditional distributions
take the form

f 0(x) =
[

8
10

1999
10000

1
10000

]
andf 1(x) =

[
1
3

1
3

1
3

]
.

Suppose that the prior probabilities areπ1 = 8
100

andπ0 = 92
100

, and that the cost for each
sample isc = 1

100
.

If we restrict to binary quantizers (i.e.,U = {0, 1}), by the symmetric roles of the
output alphabets there are only three possible deterministic quantizers:

1. Design A:φA(Xn) = 0 ⇐⇒ Xn = 1. As a result, the corresponding distribution
for Un is specified byf 0

φA
(un) = [4

5
1
5
] andf 1

φA
(u) = [1

3
2
3
].

2. Design B:φB(Xn) = 0 ⇐⇒ Xn ∈ {1, 2}. The corresponding distribution forUn

is given byf 0
φB

(u) = [ 9999
10000

1
10000

] andf 1
φB

(u) = [2
3

1
3
].

3. Design C:φC(Xn) = 0 ⇐⇒ Xn ∈ {1, 3}. The corresponding distribution forUn

is specified byf 0
φC
∼ [ 8001

10000
1999
10000

] andf 1
φC

(u) = [2
3

1
3
].

Now consider the three stationary strategies, each of which uses only one fixed design, A, B
or C. For any given stationary quantization ruleφ, we have a classical centralized sequen-
tial problem, for which the optimal cost (achieved by a sequential probability ratio test)
can be computed using a dynamic-programming procedure[Wald and Wolfowitz, 1948;
Arrow et al., 1949]. Accordingly, for each stationary strategy, we compute the optimal cost
functionJ for 106 points on thep-axis by performing 300 updates of Bellman’s equation
(cf. [Bertsekas, 1995a]). In all cases, the difference in cost between the 299th and 300th
updates is less than10−6. LetJA, JB andJC denote the optimal cost function for sequential
tests using all A’s, all B’s, and all C’s, respectively. When evaluated atπ1 = 0.08, these
computations yieldJA = 0.0567, JB = 0.0532 andJC = 0.08.

Finally, we consider a non-stationary rule obtained by applying design A for only the
first sample, and applying design B for the remaining samples. Again using Bellman’s
equation, we find that the cost for this design is

J∗ = min{min{π1, 1− π1}, c+ JB(P (H = 1|u1 = 0))P (u1 = 0)+

JB(P (H = 1|u1 = 1))P (u1 = 1)} = 0.052767,

which is better than any of the stationary strategies.
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In this particular example, the costJ∗ of the non-stationary quantizer yields a slim
improvement (0.0004) over the best stationary ruleJB. This slim margin is due in part to
the choice of a small per-sample costc = 0.01; however, larger values ofc do not yield
counterexample when using the particular distributions specified above. A more significant
factor is that our non-stationary rule differs from the optimal stationary ruleB only in
its treatment of the first sample. This fact suggests that one might achieve better cost by
alternating between using design A and design B on the odd and even samples, respectively.
Our analysis of the asymptotic setting in the next section confirms this intuition.

5.4.2 Asymptotic suboptimality for both deterministic and ran-
domized quantizers

We now prove that in a broad class of examples, there is a range of prior probabilities for
which stationary quantizer designs are suboptimal. Our result stems from the following
observation: Lemma5.1 implies that in order to achieve a small cost we need to choose a
quantizerφ for which the KL divergencesµ0

φ := D(f 0
φ||f 1

φ) andµ1
φ := D(f 1

φ||f 0
φ) are both

as large as possible. Due to the asymmetry of the KL divergence, however, these maxima
are not necessarily achieved by a single quantizerφ. This suggests that one could improve
upon stationary designs applying different quantizers to different samples, as the following
lemma shows.

Lemma 5.2. Letφ1 andφ2 be any two quantizers. If the following inequalities hold

µ0
φ1
< µ0

φ2
andµ1

φ1
> µ1

φ2
(5.13)

then there exists a non-empty interval(U, V ) ⊆ (0,+∞) such that asc→ 0,

J∗φ1
≤ J∗φ1,φ2

≤ J∗φ2
if

π0

π1
≤ U

J∗φ1,φ2
< min{J∗φ1

, J∗φ2
} −Θ(c log c−1) if

π0

π1
∈ (U, V )

J∗φ1
≥ J∗φ1,φ2

≥ J∗φ2
if

π0

π1
≥ V,

whereJ∗φ1,φ2
denotes the optimal cost of a sequential test that alternates between usingφ1

andφ2 on odd and even samples respectively.

Proof: According to Lemma5.1, we have

J∗φi
=

(
π0

µ0
φi

+
π1

µ1
φi

)
c log c−1(1 + o(1)), i = 0, 1. (5.14)

127



Chapter 5. Decentralized sequential detection

Now consider the sequential test that applies quantizersφ1 andφ2 alternately to odd and
even samples. Furthermore, let this test consider two samples at a time. Letf 0

φ1φ2
andf 1

φ1φ2

denote the induced conditional probability distributions, jointly on the odd-even pairs of
quantized variables. From the additivity of the KL divergence and assumption (5.13), there
holds:

D(f 0
φ1φ2

||f 1
φ1φ2

) = µ0
φ1

+ µ0
φ2
> 2µ0

φ1
(5.15a)

D(f 1
φ1φ2

||f 0
φ1φ2

) = µ1
φ1

+ µ1
φ2
< 2µ1

φ1
. (5.15b)

Clearly, the cost of the proposed sequential test is an upper bound forJ∗φ1,φ2
. Furthermore,

the gap between this upper bound and the true optimal cost is no more thanO(c). Hence,
as in the proof of Lemma5.1, asc→ 0, the optimal costJ∗φ1,φ2

can be written as(
2π0

µ0
φ1

+ µ0
φ2

+
2π1

µ1
φ1

+ µ1
φ2

)
c log c−1(1 + o(1)). (5.16)

From equations (5.14) and (5.16), simple calculations yield the claim with

U =
µ0

φ1
(µ1

φ1
− µ1

φ2
)(µ0

φ1
+ µ0

φ2
)

µ1
φ1

(µ1
φ1

+ µ1
φ2

)(µ0
φ2
− µ0

φ1
)
< V =

µ0
φ2

(µ1
φ1
− µ1

φ2
)(µ0

φ1
+ µ0

φ2
)

µ1
φ2

(µ1
φ1

+ µ1
φ2

)(µ0
φ2
− µ0

φ1
)
. (5.17)

Example: Let us return to the example provided in the previous section. Note that the
two quantizersφA and φB satisfy assumption (5.13), sinceD(f 0

φB
||f 1

φB
) = 0.4045 <

D(f 0
φA
||f 1

φA
) = 0.45 andD(f 1

φB
||f 0

φB
) = 2.4337 > D(f 1

φA
||f 0

φA
) = 0.5108. Further-

more, both quantizers dominatesφC in terms of KL divergences:D(f 0
φC
||f 1

φC
) = 0.0438,

D(f 0
φC
||f 1

φC
) = 0.0488. As a result, there exist a range of priors for which a sequential test

using stationary quantizer design (eitherφA, φB or φC for all samples) is not optimal.

Theorem 5.3.Suppose thatΦ is a finite collection of quantizers, and that there is no single
quantizerφ that dominates all other quantizers inΦ in the sense that

µ0
φ ≥ µ0

φ′ and µ1
φ ≥ µ1

φ′ for all φ′ ∈ Φ. (5.18)

Then there exists a non-empty range of prior probabilities for which no stationary design
based on a quantizer inΦ is optimal.

Proof. Since there are a finite number of quantizers inΦ and no quantizer dominates all
others, the interval(0,∞) is divided into at least two adjacent non-empty intervals, each
of which corresponds to a range of prior probability ratiosπ0/π1 for which a quantizer
is strictly optimal (asymptotically) among all stationary designs. Let them be(δ1, δ) and
(δ, δ2), for two quantizers, namely,φ1 andφ2. In particular,δ is the value forπ0/π1 for
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which the sequential cost coefficients are equal—viz.Gφ1 = Gφ2—which happens only if
assumption (5.13) holds. Some calculations verify that

δ =
µ0

φ1
µ0

φ2
(µ1

φ2
− µ1

φ1
)

µ1
φ1
µ1

φ2
(µ0

φ1
− µ0

φ2
)
. (5.19)

By Lemma5.2, a non-stationary design by alternating betweenφ1 andφ2 has smaller se-
quential cost than bothφ1 andφ2 for π0/π1 ∈ (U, V ), whereU andV are given in equa-
tion (5.17). Since it can be verified thatδ as defined (5.19) belongs to the interval(U, V ),
we conclude that forπ0/π1 ∈ (U, V ) ∩ (δ1, δ2), this non-stationary design has smaller cost
than any stationary design usingφ ∈ Φ.

Remarks:

1. Suppose thatΦ is restricted a finite class of deterministic quantizers with binary
outputs. By the second remark following Lemma5.1, it follows that stationary ran-
domized quantizers are not optimal under the assumptions of Theorem5.3.

2. It is interesting to contrast the Bayesian formulation of the problem of quantizer
design with the Neyman-Pearson formulation. Our results on the suboptimality of
stationary quantizer design in the Bayesian formulation repose on the asymmetry of
the Kullback-Leibler divergence, as well as the sensitivity of the optimal quantizers
on the prior probability. We note that Mei[Mei, 2003] (see p. 58) considered the
Neyman-Pearson formulation of this problem. In this formulation, it can be shown
that for all sequential tests for which the type 1 and type 2 errors are bounded by
α andβ, respectively, then asα + β → 0, the expected stopping timeE0N under
hypothesisH = 0 is asymptotically minimized by applying a stationary quantizer
φ∗ that maximizesD(f 0

φ||f 1
φ). Similarly, the expected stopping timeE1N under

hypothesisH = 1 is asymptotically minimized by the stationary quantizerφ∗∗ that
maximizesD(f 1

φ||f 0
φ) [Mei, 2003]. In this context, the example in section5.4.1

provides a case in which the asymptotically minimal KL divergencesφ∗ andφ∗∗

are not the same, due to the asymmetry, which suggests that there may not exist a
stationary quantizer that simultaneously minimizes bothE1N andE0N .

5.4.3 Asymptotic suboptimality in multiple sensor setting

Our analysis thus far has established that with a single sensor per time step (d = 1), ap-
plying multiple quantizers to different samples can reduce the sequential cost. It is natural
to ask whether the same phenomenon persists in the case of multiple sensors (d > 1). In
this section, we show that the phenomenon does indeed carry over, more specifically by
providing an example in which stationary strategies are still sub-optimal in comparison to
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non-stationary ones. The key insight is that we have only a fixed number of dimensions,
whereas asc → 0 we are allowed to take more samples, and each sample can act as an
extra dimension, providing more flexibility for non-stationary strategies.

Suppose that the observation vectorXn at timen is d-dimensional, with each compo-
nent corresponding to a sensor in a typical decentralized setting. Suppose that the observa-
tions from each sensor are assumed to be independent and identically distributed according
to the conditional distributions defined in our earlier example (see section5.4.1). Of inter-
est are the optimal deterministic binary quantizer designs for alld sensors. Although there
are three possible choicesφA, φB andφC for each sensor, the quantizerφC is dominated by
the other two, so each sensor should choose eitherφA andφB. Suppose that among these
sensors, a subset of sizet chooseφA and whereas the remainingd − t sensors chooseφB

for 0 ≤ k ≤ d. We thus haved + 1 possible stationary designs to consider. For eacht, the
sequential cost coefficient corresponding to the associated stationary design takes the form

Gk :=
π0

tµ0
φA

+ (d− t)µ0
φB

+
π1

tµ1
φA

+ (d− t)µ1
φB

. (5.20)

Now consider the following non-stationary design: the first sensor alternates between
decision rulesφA andφB, while the remainingd − 1 sensors simply apply the stationary
design based onφB. For this design, the associated sequential cost coefficient is given by

G :=
2π0

µ0
φA

+ (2d− 1)µ0
φB

+
2π1

µ1
φA

+ (2d− 1)µ1
φB

. (5.21)

Consider the interval(U, V ), where the interval has endpoints

U =
(µ1

φB
− µ1

φA
)(µ0

φA
+ (2d− 1)µ0

φB
)µ0

φB

(µ0
φA
− µ0

φB
)(µ1

φA
+ (2d− 1)µ1

φB
)µ1

φB

<

V =
(µ1

φB
− µ1

φA
)(µ0

φA
+ (2d− 1)µ0

φB
)(µ0

φA
+ (d− 1)µ0

φB
)

(µ0
φA
− µ0

φB
)(µ1

φA
+ (2d− 1)µ1

φB
)(µ1

φA
+ (d− 1)µ1

φB
)
. (5.22)

Sinceµ0
φA
> µ0

φB
andµ1

φB
> µ1

φA
, straightforward calculations yield that for any prior like-

lihood π0/π1 ∈ (U, V ), the minimal cost over stationary designsmint=0,...,dGk is strictly
larger than the sequential costG of the non-stationary design, previously defined in equa-
tion (5.21).
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5.5 On asymptotically optimal blockwise stationary
designs

Despite the possible loss in optimality, it is useful to consider some form of stationarity in
order to reduce computational complexity of the optimization and decision process. In this
section, we consider the class ofblockwise stationarydesigns, meaning that there exists
some natural numberT such thatφT+1 = φ1, φT+2 = φ2, and so on. For eachT , letCT de-
note the class of all blockwise stationary designs with periodT . We assume throughout the
analysis that each decision ruleφn (n = 1, . . . , T ) satisfies conditions (5.10) and (5.11).
Thus, asT increases, we have a hierarchy of increasingly rich quantizer classes that will be
seen to yield progressively better approximations to the optimal solution.

For a fixed prior(π0, π1) andT > 0, let (φ1, . . . , φT ) denote a quantizer design in
CT . As before, the costJ∗φ of an asymptotically optimal sequential test using this quantizer
design is of orderc log c−1 with the sequential cost coefficient

Gφ =
Tπ0

µ0
φ1

+ . . .+ µ0
φT

+
Tπ1

µ1
φ1

+ . . .+ µ1
φT

. (5.23)

Gφ is a function of the vector of probabilities introduced by the quantizer:(f 0
φ(.), f1

φ(.)).
We are interested in the properties of a quantization ruleφ that minimizesJ∗φ.

It is well known[Tsitsiklis, 1986] that optimal quantizers—when unrestricted—can be
expressed as threshold rules based on the log likelihood ratio (LLR). Our counterexamples
in the previous sectionimply that the thresholds need not be stationary (i.e., the threshold
may differ from sample to sample). In the remainder of this section, we addresses a par-
tial converse to this issue: specifically, if we restrict ourselves to stationary (or blockwise
stationary) quantizer designs, then there exists an optimal design consisting of LLR-based
threshold rules.

In the analysis to follow, it is sufficient to assumeT = 1 so as to simplify the exposition.
Our main result, stated below as Theorem5.8, provides a characterization of the optimal
quantizerφ∗1, denoted more simply byφ∗. ForT > 1, due to the symmetry in the roles of
individual quantizer functions,φn, for n = 1, . . . , T , result can be obtained by proving for
eachn while the quantizer rules for other time steps in the period remain fixed. Indeed,
fixing the rules for other time steps except forn = 1, the sequential cost coefficient has the
form:

Gφ =
Tπ0

µ0
φ1

+ d0

+
Tπ1

µ1
φ1

+ d1

,

for some non-negative constantsd0 andd1. It can be verified that our proof for the case
T = 1, which corresponds tod0 = d1 = 0, can be extended to the general case ofd0, d1 ≥ 0
in a straightforward manner.
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Definition 5.4. The quantizer design functionφ : X → U is said to be alikelihood ratio
threshold ruleif there are thresholdsd0 = −∞ < d1 < . . . < dK = +∞, and a permu-
tation (u1, . . . , uK) of (0, 1, . . . , K − 1) such that forl = 1, . . . , K, with P0-probability 1,
we have:

φ(X) = ul if dl−1 ≤ f 1(X)/f0(X) ≤ dl,

Whenf 1(X)/f0(X) = dl−1, setφ(X) = ul−1 or φ(X) = ul with P0-probability 1.2

Previous work on the extremal properties of likelihood ratio based quantizers guaran-
tees that the Kullback-Leibler divergence is maximized by a LLR-based quantizer[Tsitsik-
lis, 1993a]. In our case, however, the sequential cost coefficientGφ involves a pair of KL
divergences,µ0

φ andµ1
φ, which are related to one another in a nontrivial manner. Hence,

establishing asymptotic optimality of LLR-based rules for this cost function does not fol-
low from existing results, but rather requires further understanding of the interplay between
these two KL divergences.

The following lemma concerns certain “unnormalized” variants of the Kullback-Leibler
(KL) divergence. Given vectorsa = (a0, a1) andb = (b0, b1), we define functions̃D0 and
D̃1 mapping fromR4

+ to the real line as follows:

D̃0(a, b) := a0 log
a0

a1

+ b0 log
b0
b1

(5.24a)

D̃1(a, b) := a1 log
a1

a0

+ b1 log
b1
b0
. (5.24b)

These functions are related to the standard (normalized) KL divergence via the relations
D̃0(a, 1− a) ≡ D(a0, a1), andD̃1(a, 1− a) ≡ D(a1, a0).

Lemma 5.5. For any positive scalarsa1, b1, c1, a0, b0, c0 such thata1

a0
< b1

b0
< c1

c0
, at least

oneof the two following conditions must hold:

D̃0(a, b+ c) > D̃0(b, c+ a) and D̃1(a, b+ c) > D̃0(b, c+ a), or (5.25a)

D̃0(c, a+ b) > D̃0(b, c+ a) and D̃1(c, a+ b) > D̃0(b, c+ a). (5.25b)

This lemma implies that under certain conditions on the ordering of the probability
ratios, one can increasebothKL divergences by re-quantizing. This insight is used in the
following lemma to establish that the optimal quantizerφ behaves almost like a likelihood
ratio rule. To state the result, recall that theessential supremumis the infimum of the set of
all η such thatf(x) ≤ η for P0-almost allx in the domain, for a measurable functionf .

2This last requirement of the definition is termed thecanonical likelihood ratio quantizer by Tsitsik-
lis [Tsitsiklis, 1993a]. Although one could consider performing additional randomization when there are ties,
our later results (in particular, Lemma5.7) establish that in this case, randomization will not further decrease
the optimal costJ∗

φ.
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Lemma 5.6. If φ is an asymptotically optimal quantizer, then for all pairs(u1, u2) ∈ U ,
u1 6= u2, there holds:

f 1(u1)

f 0(u1)
/∈
(

ess inf
x:φ(x)=u2

f 1(x)

f 0(x)
, ess sup

x:φ(x)=u2

f 1(x)

f 0(x)

)
.

Note that a likelihood ratio rule guarantees something stronger: ForP0-almost allx
such thatφ(x) = u1, f 1(x)/f0(x) takes a value either to the left or to the right, but not to
both sides, of the interval specified above. As we shall show, the proof that there exists an
optimal LLR-based rule turns out to reduce to the problem of showing that the sequential
cost coefficientGφ is a quasiconcavefunction with respect to(f 0

φ(.), f1
φ(.)). Since the

minima of a quasiconcave function are extreme points of the function’s domain[Boyd
and Vandenberghe, 2004], and the extreme points in the quantizer space are LLR-based
rules [Tsitsiklis, 1993a], we deduce that there exists an optimal quantizer that is LLR-
based.

Lemma5.7 stated below guarantees quasiconcavity for the case of binary quantizers.
To state the result, etF : [0, 1]2 → R be given by

F (a0, a1) =
c0

D(a0, a1) + d0

+
c1

D(a1, a0) + d1

. (5.26)

Lemma 5.7. For any non-negative constantsc0, c1, d0, d1, the functionF defined in(5.26)
is quasiconcave.

We provide a proof of this result in the Appendix. An immediate consequence of
Lemma5.7 that LLR-based quantizers exists for the class of randomized quantizers with
binary outputs. It turns out that the same statement can also be proved for deterministic
quantizers with arbitrary output alphabets:

Theorem 5.8.Restricting to the class of (blockwise) stationary and deterministic decision
rules, then there exists an asymptotically optimal quantizerφ that is a likelihood ratio
threshold rule.

We present the full proof of this theorem in the Appendix5.E. The proof exploits both
Lemma5.6and Lemma5.7.

5.6 Discussions

In this chapter, we have considered the problem of sequential decentralized detection. More
specifically, focusing on the case of quantization rules with neither memory nor feedback,
we have analyzed the (sub)-optimality of stationary quantizer designs. For quantizers with
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neither local memory nor feedback (Case A in the taxonomy of Veeravalli et al.[Veeravalli
et al., 1993]), we have established that stationary designs are not optimal in general. More-
over, we have shown that in the asymptotic setting (i.e., when the cost per sample goes to
zero), there is a class of problems for which there exists a range of prior probabilities over
which stationary strategies are suboptimal.

There are a number of open questions raised by the analysis in this chapter. First,
our analysis has shown only that the best stationary rule from finite sets of deterministic
quantizers need not be optimal. Is there a corresponding example with an infinite number of
deterministic stationary quantizer designs for which none is optimal? Second, Theorem5.8
establishes the optimality of likelihood ratio rules for randomized decision rules based
on binary outputs. Is the sequential cost coefficientGφ also a quasiconcave function for
quantizers other than binary ones? Such quasiconcavity would establish the validity of
Theorem5.8for the general class of randomized quantizers.
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Appendix 5.A Dynamic-programming
characterization

In this appendix, we describe how the optimal solution of the sequential decision problem
can be characterized recursively using dynamic programming (DP) arguments[Arrow et
al., 1949; Wald and Wolfowitz, 1948]. We assume thatX1, X2, . . . are independent but not
identically distributed conditioned onH. We use subscriptn in f 0

n(x) andf 1
n(x) to denote

the probability mass (or density) function conditioned onH = 0 andH = 1, respectively.
It has been shown that the sufficient statistic for the DP analysis is the posterior probability
pn = P (H = 1|X1, . . . , Xn), which can be updated as by:

p0 = π1; pn+1 =
pnf

1
n+1(Xn+1)

pnf 1
n+1(Xn+1) + (1− pn)f 0

n+1(Xn+1)
.

Finite horizon: First, let us restrict the stopping timeN to a finite interval[0, T ] for some
T . At each time stepn, defineJT

n (pn) to be the minimum expected cost-to-go. Atn = T ,
it is easily seen that

JT
T (pT ) = g(pT ),

whereg(p) := min{p, 1 − p}. In addition, the optimal decision functionγ at time stepT ,
which is a function ofpT , has the following form:γT (pT ) = 1 if p ≥ 1/2 and 0 otherwise.

For0 ≤ n ≤ T − 1, a standard DP argument gives the following backward recursion:

JT
n (pn) = min{g(pn), c+ AT

n (pn)},

where

AT
n (pn) = E{JT

n+1(pn+1)|X1, . . . , Xn} =
∑
xn+1

JT
n+1(pn+1)(pnf

1
n+1(xn+1)+(1−pn)f 0

n+1(xn+1)).

The decision whether to stop depends onpn: If g(pn) ≤ c+AT
n (pn), there is no additional

benefit of making one more observation, thus we stop. The final decisionγ(pn) takes value
1 if pn ≥ 1/2 and0 otherwise. The overall optimal cost function for the sequential test just
described isJT

0 .
It is known that the functionsJT

n andAT
n are concave and continuous inp that take

value 0 whenp = 0 andp = 1 [Arrow et al., 1949]. Furthermore, the optimal region for
which we decideĤ = 1 is a convex set that containspn = 1, and the optimal region for
which we decideĤ = 0 is a convex set that containspn = 0. Hence, we stop as soon as
eitherpn ≤ p+

n or pn ≥ p−n for some0 < p+
n < p−n . This corresponds to a likelihood ratio
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test: For some thresholdan < 0 < bn, let:

N = inf{n ≥ 1 |Ln :=
n∑

i=1

log
f 1

i (Xi)

f 0
i (Xi)

≤ an or Ln ≥ bn}. (5.27)

Setγ(LN) = 1 if Ln ≥ bn and 0 otherwise.

Infinite horizon: The original problem is solved by relaxing the restriction that the stop-
ping time is bounded by a constantT . LettingT → ∞, for eachn, the optimal expected
cost-to-goJT

n (pn) decreases and tends to a limit denoted byJ(pn) := limT→∞ Jn(pn).
Note that sinceX1, X2, . . . are i.i.d. conditionally on a hypothesisH, the two functions

JT
n (p) andJT+1

n+1 (p) are equivalent. As a result, by letttingT →∞, Jn(p) independent ofn
and can be denoted asJ(p). A similar time-shift argument also yields that the cost function
limT→∞AT

n (p) is independent ofn. We denote this limit byA(p). It is then easily seen
that the optimal stopping timeN is a likelihood ratio test where the thresholdsan andbn
are independent ofn. We usea to denote the former andb the latter. The functionsJ(p)
andA(p) are related by the following Bellman equation[Bertsekas, 1995a]:

J(p) = min{g(p), c+ A(p)} for all p ∈ [0, 1]. (5.28)

The cost of the optimal sequential test of the problem isJ(π1).

Appendix 5.B Proof of Lemma 5.5

By renormalizing, we can assume w.l.o.g. thata1 + b1 + c1 = a0 + b0 + c0 = 1. Also
w.l.o.g, assume thatb1 ≥ b0. Thus,c1 > c0 anda1 < a0. Replacingc1 = 1 − a1 − b1 and
c0 = 1− a0− b0, the inequalityc1/c0 > b1/b0 is equivalent toa1 < a0b1/b0− (b1− b0)/b0.

We fix values ofb, and consider varyinga ∈ A, whereA denotes the domain for(a0, a1)
governed by the following equality and inequality constraints:0 < a1 < 1− b1; 0 < a0 <
1− b0; a1 < a0 and

a1 < a0b1/b0 − (b1 − b0)/b0. (5.29)

Note that the third constraint is redundant due to the other three constraints. In particular,
constraint (5.29) corresponds to a line passing through((b1− b0)/b1, 0) and(1− b0, 1− b1)
in the(a0, a1) coordinates. As a result,A is the interior of the triangle defined by this line
and two other lines given bya1 = 0 anda0 = 1− b0 (see Figure5.B).

It is straightforward to check that both̃D0(a, 1− a) andD̃1(a, 1− a) are convex func-
tions with respect to(a0, a1). In addition, the derivatives with respect toa1 are a1−a0

a1(1−a1)
< 0

and log a1(1−a0)
a0(1−a1)

< 0, respectively. Hence, both functions can be (strictly) bounded from
below by increasinga1 while keepinga0 unchanged, i.e., by replacinga1 by a′1 so that
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a0

a1

1 − b0

1 − b1

(b1 − b0)/b1

A

Figure 5.1: Illustration of the domainA.

(a0, a
′
1) lies on the line given by (5.29), which is equivalent to the constraintc1/c0 = b1/b0.

Let c′1 = 1− b1 − a′1, thenc′1/c0 = b1/b0.
We have

D̃0(a, b+ c)
(a)
> a′1 log

a′1
a0

+ (b1 + c′1) log
b1 + c′1
b0 + c0

(5.30a)

(b)
= a′1 log

a′1
a0

+ c′1 log
c′1
c0

+ b1 log
b1
b0

(5.30b)

(c)

≥ (a′1 + c′1) log
a′1 + c′1
a0 + c0

+ b1 log
b1
b0

(5.30c)

= D̃0(a+ c, b), (5.30d)

where inequality (c) follows from an application of the log-sum inequality[Cover and
Thomas, 1991]. A similar conclusion holds for̃D1(a, b+ c) as well.

Appendix 5.C Proof of Lemma 5.6

Suppose the opposite is true, that there exist two setsS1, S2 with positiveP0-measure such
thatφ(X) = u2 for anyX ∈ S1 ∪ S2, and

f 1(S1)

f 0(S1)
<
f 1(u1)

f 0(u1)
<
f 1(S2)

f 0(S2)
. (5.31)

By reassigningS1 or S2 to the quantileu1, we are guaranteed to have a new quantizerφ′

such thatµ0
φ′ > µ0

φ∗ andµ1
φ′ > µ1

φ∗, thanks to Lemma5.5. As a result,φ′ has a smaller
sequential costJ∗φ′, which is a contradiction.
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Appendix 5.D Proof of Lemma 5.7

The proof of this lemma is conceptually straightforward, but the algebra is involved. To
simplify the notation, we replacea0 byx, a1 byy, the functionD(a0, a1) byf(x, y), and the
functionD(a1, a0) by g(x, y). Finally, we assume thatd0 = d1 = 0; the proof will reveal
that this case is sufficient to establish the more general result with arbitrary non-negative
scalarsd0 andd1.

We havef(x, y) = x log(x/y) + (1− x) log(1− x/1− y) andg(x, y) = y log(y/x) +
(1− y) log(1− y/1−x). Note that bothf andg are convex functions and are non-negative
in their domains, and moreover that we haveF (x, y) = c0/f(x, y) + c1/g(x, y). In order
to establish the quasiconcavity ofF , it suffices to show that for any(x, y) in the domain of
F , whenever vectorh = [h0 h1] ∈ R2 such thathT∇F (x, y) = 0, there holds

hT∇2F (x, y) h ≤ 0. (5.32)

Here we adopt the standard notation of∇F for the gradient vector ofF , and∇2F for its
Hessian matrix. We also useFx to denote the partial derivative with respect to variablex,
Fxy to denote the partial derivative with respect tox andy, and so on.

We have∇F = − c0∇f
f2 − c1∇g

g2 . Thus, it suffices to prove relation (5.32) for vectors of
the form

h =
[(
− c0fy

f2 − c1gy

g2

) (
c0fx

f2 + c1gx

g2

)]T

.

It is convenient to writeh = c0v0 + c1v1, wherev0 = [−fy/f
2 fx/f

2]T and v1 =
[−gy/g

2 gx/g
2]T .

The Hessian matrix∇2F can be written as∇2F = c0H0 + c0H1, where

H0 = − 1

f 3

[
fxxf − 2f 2

x fxyf − 2fxfy

fxyf − 2fxfy fyyf − 2f 2
y

]
,

and

H1 = − 1

g3

[
gxxg − 2g2

x gxyg − 2gxgy

gxyg − 2gxgy gyyg − 2g2
y

]
.

Now observe that

hT∇2Fh = (c0v0 + c1v1)
T (c0H0 + c1H1)(c0v0 + c1v1),

which can be simplified to

hT∇2Fh = c30v
T
0 H0v0+c

3
1v

T
1 H1v1+c

2
0c1(2v

T
0 H0v1+v

T
0 H1v0)+c0c

2
1(2v

T
0 H1v1+v

T
1 H0v1).

This function is a polynomial inc0 andc1, which are restricted to be non-negative scalars.
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Therefore, it suffices to prove that all the coefficients of this polynomial (with respect toc0
andc1) are non-positive. In particular, we shall show that

(i) vT
0 H0v0 ≤ 0, and

(ii) 2vT
0 H0v1 + vT

0 H1v0 ≤ 0.

The non-positivity of the other two coefficients follows from entirely analogous arguments.
First, some straightforward algebra shows that inequality (i) is equivalent to the relation

fxxf
2
y + fyyf

2
x ≥ 2fxfyfxy.

But note thatf is a convex function, sofxxfyy ≥ f 2
xy. Hence, we have

fxxf
2
y + fyyf

2
x

(a)

≥ 2
√
fxxfyyfxfy

(b)

≥ 2fxfyfxy,

thereby proving (i). (In this argument, inequality (a) follows from the fact thata2 + b2 ≥
2ab, whereas inequality (b) follows from the convexity off .)

Regarding (ii), some further algebra reduces it to the inequality

G1 +G2 −G3 ≥ 0, (5.33)

where

G1 = 2(fygyfxx + fxgxfyy − (fygx + fxgy)fxy),

G2 = f 2
y gxx + f 2

xgyy − 2fxfygxy,

G3 =
2

g
(fygx − fxgy)

2.

At this point in the proof, we need to exploit specific information about the functionsf
andg, which are defined in terms of KL divergences. To simplify notation, we letu = x/y
andv = (1− x)/(1− y). Computing derivatives, we have

fx(x, y) = log(x/y)− log((1− x)/(1− y)) = log(u/v),

fy(x, y) = (1− x)/(1− y)− x/y = v − u,

gx(x, y) = (1− y)/(1− x)− y/x = 1/v − 1/u,

gy(x, y) = log(y/x)− log((1− y)/(1− x)) = log(v/u),

∇2f(x, y) =

[ 1
x(1−x)

− 1
y(1−y)

− 1
x(1−x)

1−x
(1−y)2

+ x
y2

]
, and∇2g(x, y) =

[ 1−y
(1−x)2

+ y
x2 − 1

x(1−x)

− 1
x(1−x)

1
y(1−y)

]
.
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Noting thatfx = −gy; gxy = −fxx; fxy = −gyy, we see that equation (5.33) is equivalent
to

2(fxgxfyy + fygxgyy)− f 2
xgyy + f 2

y gxx ≥ 2

g
(fygx − fxgy)

2. (5.34)

To simplify the algebra further, we shall make use of the inequality(log t2)2 ≤ (t− 1/t)2,
which is valid for anyt. This implies that

fygx = (v − u)(1/v − 1/u) ≤ fxgy = −(log(u/v))2 = −f 2
x = −g2

y ≤ 0.

Thus,−f 2
xgyy ≥ fygxgyy, and 2

g
(fygx − fxgy)

2 ≤ 2
g
fygx(fygx − fxgy). As a result, (5.34)

would follow if we can show that

2(fxgxfyy + fygxgyy) + fygxgyy + f 2
y gxx ≥

2

g
fygx(fygx − fxgy).

For allx 6= y, we may divide both sides by−fy(x, y)gx(x, y) > 0. Consequently, it suffices
to show that:

−2fxfyy/fy − fygxx/gx − 3gyy ≥
2

g
(fxgy − gxfy),

or, equivalently,

2 log(u/v)

(
v

u− 1
+

u

1− v

)
+

(
u

1− x
+
v

x

)
− 3

y(1− y)
≥ 2

g

(
(u− v)2

uv
− (log

u

v
)2

)
,

or, equivalently,

2 log(u/v)
(u− v)(u+ v − 1)

(u− 1)(1− v)
+

(u− v)2(u+ v − 4uv)

uv(u− 1)(1− v)
≥ 2

g

(
(u− v)2

uv
− (log

u

v
)2

)
.

(5.35)
Due to the symmetry, it suffices to prove (5.35) for x < y. In particular, we shall use the
following inequality for logarithm mean[Mitrinovi ć et al., 1993], which holds foru 6= v:

3

2
√
uv + (u+ v)/2

<
log u− log v

u− v
<

1

(uv(u+ v)/2)1/3
.

We shall replacelog(u/v)
u−v

in (5.35) by appropriate upper and lower bounds. In addition, we
shall also boundg(x, y) from below, using the following argument. Whenx < y, we have
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u < 1 < v, and

g(x, y) = y log
y

x
+ (1− y) log

1− y

1− x

>
3y(y − x)

2
√
xy + (x+ y)/2

+
(1− y)(x− y)

[(1− x)(1− y)(1− (x+ y)/2)]1/3

=
3(1− v)(1− u)

(u− v)(2
√
u+ u+1

2
)

+
(u− 1)(1− v)

(u− v)(v(v + 1)/2)1/3
> 0.

Let us denote this lower bound byq(u, v).
Having got rid of the logarithm terms, (5.35) will hold if we can prove the following:

6(u− v)2(u+ v − 1)

(2
√
uv + (u+ v)/2)(u− 1)(1− v)

+
(u− v)2(u+ v − 4uv)

uv(u− 1)(1− v)
≥

2

q(u, v)

(
(u− v)2

uv
− 9(u− v)2

(2
√
uv + (u+ v)/2)2

)
, (5.36)

or equivalently,(
6(u + v − 1)

(2
√

uv + (u + v)/2)
+

(u + v − 4uv)
uv

)(
3

(v − u)(2
√

u + u+1
2 )

− 1
(v − u)(v(v + 1)/2)1/3

)
≥ 2

(
1
uv

− 9
(2
√

uv + (u + v)/2)2

)
, (5.37)

which is equivalent to

(u+ v − 2
√
uv)((u+ v)/2 + 3

√
uv + 4uv)

(2
√
uv + (u+ v)/2)uv

3(v(v + 1)/2)1/3 − (2
√
u+ (u+ 1)/2)

(v − u)(2
√
u+ (u+ 1)/2)(v(v + 1)/2)1/3

≥ (u+ v − 2
√
uv)((u+ v)/2 + 5

√
uv)

uv(2
√
uv + (u+ v)/2)2

(5.38)

and also equivalent to

((u+ v)/2 + 2
√
uv)((u+ v)/2 + 3

√
uv+ 4uv)[3(v(v+ 1)/2)1/3− (2

√
u+ (u+ 1)/2)]

≥ (2
√
u+ (u+ 1)/2)(v(v + 1)/2)1/3((u+ v)/2 + 5

√
uv)(v − u) (5.39)

It can be checked by tedious but straightforward calculus that inequality (5.39) holds
for anyu ≤ 1 ≤ v, and equality holds whenu = 1 = v, i.e.,x = y.
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Appendix 5.E Proof of Theorem 5.8

Suppose thatφ is not a likelihood ratio rule. Then there exist positiveP0-probability disjoint
setsS1, S2, S3 such that for anyX1 ∈ S1, X2 ∈ S2, X3 ∈ S3,

φ(X1) = φ(X3) = u1 (5.40a)

φ(X2) = u2 6= u1 (5.40b)
f 1(X1)

f 0(X1)
<
f 1(X2)

f 0(X2)
<
f 1(X3)

f 0(X3)
. (5.40c)

Define the probability of the quantiles as:

f 0(u1) := P0(φ(X) = u1), and f 0(u2) := P0(φ(X) = u2),

f 1(u1) := P1(φ(X) = u1), and f 1(u2) := P1(φ(X) = u2).

Similarly, for the setsS1, S2 andS3, we define

a0 = f 0(S1), b0 = f 0(S2) and c0 = f 0(S3),

a1 = f 1(S1), b1 = f 1(S2), and c1 = f 1(S3).

Finally, letp0, p1, q0 andq1 denote the probability measures of the “residuals”:

p0 = f 0(u2)− b0, p1 = f 1(u2)− b1,

q0 = f 0(u1)− a0 − c0, q1 = f 1(u1)− a1 − c1.

Note that we havea1

a0
< b1

b0
< c1

c0
. In addition, the setsS1 andS3 were chosen so that

a1

a0
≤ q1

q0
≤ c1

c0
. From Lemma5.6, there holdsp1+b1

p0+b0
= f1(u2)

f0(u2)
/∈
(

a1

a0
, c1

c0

)
. We may assume

without loss of generality thatp1+b1
p0+b0

≤ a1

a0
. Then, p1+b1

p0+b0
< b1

b0
, so p1

p0
< p1+b1

p0+b0
. Overall, we

are guaranteed to have the ordering

p1

p0

<
p1 + b1
p0 + b0

≤ a1

a0

<
b1
b0
<
c1
c0
. (5.41)

Our strategy will be to modify the quantizerφ only for thoseX for whichφ(X) takes
the valuesu1 or u2, such that the resulting quantizer is defined by a LLR-based threshold,
and has a smaller (or equal) value of the corresponding costJ∗φ. For simplicity in notation,
we useA to denote the set with measures underP0 andP1 equal toa0 anda1; the sets
B, C, P andQ are defined in an analogous manner. We begin by observing that we have
either a1

a0
≤ q1+a1

q0+a0
< b1

b0
or b1

b0
< q1+c1

q0+c0
≤ c1

c0
. Thus, in our subsequent manipulation of sets,

we always bundleQ with eitherA or C accordingly without changing the ordering of the
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probability ratios. Without loss of generality, then, we may disregard the corresponding
residual set corresponding toQ in the analysis to follow.

In the remainder of the proof, we shall show that either one of the following two modi-
fications of the quantizerφ will improve (decrease) the sequential costJ∗φ:

(i) AssignA,B andC to the same quantization levelu1, and leaveP to the levelu2, or

(ii) AssignP,A andB to the same levelu2, and leavec to the levelu1.

It is clear that this modified quantizer design respects the likelihood ratio rule for the quan-
tization indicesu1 andu2. By repeated application of this modification for every such pair,
we are guaranteed to arrive at a likelihood ratio quantizer that is optimal, thereby complet-
ing the proof.

Leta′0, b
′
0, c

′
0, p

′
0 be normalized versions ofa0, b0, c0, p0, respectively (i.e.,a′0 = a0/(p0+

a0 + b0 + c0), and so on). Similarly, leta′1, b
′
1, c

′
1, p

′
1 be normalized versions ofa1, b1, c1, p1,

respectively. With this notation, we have the relations

µ0
φ =

∑
u 6=u1,u2

f 0(u) log
f 0(u)

f 1(u)
+ (p0 + b0) log

p0 + b0
p1 + b1

+ (a0 + c0) log
a0 + c0
a1 + c1

= A0 + (f 0(u1) + f 0(u2))

(
(p′0 + b′0) log

p′0 + b′0
p′1 + b′1

+ (a′0 + c′0) log
a′0 + c′0
a′1 + c′1

)
= A0 + (f 0(u1) + f 0(u2))D̃

0(p′ + b′, a′ + c′),

µ1
φ =

∑
u 6=u1,u2

f 1(u) log
f 1(u)

f 0(u)
+ (p1 + b1) log

p1 + b1
p0 + b0

+ (a1 + c1) log
a1 + c1
a0 + c0

= A1 + (f 1(u1) + f 1(u2))D̃
1(p′ + b′, a′ + c′),

where we define

A0 :=
∑

u 6=u1,u2

f 0(u) log
f 0(u)

f 1(u)
+ (f 0(u1) + f 0(u2)) log

f 0(u1) + f 0(u2)

f 1(u1) + f 1(u2)
≥ 0,

A1 :=
∑

u 6=u1,u2

f 1(u) log
f 1(u)

f 0(u)
+ (f 1(u1) + f 1(u2)) log

f 1(u1) + f 1(u2)

f 0(u1) + f 0(u2)
≥ 0

due to the non-negativity of the KL divergences.
Note that from (5.41) we have

p′1
p′0
<
p′1 + b′1
p′0 + b′0

≤ a′1
a′0

<
b′1
b′0
<
c′1
c′0
,
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in addition to the normalization constraints thatp′0 + a′0 + b′0 + c′0 = p′1 + a′1 + b′1 + c′1 = 1.
It follows that p′1+b′1

p′0+b′0
<

p′1+a′1+b′1+c′1
p′0+a′0+b′0+c′0

= 1.
Let us consider varying the values ofa′1, b

′
1, while fixing all other variables and ensuring

that all the above constraints hold. Then,a′1 + b′1 is constant, and both̃D0(p′ + b′, a′ + c′)
andD̃1(p′ + b′, a′ + c′) increase asb1 decreases anda1 increases. In other words, if we
definea′′0 = a′0, b

′′
0 = b′0 anda′′1 andb′′1 such that

a′′1
a′0

=
b′′1
b′0

=
1− p′1 − c′1
1− p′0 − c′0

,

then we have

D̃0(p′+b′, a′+c′) ≤ D̃0(p′+b′′, a′′+c′) andD̃1(p′+b′, a′+c′) ≤ D̃1(p′+b′′, a′′+c′). (5.42)

Now note that vector(b′′0, b
′′
1) in R2 is a convex combination of(0, 0) and(a′′0 + b′′0, a

′′
1 +

b′′1). It follows that(p′0 + b′′0, p
′
1 + b′′1) is a convex combination of(p′0, p

′
1) and(p′0 + a′′0 +

b′′0, p
′
1 + a′′1 + b′′1) = (p′0 + a′0 + b′0, p

′
1 + a′1 + b′1).

By (5.42) we have:

Gφ =
π0

µ0
φ

+
π1

µ1
φ

=
π0

A0 + (f0(u1) + f0(u2))D̃0(p′ + b′, a′ + c′)
+

π1

A1 + (f1(u1) + f1(u2))D̃1(p′ + b′, a′ + c′)

≥ π0

A0 + (f0(u1) + f0(u2))D̃0(p′ + b′′, a′′ + c′)
+

π1

A1 + (f1(u1) + f1(u2))D̃1(p′ + b′′, a′′ + c′)

=
π0

A0 + (f0(u1) + f0(u2))D(p′
0 + b′′0 , p′

1 + b′′1)
+

π1

A1 + (f1(u1) + f1(u2))D(p′
1 + b′′1 , p′

0 + b′′0)
.

Now, by the quasiconcavity result in Lemma5.7,

Gφ ≥ min

{
π0

A0 + (f 0(u1) + f 0(u2))D(p′0, p
′
1)

+
π1

A1 + (f 1(u1) + f 1(u2))D(p′1, p
′
0)
,

π0

A0 + (f 0(u1) + f 0(u2))D(p′0 + a′0 + b′0, p
′
1 + a′1 + b′1)

+

π1

A1 + (f 1(u1) + f 1(u2))D(p′1 + a′1 + b′1, p
′
0 + a′0 + b′0)

}
.

But the two arguments of the minimum in the final equation are the sequential cost coeffi-
cient corresponding to the two possible modifications ofφ. Hence, the proof is complete.
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Chapter 6

Estimation of divergence
functionals and the likelihood ratio

We present a novel M-estimation method for the divergence functionals and the density ra-
tios of two probability distributions. Our method is based on a non-asymptotic variational
characterization off -divergences, which turns the problem of estimating divergences to a
convex risk optimization. We present an analysis of consistency and convergence for our
estimator. Given conditions only on the ratios of densities, we show that our estimators can
achieve optimal minimax rates for the likelihood ratio in some regime. Finally, we present
an efficient optimization algorithm for our estimator and demonstrate its convergence be-
havior and practical viability by simulations.1

6.1 Introduction

Given empirical samples from two (multivariate) probability distributionsP and Q, we
are interested in estimating a divergence functional betweenP and Q. We consider in
particular Kullback-Leibler divergence, and then all divergences in the class of Ali-Silvey
distance, also known asf -divergences[Ali and Silvey, 1966; Csiszár, 1967]. This family
of divergence, which shall be defined formally in the sequel, is of the formDφ(P,Q) =∫
φ(dQ/dP)dP, whereφ is a convex function of the likelihood ratiodQ/dP.

The divergences have a fundamental role as an objective to optimize in various data
analysis and learning tasks. Divergences are used as a measure to distinguish between
two hypotheses. In experiment design for binary hypothesis testing and classification ap-
plications, the experiments are designed so that the divergence between two underlying
hypothesis distributions are maximized. Problems of this type can be seen in signal selec-
tion [Kailath, 1967], decentralized detection[Nguyenet al., 2005c] (see Chapter4). An

1Part of this chapter has been published in[Nguyenet al., 2007].
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important quantity in information theory, the Shanon mutual information, can be viewed
as a KL divergence. Mutual information is often used as a measure of independence to be
minimized such as in the problem of independent component analysis[Hyvarinenet al.,
2001]. If the divergences are to be used as objective functional in such tasks, one has to be
able to estimate them efficiently from empirical data.

There are two ways in which divergences can be characterized. Taking the KL diver-
gence in particular, in the Neyman-Pearson setting of a binary hypothesis testing problem,
the KL divergence emerges as the correct asympotic rate of the probability error, a result
known as Stein’s lemma. On the other hand, a non-asymptotic view of KL divergence
emerges through Fano’s lemma, which provide a lower bound for the error probability for
decoding/hypothesis test in terms of KL divergence (cf.[Cover and Thomas, 1991]). Note
that there are a multitude of results in the same vein for other divergences, due to statisti-
cians such as Craḿer, Chernoff, Le Cam, and others[van der Vaart, 1998].

In this chapter, we shall present an estimation method that is motivated by a non-
asymptotic characterization off -divergence that was explicated in Theorem4.8. Roughly
speaking, this theorem states that that there is a correspondence between the family off -
divergences and a family of losses such that the minimum risk is equal to the negative of
the divergence. In other words, any negativef -divergence can serve as a lower bound of
a risk minimization problem. While this result deals only with binary hypotheses (as op-
posed to Fano’s lemma) it goes significantly further than Fano’s lemma in that it covers a
whole class of losses and divergences. This correspondence provides what we shall call
a variational characterizationof divergence: One can write a divergenceDφ(P,Q) as the
maximum of an Bayes decision problem involving two hypothesesP andQ. This char-
acterization is stated in Lemma6.1. As a result, one can estimateDφ(P,Q) by solving
the Bayes decision (maximization) problem. Not surprisingly, we show how the problem
of estimatingf -divergence is intrinsically linked to that of estimating the likelihood ratio
g0 = dP/dQ. As a result we obtain anM estimator for the likelihood ratio, from which
one can obtain an estimation of the divergences by a plug-in procedure.

Our contributions are three-fold:

• We propose a novelM -estimator for the likelihood ratio and the family off diver-
gences based on a variational characterization off -divergence as explained above.
Our estimation procedure is inherently nonparametric. We make no strong assump-
tion on the form of the densities forP andQ.

• We provide a consistency and convergence analysis for our estimators. For the anal-
ysis, we make assumptions on the boundedness of thedensity ratio, which can be
relaxed in some cases. The maximization procedure is cast over a whole function
classG of density ratio, thus our tool is based on results from the theory of empirical
processes. Our method of proof is based on the analysis ofM -estimation for non-
parametric density estimation[van de Geer, 1999; van der Vaart and Wellner, 1996].
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The key issue essentially hinges on the modulus of continuity of the suprema of two
empirical processes (defined onP andQ measures) with respect to a metric defined
on the classG. This metric turns out to be a surrogate lower bound of a Bregman
divergence defined on a pair of density ratios. Our choice of metrics include the
Hellinger distance andL2 norm.

• We provide an efficient algorithm for our estimation procedure. In particular, we
approximateG by a reproducing kernel Hilbert space given a positive definite kernel
functionK(u, v) [Saitoh, 1988]. We control the size of the function classG by
introducing a penalty term for the RKHS norm ofg ∈ G. The estimation problem
is converted into a convex optimization problem, which is then turned into a dual
form involving only the Gram matrixK(ui, vj), whereui and vj are drawn from
eitherP or Q. This kernel-based method has been widely used in statistical learning
tasks[Scḧolkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004]. Finally, we
demonstrate our estimator in a large number of simulation runs on a number of pairs
of probability distributions.

Several interesting properties of this estimator is worth highlighting.

• First, in terms of convergence rates. When the likehood ratiog0 lies in a function
classG of smoothnessα with α > d/2, whered is the number of dimensions of
the data, our estimation of the likelihood ratio achieves the optimal minimax rate
n−α/(2α+d) according to the Hellinger metric, and divergence estimator achieves the
same rate. It remains an open question what is the optimal minimax rate for the
divergence estimation.

• An obvious alternative approach to our problem would be to separately estimate the
densities forP andQ and then use an appropriate plug-in estimator for the diver-
gences. As we shall see in our analysis, estimating directly the density ratio has sev-
eral distinct advantages. Firstly, from computational viewpoint, it is more efficient to
perform one estimation procedure instead of two. Comparing to an M-estimator for
density estimation (e.g,[Silverman, 1982]), there is no need to enforce the constraint
that the estimated function is a valid density. Secondly, from a statistical viewpoint,
we achieve the same estimation efficiency without making individual assumptions on
each density. Assumptions are made only on the density ratios.

• Finally, if we use small function classesG that might not include the true likelihood
ratio, our estimator of the divergence has the property of being a lower bound of the
true divergence. This might provide additional useful information for a task in hand.

Related work. The variational representation of divergences has been derived inde-
pendently and exploited by several authors[Broniatowski and Keziou, 2004; Keziou, 2003;
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Nguyenet al., 2005c]. Broniatowski and Keziou[Broniatowski and Keziou, 2004] stud-
ied testing and estimation problems based on dual representations off -divergences, but
working in a parametric setting as opposed to the nonparametric framework considered
here. Nguyen et al.[Nguyenet al., 2005c] established a one-to-one correspondence be-
tween the family off -divergences and the family of surrogate loss functions[Bartlett et
al., 2006], through which the (optimum) “surrogate risk” is equal to the negative of an as-
sociatedf -divergence. Another link is to the problem of estimating integral functionals of
a single density, with the Shannon entropy being a well-known example, which has been
studied extensively dating back to early work[Ibragimov and Khasminskii, 1978; Levit,
1978] as well as the more recent work[Bickel and Ritov, 1988; Birgé and Massart, 1995;
Laurent, 1996]. See also[Gyorfi and van der Meulen, 1987; Joe, 1989; Hall and Morton,
1993] for the problem of (Shannon) entropy functional estimation. In another branch of
related work, Wang et al.[Wanget al., 2005] proposed an algorithm for estimating the KL
divergence for continuous distributions, which exploits histogram-based estimation of the
likelihood ratio by building data-dependent partitions of equivalent (empirical)Q-measure.
The estimator was empirically shown to outperform direct plug-in methods, but no theoret-
ical results on its convergence rate were provided.

The chapter is organized as follows. In Sec.6.2 we describe the variational charac-
terization off -divergence in general and KL divergence in particular, followed by an M-
estimator for the KL divergence and the likelihood ratio. Sec.6.3and Sec.6.4are devoted
to the analysis of consistency and convergence rates of our estimators. In Sec.6.5 we
describe our estimation method and the analysis in a more general light, encompassing
virtually all f -divergences. We also consider a general estimation framework based on the
delta method, assuming theφ is a differentiable function. Sec.6.7describe the optimization
in detail. In Sec.6.9we present our simulation results.

6.2 M-estimators for KL divergence and the density
ratio

6.2.1 Variational characterization of f -divergence

Let X1, . . . , Xn ben i.i.d. random variables according to a distributionP, andY1, . . . , Yn

ben random variables according to a distributionQ. We assume thatP is absolutely con-
tinuous with respect toQ, and both are absolutely continuous with respect to Lebesgue
measureµ with densitiesp0 andq0, respectively, on some compact domainX ⊂ Rd. The
Kullback-Leibler divergence betweenP andQ is defined as:

DK(P,Q) =

∫
p0 log

p0

q0
dµ.
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The KL divergence is a special case of a broader class of divergences known as Ali-
Silvey distance, orf -divergence[Csiszár, 1967; Ali and Silvey, 1966]:

Dφ(P,Q) =

∫
p0φ(q0/p0) dµ,

whereφ : R → R is a convex function. Different choices ofφ result in many divergences
that play important roles in information theory and statistics, including the variational dis-
tance, Hellinger distance, KL divergence and so on (see, e.g.,[Topsoe, 2000]).

Sinceφ is a convex function, by Legendre-Fenchel convex duality[Rockafellar, 1970]
we can write:

φ(u) = sup
v∈R

uv − φ∗(v),

whereφ∗ is the convex conjugate ofφ. As a result,

Dφ(P,Q) =

∫
p0 sup

f∈R
(fq0/p0 − φ∗(f)) dµ

= sup
f

∫
fq0 − φ∗(f)p0 dµ

= sup
f

∫
f dQ− φ∗(f) dP,

where the suppremum is taken over all measurable functionf : X → R, and
∫
f dP

denotes the expectation off under distributionP. It is simple to see that equality the supre-
mum is attained at functionf such thatq0/p0 ∈ ∂φ∗(f) whereq0, p0 andf are evaluated at
anyx ∈ X . By convex duality, this is true iff ∈ ∂φ(q0/p0) for anyx ∈ X . Thus, we have
proved the following lemma:

Lemma 6.1. LetF be any function classX → R, there holds:

Dφ(P,Q) ≥ sup
f∈F

∫
f dQ− φ∗(f) dP. (6.1)

Furthermore, equality holds wheneverF ∩ ∂φ(q0/p0) 6= ∅.
Remark. There is an interesting connection between Lemma6.1 and Fano’s lower

bound in coding theory. Indeed, consider a Bayesian hypothesis testing problem between
two distributionsP andQ, which have equal priors (1/2). Let−f be the loss for incorrectly
rejectingQ, andφ∗(f) the loss for incorrectly rejectingP. Then−Dφ(P,Q) is nothing but
the lower bound of the risk:

inf
f

∫
(−f) dQ + φ∗(f) dP = −Dφ(P,Q).
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In other words, for eachf divergenceDφ(P,Q) there exists a binary classification problem
with appropriate loss functions whose optimal risk is characterized by the divergence. For
a thorough analysis of this correspondence, see Chapter4. It can be seen that for some
(appropriately parametrized) choices off andφ so that both loss functions(−f) andφ∗(f)
correspond to the 0-1 loss function,Dφ becomes the variational distance (plus a constant).
As a result, one obtain a special case of Fano’s lemma for binary classification. This con-
nection extends to multiple hypothesis testing, but we shall not pursue further here.

6.2.2 An M-estimator of density ratio and KL divergence

Returning to the KL divergence,φ has the formφ(u) = − log(u) for u > 0 and+∞ for
u ≤ 0. The convex dual ofφ is φ∗(v) = supu uv − φ(u) = −1 − log(−v) if u < 0 and
+∞ otherwise. By Lemma6.1,

DK(P,Q) = sup
f<0

∫
f dQ−

∫
−1− log(−f) dP = sup

g>0

∫
log g dP−

∫
gdQ + 1. (6.2)

In addition, the supremum is attained atg = p0/q0. This motivates our estimator of the KL
divergence as follows: LetG be a function class ofX → R+, and

∫
dPn and

∫
dQn denote

the expectation under empirical measuresPn andQn, respectively, then our estimator has
the following form:

D̂K = sup
g∈G

∫
log g dPn −

∫
gdQn + 1. (6.3)

For the implementation, we shall assume thatG is a convex function class. The above
estimator can be posed as a convex optimization problem that can be solved efficiently (see
Section X). Suppose that the supremum is attained atĝn. Thenĝn is an M-estimator of the
density ratiog0 = p0/q0.

For the KL divergence estimation, there are two sources of error, namely, approxima-
tion errorE0(G) and estimation errorE1(G):

E0(G) = DK(P,Q)− sup
g∈G

∫
(log g dP− g dQ + 1) ≥ 0 (6.4)

E1(G) = sup
g∈G

∣∣∣∣ ∫
log g d(Pn − P) − gd(Qn −Q)

∣∣∣∣. (6.5)

From (6.2)(6.3)(6.4) and (6.5), it is simple to see that:

−E1(G)− E0(G) ≤ D̂K −DK(P,Q) ≤ E1(G).
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For the density ratio estimation,̂DK − DK(P,Q) can also be considered as a perfor-
mance measure. Note thatp0/q0 can be viewed as a density function with respect toQ
measure. A natural performance measure is the Hellinger distance:

h2
Q(g, g0) :=

1

2

∫
(g1/2 − g

1/2
0 )2 dQ. (6.6)

As we shall see, this distance measure is less strong thanD̂K −DK(P,Q), but it allows us
to obtain convergence rate guarantees with less assumption.

6.3 Consistency analysis

In this section we shall prove consistency results and obtain convergence rates of our esti-
mators. Throughout the chapter, the following assumptions are made with respect toP,Q
and the function classG.

Assumptions.(i) DK(P,Q) <∞.
(ii) G is sufficiently rich, i.e.,g0 ∈ G.

Due to (ii), E0(F) = 0. Hence, we shall focus on estimation errorE1(G) only. Note
that if (ii) does not hold, we should obtain instead a lower bound of the KL divergence.

6.3.1 Preliminary lemmas

Define the following processes:

vn(G) = sup
g∈G

∣∣∣∣ ∫
log

g

g0

d(Pn − P)−
∫

(g − g0)d(Qn −Q)

∣∣∣∣.
wn(g0) =

∣∣∣∣ ∫
log g0 d(Pn − P) − g0d(Qn −Q)

∣∣∣∣.
We have:

E1(G) ≤ vn(G) + wn(g0). (6.7)

Lemma 6.2.wn(g0)
a.s.−→ 0.

Note that in this lemma and other theorems, all almost sure convergence statement can
be understood with respect to eitherP or Q because they share the same support.

Proof. This follows immediately from the law of large numbers. We only need to check
the condition for which this law applies. Applying the following inequality due to Csiszár
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(cf. [Gyorfi and van der Meulen, 1987]):∫
p0|log(p0/q0)| ≤ DK(P,Q) + 4

√
DK(P,Q)

so thatlog g0 is P integrable. In addition,g0 is Q integrable, since
∫
g0dQ =

∫
(p0/q0)dQ =

1.

Next, we shall relatevn(G) to the Hellinger distance. This is done through an interme-
diate term which is also a (pseudo) distance betweeng0 andg:

d(g0, g) =

∫
(g − g0)dQ− log

g

g0

dP. (6.8)

Lemma 6.3. (i) d(g0, g) ≥ 2h2
Q(g, g0).

(ii) If ĝn is an estimate ofg, thend(g0, ĝn) ≤ vn(G).

Proof. (i) Note that forx > 0, 1
2
log x ≤

√
x − 1. Thus,

∫
log g

g0
dP ≤ 2

∫
(g1/2g

−1/2
0 −

1) dP. As a result,

d(g0, g) ≥
∫

(g − g0) dQ− 2

∫
(g1/2g

−1/2
0 − 1) dP

=

∫
(g − g0) dQ− 2

∫
(g1/2g

1/2
0 − g0) dQ

=

∫
(g1/2 − g

1/2
0 )2dQ.

(ii) By our estimation procedure, we have
∫
ĝndQn−

∫
log ĝndPn ≤

∫
g0dQn−

∫
log g0dPn.

It follows that

d(g0, ĝn) =

∫
(ĝn − g0)dQ−

∫
(log ĝn − log g0)dP

≤
∫

(ĝn − g0)d(Q−Qn)−
∫

(log ĝn − log g0)d(P− Pn)

≤ sup
g∈G

∫
log

g

g0

d(Pn − P)−
∫

(g − g0)d(Qn −Q).

We can prove the Hellinger consistency using less assumption. For that we shall need
the following lemma using a similar idea of using(g0 + g)/2 due to Birǵe and Massart (cf.
[van de Geer, 1999]):
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Lemma 6.4. If ĝn is an estimate ofg, then:

1

8
h2

Q(g0, ĝn) ≤ 2h2
Q(g0,

g0 + ĝn

2
) ≤ −

∫
ĝn − g0

2
d(Qn −Q) +

∫
log

ĝn + g0

2g0

d(Pn − P).

Proof. The first inequality is straigthforward. We shall focus on the second. By the defini-
tion of our estimator, we have:∫

ĝndQn −
∫

log ĝndPn ≤
∫
g0dQn −

∫
log g0dPn.

Both sides are convex functionals ofg. Use the following fact: IfF is a convex function
andF (u) ≤ F (v), thenF ((u+ v)/2) ≤ F (v). We obtain:∫

ĝn + g0

2
dQn −

∫
log

ĝn + g0

2
dPn ≤

∫
g0dQn −

∫
log g0dPn.

Rearranging,∫
ĝn − g0

2
d(Qn −Q)−

∫
log

ĝn + g0

2g0

d(Pn − P) ≤
∫

log
ĝn + g0

2g0

dP−
∫
ĝn − g0

2
dQ

= −d(g0,
g0 + ĝn

2
) ≤ −2h2

Q(g0,
g0 + ĝn

2
),

where the last inequality is an application of Lemma6.3.

6.3.2 Consistency results

Our analysis shall rely on results from empirical processes theory. We first introduce several
standard notions ofentropyof a function class (see, e.g.,[van der Vaart and Wellner, 1996]
for more detail). For eachδ > 0, a covering for function classG using metricLr(Q) is a
collection of functions which cover entireG usingLr(Q) balls of radiusδ and centering
at these functions. LetNδ(G, Lr(Q)) be the smallest cardinality of such a covering, then
Hδ(G, Lr(Q)) := logNδ(G, Lr(Q)) is called the entropy forG usingLr(Q) metric. A
related notion isentropy with bracketing. LetNB

δ (G, Lr(Q)) be the smallest value ofN for
which there exist pairs of functions{gL

j , g
U
j } such that‖gU

j −gL
j ‖Lr(Q) ≤ δ, and such that for

eachg ∈ G thre is aj such thatgL
j ≤ g ≤ gL

j . ThenHB
δ (G, Lr(Q)) := logNB

δ (G, Lr(Q))
is called the entropy with bracketing ofG. Define the envelope functions:

G0(x) = sup
g∈G

|g(x)|.
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G1(x) = sup
g∈G

| log
g(x)

g0(x)
|,

Proposition 6.5. Assume the envelope conditions∫
G0dQ < ∞ (6.9a)∫
G1dP < ∞ (6.9b)

and suppose that for allδ > 0 there holds:

1

n
Hδ(G − g0, L1(Qn))

P−→ Q0, (6.10a)

1

n
Hδ(log G/g0, L1(Pn))

P−→ P0. (6.10b)

Then,vn(G)
a.s.−→ 0. As a result,E1(G)

a.s.−→ 0, andhQ(g0, ĝn)
a.s.−→ 0.

Proof. Thatvn(G)
a.s.−→ 0 is a direct consequence of Thm6.15(see the Appendix). By (6.7)

and Lemma6.2, E1(G)
a.s.−→ 0. By Lemma6.3, this would also imply thathQ(ĝn, g0)

a.s.−→ 0,
i.e., our estimation of the ratiop0/g0 is consistent in Hellinger sense.

The envelope condition (6.9a) is satisfied ifG is uniformly bounded from above. The
envelope condition (6.9b) is much more severe. Due to logarithm, this can be satisfied if all
functions inG is bounded frombothabove and below. To ensure the Hellinger consistency
of the estimation forg0, however, we can essentially drop the envelope condition (6.9b) as
well as the entropy condition (6.10b), which is replaced by a milder entropy condition.

Proposition 6.6. Assume that(6.9a) and (6.10a) holds, and

1

n
Hδ(log

G + g0

2g0

, L1(Pn))
P−→ P0. (6.11)

thenhQ(g0, ĝn)
a.s.−→ 0.

Proof. DefineG2(x) = supg∈G | log g(x)+g0(x)
2g0(x)

|. Due to Lemma6.4(i) and Thm6.15(see
the Appendix), it is sufficient to prove that∫

G2dP <∞. (6.12)

Indeed,∫
G2dP ≤

∫
sup
g∈G

max{g(x) + g0(x)

2g0(x)
−1, log 2}dP ≤ log 2+

∫
sup
g∈G

|g(x)−g0(x)|dQ <∞,
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where the last inequality is due to envelope condition (6.9a).

Remark. Let us now turn to a discussion of the entropy conditions. Note that both
entropy conditions (6.10a) and (6.11) can be deduced from the following single condition:
For all δ > 0,

HB
δ (G, L1(Q)) <∞. (6.13)

Indeed, that (6.13) implies (6.10a) is a direct consequence of the law of large numbers
(given (6.9a)). To show (6.11), note that (by Taylor’s expansion):∣∣∣∣ log

g1 + g0

2g0

− log
g2 + g0

2g0

∣∣∣∣ ≤ |g1 − g2|
g0

,

so 1
n
Hδ(log G+g0

2g0
, L1(Pn)) ≤ 1

n
Hδ(G/g0, L1(Pn)). SinceG0 ∈ L1(Q), we haveG0/g0 ∈

L1(P). In addition,HB
δ (G/g0, L1(P)) ≤ HB

δ (G, L1(Q)) < ∞. By the law of large num-
bers,Hδ(G/g0, L1(Pn)) is bounded in probability, thus (6.11) holds.

In the remaining of this section, we shall consider an example of smooth function
classes for which the conditions of Prop.6.5and6.6hold.

Sobolev spaces.Forx ∈ Rd, and-dimensional multi-indexκ = (κ1, . . . , κd) (all κi are
natural numbers), writexκ =

∏d
i=1 x

κi
i , and|κ| =

∑d
i=1 κi. LetDκ denote the differential

operator:

Dκg(x) =
∂|κ|

∂xκ1
1 . . . ∂xκd

d

g(x1, . . . , xd).

We useWα
r (X ) to denote the Sobolev space of functionsf : X → R. The norm inWα

r (X )
is defined by

||f ||W α
r (X ) = ||f ||Lr(X ) + ||f ||Lα

r (X ),

where

||f ||rLα
r (X ) =

∑
|κ|=α

∫
|Dκf(x)|r dx.

Suppose, for simplicity, that the domainX is a compact set such as a cube[0, h]d.
Assume thatp0 andq0 are bounded from aboveand below by some constants (these as-
sumptions shall be relaxed in the next section). As a result,g0 is bounded from above and
below. Suppose that

η1 ≤ g0(x) =
p0(x)

q0(x)
≤ η2 for all x ∈ X . (6.14)

We now restrict our function class to a Sobolev’s space of functions that are bounded
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from above and below:

G =

{
g ∈ Wα

r (X ) such that||g||W α
r (X ) ≤M

}
∩

{
g : K1 ≤ g(x) ≤ K2 for all x ∈ X

}
,

(6.15)
whereK1 andK2 are some constants satisfyingK1 ≤ η1 < η2 ≤ K2. In the algorithmic
development and subsequent analysis of our estimator, we typically restrict ourselves to
r = 2 unless indicated otherwise.

Under the boundedness assumption, the envelope conditions (6.9) hold trivially. For a
function class that is sufficiently smooth, i.e., whenrα > d, then it was shown[Birman
and Solomjak, 1967] that

Hδ(G, L∞) < cδ−d/α <∞,

wherec is some constant independent ofδ. As a result, it is simple to see that the condi-
tion (6.13) holds. The entropy condtion (6.10b) also holds due to the boundedness condi-
tion.

Finally, while the boundedness conditions are rather severe, we can study the rate of
convergence under such conditions. Once having the convergence rates for bounded cases,
it would be easy to obtain consistency in more general unbounded cases if we have addi-
tional knowledge of the tail condition for the densities.

6.4 Rates of convergence

6.4.1 Convergence rate of the likelihood ratio in Hellinger met-
ric

In this section, we shall obtain the same convergence rate of the likelihood ratiog using
Hellinger metric as a performance measure. Our result is based on Lemma6.4, in which
the Hellinger distance is bounded from above by the suprema of two empirical processes.

We shall need the assumption that

sup
g∈G

‖g‖∞ < K2. (6.16)

One empirical process in the RHS in Lemma6.4 involves function classF := log G+g0

2g0
.

For eachg ∈ G, let fg := log g+g0

2g0
. We endowF with a new norm, namely,Bernstein

distance: for a constantK > 0,

ρK(f)2 := 2K2

∫
(e|f |/K − 1− |f |/K)dP.
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The Bernstein distance is related to the Hellinger distance in several crucial ways (see,
e.g.,[van de Geer, 1999], page 97):

• ρ1(fg) ≤ 4hQ(g0,
g+g0

2
).

• The bracket entropy based on Bernstein distance is also related to the bracket entropy
based Hellinger distance (i.e., which is theL2 norm for the square root function):

HB√
2δ

(F , ρ1) ≤ HB
δ (Ḡ, L2(Q)), (6.17)

whereḠ := {((g + g0)/2)1/2, g ∈ G}, andḡ := (g + g0)/2.

We shall need an assumption on function classḠ: For some constant0 < γḠ < 2, there
holds for anyδ > 0,

HB
δ (Ḡ, L2(Q)) = O(δ−γḠ). (6.18)

Combining this condition with (6.16), we deduce that forG,

HB
δ (G, L2(Q)) ≤ O(δ−γḠ).

In the following theorem,OP means “bounded in probability” with respect toP mea-
sure.

Theorem 6.7.Assume(6.16) and (6.18), thenhQ(g0, ĝn) = OP(n
−1/(γḠ+2)).

Proof. By Lemma6.4, for anyδ > 0, with respect toP measure:

P (hQ(g0, ĝn) > δ) ≤ P (hQ(g0, (ĝn + g0)/2) > δ/4)

≤ P

(
sup

g∈G, hQ(g0,ḡ)>δ/4

−
∫

(ḡ − g0)d(Qn −Q) +

∫
fg d(Pn − P)− 2h2

Q(g0, ḡ) ≥ 0

)
≤ P

(
sup

g∈G, hQ(g0,ḡ)>δ/4

−
∫

(ḡ − g0)d(Qn −Q)− h2
Q(g0, ḡ) ≥ 0

)
+

P

(
sup

g∈G, hQ(g0,ḡ)>δ/4

∫
fg d(Pn − P)− h2

Q(g0, ḡ) ≥ 0

)
:= A+B.

We need to upper bound the RHS’s two quantitiesA andB, both of which can be handled
in a similar manner. SinceHB

δ (Ḡ, L2(Q)) < ∞ the diameter of̄G is finite. LetS be the
minimums such that2s+1δ/4 exceeds that diameter. We apply the so-called peeling device:
DecomposēG into layers of Hellinger balls aroundg0 and then applying union bound on
the probability of excess. For each layer, one can now apply the modulus of continuity of
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suprema of an empirical process.

B ≤
S∑

s=0

P

(
sup

g∈G, hQ(g0,ḡ)≤2s+1δ/4

∫
fg d(Pn − P) ≥ 22s(δ/4)2

)
.

Note that ifhQ(g0, ḡ) ≤ 2s+1δ/4 thenρ1(fg) ≤ 2s+1δ. Note that for anys = 1, . . . , S, the
bracket entropy integral can be bounded as:∫ 2s+1δ

0

HB
ε (F ∩ {hQ(g0, ḡ) ≤ 2s+1δ/4}, ρ1)

1/2 dε

≤
∫ 2s+1δ

0

HB
ε/
√

2
(Ḡ ∩ {hQ(g0, ḡ) ≤ 2s+1δ/4}, L2(Q))1/2 dε

≤
∫ 2s+1δ

0

C9(ε/
√

2)−γḠ/2 dε

≤ C8(2
s+1δ)1−γḠ/2,

whereC8, C9 are constants independent ofs. Now apply Thm6.16 (see the Appendix),
whereK = 1,R = 2s+1δ, a = C1

√
nR2/K = C1

√
n22(s+1)δ2. We need

a ≥ C0C8(2
s+1δ)1−γḠ/2 > C0R.

This is satisfied ifδ = n−1/(γḠ+2), andC1 = C0C8, whereC8 is sufficiently large (indepen-
dently ofs). Finally,C2

0 ≥ C2(C1 + 1) = C2(C0C8 + 1) if C0 := 2C2C8 ∨ 2C, whereC
is some universal constant in Thm6.16. Applying this theorem, we obtain:

B ≤
S∑

s=0

C exp

[
− C2

1n22(s+1)δ2

C2(C1 + 1)

]
≤ c exp

[
− nδ2

c2

]
for some universal constantc. A similar bound forA, with respect toQ measure and with
δ = n−1/(γḠ+2) can be obtained in the same manner. Sincep0/q0 is bounded from above,
this also implies a probability statement with respect toP. Thus,hQ(g0, ĝn) is bounded in
P probability byn−1/(γḠ+2).

In the following we note that the rate of convergence with respect to Hellinger metric
is also the optimal minimax rate, which is defined as:

rn := inf
ĝn∈G

sup
P,Q

EPhQ(g0, ĝn).

First, note thatrn ≥ inf ĝn∈G supP Ehµ(g0, ĝn), where we have fixedQ = µ the Lebesgue
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measure onX . Our strategy is to reduce this bound to that minimax lower bound for a non-
parametric density estimation problem[Yu, 1996]. Note a technicality here, in which the
spaceG ranges over smooth functions that need not to be valid probability density. There-
fore, an easy-to-use mimimax lower bound such as that of[Yang and Barron, 1999] is not
immediately applicable. Nonetheless, we can still apply the hypercube argument and the
Assouad lemma to obtain the right minimax rate. See[van der Vaart, 1998] (Sec. 24.3) for
a proof for the case of one dimension. The proof goes through for generald ≥ 1.

Proposition 6.8. For G defined in(6.15), P,Q satisfy(6.14), rn = Ω(n−1/(γ+2)), where
γ = d/α.

6.4.2 Convergence rate for divergence estimation

In this section we shall obtain the convergence rate of our estimation procedure for the KL
divergence, i.e.,‖D̂K − DK(P,Q).‖ We shall need the assumption that all functions inG
are bounded from aboveandbelow:

0 < K1 ≤ g ≤ K2 for all g ∈ G. (6.19)

Theorem 6.9.Assume(6.19) and (6.18), then|D̂K −DK(P,Q)| = OP(n
−1/(γḠ+2)).

Proof. Note that

|D̂K −DK(P,Q)| =

∣∣∣∣ ∫
log ĝndPn −

∫
ĝndQn − (

∫
log g0dP−

∫
g0dQ)

∣∣∣∣
≤

∣∣∣∣ ∫
log ĝn/g0d(Pn − P)−

∫
(ĝn − g0)d(Qn −Q)

∣∣∣∣
+

∣∣∣∣ ∫
log ĝn/g0dP−

∫
(ĝn − g0)dQ

∣∣∣∣
+

∣∣∣∣ ∫
log g0d(Pn − P)−

∫
g0d(Qn −Q)

∣∣∣∣ := A+B + C.

We haveC = OP (n−1/2) by the central limit theorem. Using assumption (6.19),

B ≤
∫
|ĝn − g0|

K2

K1

dQ|+
∫
|ĝn − g0|dQ

≤ (K2/K1 + 1)‖ĝn − g0‖L2(Q)

≤ (K2/K1 + 1)

( ∫
4K2(ĝ

1/2
n − g

1/2
0 )2dQ

)1/2

≤ (K2/K1 + 1)K
1/2
2 4hQ(g0, ĝn) = OP(n

−1/(2+γḠ)),
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where the last equality is due to Thm6.7.
Finally, to boundA, we shall apply a modulus of continuity result on the suprema of

empirical processes with respect to function(g − g0) and(log g − log g0). In particular,
due to (6.19), the bracket entropy for both function classesG andlog G has the same order
as that ofḠ, as given in (6.18). Apply Lemma6.17(see the Appendix), we obtain that for
δn = n−1/(2+γḠ), there holds:

A = OP(n
−1/2‖ĝn − g0‖

1−γḠ/2

L2(Q) ∨ δ2
n) = OP(n

−2/(2+γḠ)).

The overall estimation error is bounded by the upper bound ofB.

6.5 General methods for estimating f -divergence

In this section, we shall present several general methods for estimatingf -divergence, and
discuss their properties and limitations.

6.5.1 M-estimator of Dφ and p0/q0

It is not difficult to see that our method for estimating the KL divergence can be easily
applied to any divergenceDφ(p0, q0). In fact, the method for consistency analysis, while
tailored to each specific choice ofφ, is also very similar in spirit. Assume in this section
thatφ is a differentiable (convex) function. Motivated by Lemma6.1, our estimator has the
following form:

D̂φ := sup
f∈F

∫
f dQn −

∫
φ∗(f) dPn. (6.20)

Let f̂ be the supremum of the above optimization.f̂ is considered an estimator off0 =
φ′(q0/p0). As before, we define the estimation and approximation error. The latter is
assumed to be 0, i.e.,φ′(q0/p0) ∈ F .

Eφ
0 (F) = Dφ(P,Q)− sup

f∈F

∫
(f dQ− φ∗(f) dP) ≥ 0 (6.21)

Eφ
1 (F) = sup

f∈F

∣∣∣∣ ∫
fd(Qn −Q)− φ∗(f) d(Pn − P)

∣∣∣∣. (6.22)

From (6.20),(6.4) and (6.5), it is simple to see that:−Eφ
1 (F)−Eφ

0 (F) ≤ D̂φ−Dφ(P,Q) ≤
E1(F). SinceEφ

0 (F) = 0, our main focus is in analysis ofEφ
1 (F). As before, define:

vφ
n(F) = sup

f∈F

∣∣∣∣ ∫
(φ∗(f)− φ∗(f0))d(Pn − P)−

∫
(f − f0)d(Qn −Q)

∣∣∣∣.
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wφ
n(f0) =

∣∣∣∣ ∫
φ∗(f0) d(Pn − P) − f0d(Qn −Q)

∣∣∣∣.
We haveEφ

1 (F) ≤ vφ
n(F) + wφ

n(f0). Sincewn(F) converges to 0 almost surely under
mild assumptions ong0, to prove consistency of our estimator, it remains to analyze the
convergence ofvφ

n(F). This can be done in the same manner as in Section6.3.
To analyze the convergence rate of our estimator, the key idea of our analysis is to

exploit the modulus of continuity of the supremum of the empirical processes involved in
the definition ofvφ

n(F) with respect the a notion of distance betweeng andf0:

dφ(f0, f) := Dφ(P,Q)−
∫
fdQ− φ∗(f)dP (6.23)

=

∫
(φ∗(f)− φ∗(f0))dP− (f − f0)dQ (6.24)

=

∫
(φ∗(f)− φ∗(f0)−

∂φ∗

∂f

∣∣∣∣
f0

(f − f0) dP ≥ 0. (6.25)

The last line in the above equation shows thatdφ is a Bregman divergenceusing con-
vex functionφ∗. The following lemma is an analogue of Lemma6.3(ii) whose proof is
straightforward:

Lemma 6.10. If f̂ is an estimation off0 by solving(6.20), thendφ(f0, f̂) ≤ vφ
n(F).

Sincedφ(f0, f) is usually not a proper metric, to apply standard results from empirical
process theory one usually needs to replacedφ by a lower bound which is a proper metric
(such asL2 or Hellinger metric). In the case of KL divergence, we have seen that this lower
bound is the Hellinger distance.

In the following we shall demonstrate our general method to the estimation yet an-
otherf -divergence: theχ-square distance. This divergence is very amenable to the general
framework just described. As we shall see, it also plays a special role in another general
method for divergence anyf -divergence.

The χ-square divergence is defined asDχ(P,Q) =
∫
p2

0/q0dµ. It is a f -divergence
with φ(u) = 1/u. We haveφ∗(v) = −2

√
−v if v < 0 and+∞ otherwise. As a result,

we only need to restrictF to the subset for whichf < 0 for anyf ∈ F . Let g :=
√
−f

andG =
√
−F . G is a function class of positive functions. We haveg0 :=

√
−f0 =√

−φ′(q0/p0) = p0/q0. We shall also replace notationdφ(f0, f) by dφ(g0, g). For our
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choice ofφ, we have:

dχ(g0, g) = dχ(f0, f) =

∫
(−2

√
−f + 2

√
−f0)dP− (f − f0)dQ

=

∫
(g0 − g)(2p0/q0 − g0 − g)dQ

=

∫
(g − g0)

2dQ

vχ
n(G) = vχ

n(F) = sup
g∈G

∣∣∣∣ ∫
2(g2 − g2

0)d(Qn −Q)−
∫

(g − g0)d(Pn − P)

∣∣∣∣.
Assume moreover that for some constant0 < γ < 2,

HB
δ (G, L2(Q)) ≤ AGδ

−γ (6.26)

The following theorem is a parallel of Thm6.7; the proof is essentially the same (if not
simpler) and therefore not included herein:

Theorem 6.11.Assume(6.16) and(6.26), andĝn be our estimator ofg0 then:dχ(g0, ĝn) =
OP(n

−2/(γ+2)).

Remark. Comparing with Thm6.7 the assumption on theL2(Q)-based entropy and
the assertion on theL2(Q) metric are both weaker, because theL2(Q) metric is less strong
than the Hellinger distance.

Finally, it is straightward to show that our method is applicable to a broader class of
functional of the following form:

T (P,Q) =

∫
p0φ(q0/p0)ψ dµ,

whereψ : X → R+ is a known positive function that is also bounded from both above
and below (away from 0). All analysis goes through, with the insertion ofψ in all integrals
involved. We also obtain the same convergence rate as whenψ = 1.

6.5.2 Plug-in estimator based on Taylor expansion

In this section we shall present an estimator based on functional delta method. This idea
was also used by[Joe, 1989; Birgé and Massart, 1995] to estimate integral functional of
a density function. WhileDφ(P,Q) is a functional of two densities, we can exploit its
special structure and our method of estimating the density ratio to achieve an estimator of

162



Chapter 6. Estimation of divergence functionals and the likelihood ratio

with similar effects. Indeed, we can write

Dφ(P,Q) =

∫
(p0/q0)φ(q0/p0) dQ =

∫
g0φ(1/g0) dQ.

Thus,Dφ can be viewed as an integral functional ofg0 = p0/q0. Of course, the difference
here is that the integration is with respect to unknownQ.

Suppose thatφ : R+ → R is a differentiable convex function up to the third order,G
is a smooth function class bounded from both above and below as in (6.15) (with smooth
parameterα). Suppose that̂gn is an estimator ofg0 such as the one described in the previous
section, i.e.,‖ĝn − g0‖L2(Q) = dχ(g0, ĝn) = OP (n−α/(2α+d)). Using a Taylor expansion
aroundĝn, we obtain:

gφ(1/g) = ĝnφ(1/ĝn) + (g − ĝn)(φ(1/ĝn)− φ′(1/ĝn)/ĝn) + (g − ĝn)2φ′′(1/ĝn)/ĝ3
n +

O((g − ĝn)3)

= φ′(1/ĝn) + φ′′(1/ĝn)/ĝn + g(φ(1/ĝn)− φ′(1/ĝn)/ĝn − 2φ′′(1/ĝn)/ĝ2
n) +

g2φ′′(1/ĝn)/ĝ3
n +O((g − ĝn)3).

We arrive at

Dφ(P,Q) =

∫
gφ(1/g)dQ

=

∫
φ′(1/ĝn) + φ′′(1/ĝn)/ĝn dQ +∫
(φ(1/ĝn)− φ′(1/ĝn)/ĝn − 2φ′′(1/ĝn)/ĝ2

n) dP +∫
p2

0/q0φ
′′(1/ĝn)/ĝ3

n dµ+O(‖g0 − ĝn‖3
3).

In the above expression, the first two integrals can be estimated from (other) sets of empir-
ical data drawn fromP andQ. Because of the boundedness assumption, these estimations
have at mostOP (n−1/2) error. The error of our Taylor approximation isO(‖g0 − ĝn‖3

3) =
OP (n−3α/(2α+d)). This rate is less thanO(n−1/2) for α ≥ d/4. Thus whenα ≥ d/4, the
optimal rate of convergence for estimatingDφ hinges on the rate of estimating the integral
of the form

∫
p2

0/q0ψ dµ.
Before ending this section, it is informative to return to the case of KL divergence, i.e.,

φ(u) = − log u. If we use Taylor approximation up to first order (thus guaranteeing an
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error rate ofOP (n−2α/(2α+d)), the estimator has the following form:

D̂φ =

∫
(φ(1/ĝn)− φ′(1/ĝn)/ĝn) dPn +

∫
φ′(1/ĝn) dQn

=

∫
log ĝn + 1dPn − ĝndQn,

which has exactly the same form as our original estimator (6.3), except that herêgn can be
any estimator of the density ratio. The estimator (6.3) achieves simultaneously both goals
(i) estimating the density ratio and (ii) estimating the divergence. While our method for (i)
achieves the optimal minimax bound, our method for (ii) can be viewed as only a first-order
Taylor expansion based plug-in estimator. As discussed in the previous paragraph, it seems
that one might obtain a better rate by using Taylor expansion up to second order. This is,
of course, possible only if we can obtain a better rate for estimating the integral of the form∫
p2

0/q0ψ dµ.

6.6 M-estimation with penalties

In practice, the “true” size ofG is not known. Accordingly, our approach in this chapter
is an alternative approach based on controlling the size ofG by using penalties. More
precisely, letI(g) be a measure of complexity forg. Assume thatI is a non-negative
functional andI(g0) <∞. We decompose the function classG as follows:

G = ∪1≤M≤∞GM , (6.27)

whereGM := {g | I(g) ≤M} is a ball determined byI(·).
The estimation procedure involves solving the following program:

ĝn = argming∈G

∫
gdQn −

∫
log g dPn +

λn

2
I2(g), (6.28)

whereλn > 0 is a regularization parameter. The minimizing argumentĝn is plugged
into (6.3) to obtain an estimate of the KL divergenceDK .

For the KL divergence, the difference|D̂K −DK(P,Q)| is a natural performance mea-
sure. For estimating the density ratio, various metrics are possible. Viewingg0 = p0/q0 as a
density function with respect toQ measure, one useful metric is the (generalized) Hellinger
distance:

h2
Q(g0, g) :=

1

2

∫
(g

1/2
0 − g1/2)2 dQ. (6.29)

For the analysis, several assumptions are in order. First, assume thatg0 (not all of G) is
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bounded from above and below:

0 < η0 ≤ g0 ≤ η1 for some constantsη0, η1. (6.30)

Next, the uniform norm ofGM is Lipchitz with respect to the penalty measureI(g), i.e.:

sup
g∈GM

|g|∞ ≤ cM for anyM ≥ 1. (6.31)

Finally, on the bracket entropy ofG [van der Vaart and Wellner, 1996]: For some0 < γ < 2,

HB
δ (GM , L2(Q)) = O(M/δ)γ for anyδ > 0. (6.32)

The following is our main theoretical result, whose proof is given in Section6.8:

Theorem 6.12.(a) Under assumptions(6.30) (6.31) (6.32), and setλn → 0 so that:

λ−1
n = OP(n

2/(2+γ))(1 + I(g0)),

then underP:

hQ(g0, ĝn) = OP(λ
1/2
n )(1 + I(g0)), I(ĝn) = OP(1 + I(g0)).

(b) If, in addition to(6.30) (6.31) (6.32), there holdsinfg∈G g(x) ≥ η0 for anyx ∈ X , then

|D̂K −DK(P,Q)| = OP(λ
1/2
n )(1 + I(g0)). (6.33)

6.7 Algorithm: Optimization and dual formulation

G is an RKHS.Our algorithm involves solving program (6.28), for some choice of function
classG. In our implementation, relevant function classes are taken to be a reproducing
kernel Hilbert space induced by a Gaussian kernel. The RKHS’s are chosen because they
are sufficiently rich[Saitoh, 1988], and as in many learning tasks they are quite amenable
to efficient optimization procedures[Scḧolkopf and Smola, 2002].

LetK : X ×X → R be a Mercer kernel function[Saitoh, 1988]. Thus,K is associated
with a feature mapΦ : X → H, whereH is a Hilbert space with inner product〈., .〉 and
for all x, x′ ∈ X , K(x, x′) = 〈Φ(x), Φ(x′)〉. As a reproducing kernel Hilbert space, any
functiong ∈ H can be expressed as an inner productg(x) = 〈w, Φ(x)〉, where‖g‖H =
‖w‖H. A kernel used in our simulation is the Gaussian kernel:

K(x, y) := e−‖x−y‖2/σ,

where‖.‖ is the Euclidean metric inRd, andσ > 0 is a parameter for the function class.
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Let G := H, and let the complexity measure beI(g) = ‖g‖H. Thus, Eq. (6.28) be-
comes:

min
w
J := min

w

1

n

n∑
i=1

〈w, Φ(xi)〉 −
1

n

n∑
j=1

log〈w, Φ(yj)〉+
λn

2
‖w‖2

H, (6.34)

where{xi} and{yj} are realizations of empirical data drawn fromQ andP, respectively.
The log function is extended take value−∞ for negative arguments.

Lemma 6.13.minw J has the following dual form:

−min
α>0

n∑
j=1

− 1

n
− 1

n
log nαj +

1

2λn

∑
i,j

αiαjK(yi, yj) +
1

2λnn2

∑
i,j

K(xi, xj)

− 1

λnn

∑
i,j

αjK(xi, yj).

Proof. Let ψi(w) := 1
n
〈w, Φ(xi)〉, ϕj(w) := − 1

n
log〈w, Φ(yj)〉, andΩ(w) = λn

2
‖w‖2

H.
We have

min
w
J = −max

w
(〈0, w〉 − J(w)) = −J∗(0)

= −min
ui,vj

n∑
i=1

ψ∗i (ui) +
n∑

j=1

ϕ∗j(vj) + Ω∗(−
n∑

i=1

ui −
n∑

j=1

vj),

where the last line is due to the inf-convolution theorem[Rockafellar, 1970]. Simple cal-
culations yield:

ϕ∗j(v) = − 1

n
− 1

n
log nαj if v = −αjΦ(yj) and +∞ otherwise

ψ∗i (u) = 0 if u =
1

n
Φ(xi) and +∞ otherwise

Ω∗(v) =
1

2λn

‖v‖2
H.

So,minw J = −minαi

∑n
j=1(−

1
n
− 1

n
log nαj) + 1

2λn
‖

∑n
j=1 αjΦ(yj)− 1

n

∑n
i=1 Φ(xi)‖2

H,
which implies the lemma immediately.

If α̂ is solution of the dual formulation, it is not difficult to show that the optimalŵ is
attained at̂w = 1

λn
(
∑n

j=1 α̂jΦ(yj)− 1
n

∑n
i=1 Φ(xi)).

For an RKHS based on a Gaussian kernel, the entropy condition (6.32) holds for any
γ > 0 [Zhou, 2002]. Furthermore, (6.31) trivially holds via the Cauchy-Schwarz inequal-
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ity: |g(x)| = |〈w, Φ(x)〉| ≤ ‖w‖H‖Φ(x)‖H ≤ I(g)
√
K(x, x) ≤ I(g). Thus, by Theo-

rem 6.12(a), ‖ŵ‖H = ‖ĝn‖H = OP(‖g0‖H), so the penalty termλn‖ŵ‖2 vanishes at the
same rate asλn. We have arrived at the following estimator for the KL divergence:

D̂K = 1 +
n∑

j=1

(− 1

n
− 1

n
log nα̂j) =

n∑
j=1

− 1

n
log nα̂j.

log G is an RKHS. Alternatively, we could setlog G to be the RKHS, lettingg(x) =
exp〈w, Φ(x)〉, and lettingI(g) = ‖ log g‖H = ‖w‖H. Theorem6.12 is not applicable
in this case, because condition (6.31) no longer holds, but this choice nonetheless seems
reasonable and worth investigating, because in effect we have a far richer function class
which might improve the bias of our estimator when the density ratio is not very smooth.

A derivation similar to the previous case yields the following convex program:

min
w
J := min

w

1

n

n∑
i=1

e〈w, Φ(xi)〉 − 1

n

n∑
j=1

〈w, Φ(yj)〉+
λn

2
‖w‖2

H

= −min
α>0

n∑
i=1

αi log(nαi)− αi +
1

2λn

‖
n∑

i=1

αiΦ(xi)−
1

n

n∑
j=1

Φ(yj)‖2
H.

Letting α̂ be the solution of the above convex program, the KL divergence can be estimated
by:

D̂K = 1 +
n∑

i=1

α̂i log α̂i + α̂i log
n

e
.

6.8 Proof of Theorem 6.12

We now sketch out the proof of the main theorem. The key to our analysis is the following
lemma:

Lemma 6.14. If ĝn is an estimate ofg using(6.28), then:

1

4
h2

Q(g0, ĝn)+
λn

2
I2(ĝn) ≤ −

∫
(ĝn−g0)d(Qn−Q)+

∫
2 log

ĝn + g0

2g0

d(Pn−P)+
λn

2
I2(g0).

Proof. Definedl(g0, g) =
∫

(g− g0)dQ− log g
g0
dP. Note that forx > 0, 1

2
log x ≤

√
x− 1.

Thus, ∫
log

g

g0

dP ≤ 2

∫
(g1/2g

−1/2
0 − 1) dP.
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As a result, for anyg, dl is related tohQ as follows:

dl(g0, g) ≥
∫

(g − g0) dQ− 2

∫
(g1/2g

−1/2
0 − 1) dP

=

∫
(g − g0) dQ− 2

∫
(g1/2g

1/2
0 − g0) dQ =

∫
(g1/2 − g

1/2
0 )2dQ

= 2h2
Q(g0, g).

By the definition (6.28) of our estimator, we have:∫
ĝndQn −

∫
log ĝndPn +

λn

2
I2(ĝn) ≤

∫
g0dQn −

∫
log g0dPn +

λn

2
I2(g0).

Both sides are convex functionals ofg. By Jensen’s inequality, ifF is a convex function,
thenF ((u+ v)/2)− F (v) ≤ (F (u)− F (v))/2. We obtain:∫
ĝn + g0

2
dQn−

∫
log

ĝn + g0

2
dPn +

λn

4
I2(ĝn) ≤

∫
g0dQn−

∫
log g0dPn +

λn

4
I2(g0).

Rearranging,
∫

ĝn−g0

2
d(Qn −Q)−

∫
log ĝn+g0

2g0
d(Pn − P) + λn

4
I2(ĝn) ≤∫

log
ĝn + g0

2g0

dP−
∫
ĝn − g0

2
dQ +

λn

4
I2(g0) = −dl(g0,

g0 + ĝn

2
) +

λn

4
I2(g0)

≤ −2h2
Q(g0,

g0 + ĝn

2
) +

λn

4
I2(g0) ≤ −1

8
h2

Q(g0, ĝn) +
λn

4
I2(g0),

where the last inequality is a standard result for the (generalized) Hellinger distance
(cf. [van de Geer, 1999]).

Let us now proceed to part (a) of the theorem. Definefg := log g+g0

2g0
, and letFM :=

{fg|g ∈ GM}. Sincefg is a Lipschitz function ofg, conditions (6.30) and (6.32) imply that

HB
δ (FM , L2(P)) = O(M/δ)γ. (6.35)

Apply Lemma6.18(see the Appendix) using distance metricd2(g0, g) = ‖g − g0‖L2(Q),
the following is true underQ (and so true underP as well, sincedP/dQ is bounded from
above),

sup
g∈G

|
∫

(g − g0)d(Qn −Q)|
n−1/2d2(g0, g)

1−γ/2(1 + I(g) + I(g0))γ/2 ∨ n−
2

2+γ (1 + I(g) + I(g0))
= OP(1).(6.36)
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In the same vein, we obtain that underP measure:

sup
g∈G

|
∫
fgd(Pn − P)|

n−1/2d2(g0, g)
1−γ/2(1 + I(g) + I(g0))γ/2 ∨ n−

2
2+γ (1 + I(g) + I(g0))

= OP(1)(6.37)

By condition (6.31), it is easy to see that:

d2(g0, g) = ‖g − g0‖L2(Q) ≤ 2c1/2(1 + I(g) + I(g0))
1/2hQ(g0, g).

Combining Lemma6.14and Eqs. (6.37), (6.36), we obtain the following:

1

4
h2

Q(g0, ĝn) +
λn

2
I2(ĝn) ≤ λnI(g0)

2/2+

OP

(
n−1/2hQ(g0, g)

1−γ/2(1 + I(g) + I(g0))
1/2+γ/4 ∨ n−

2
2+γ (1 + I(g) + I(g0))

)
.

(6.38)

From this point, the proof involves simple algebraic manipulation of (6.38). To simplify
notation, let̂h = hQ(g0, ĝn), Î = I(ĝn), andI0 = I(g0). There are four possibilities:

Case a. ĥ ≥ n−1/(2+γ)(1 + Î + I0)
1/2 andÎ ≥ 1 + I0. From (6.38), either

ĥ2/4 + λnÎ
2/2 ≤ OP(n

−1/2)ĥ1−γ/2Î1/2+γ/4 or ĥ2/4 + λnÎ
2/2 ≤ λnI

2
0/2,

which implies, respectively, either

ĥ ≤ λ−1/2
n OP(n

−2/(2+γ)), Î ≤ λ−1
n OP(n

−2/(2+γ)).

or
ĥ ≤ OP(λ

1/2
n I0), Î ≤ OP(I0).

Both scenarios conclude the proof if we setλ−1
n = OP(n

2/(γ+2)(1 + I0)).
Case b. ĥ ≥ n−1/(2+γ)(1 + Î + I0)

1/2 andÎ < 1 + I0. From (6.38), either

ĥ2/4 + λnÎ
2/2 ≤ OP(n

−1/2)ĥ1−γ/2(1 + I0)
1/2+γ/4 or ĥ2/4 + λnÎ

2/2 ≤ λnI
2
0/2,

which implies, respectively, either

ĥ ≤ (1 + I0)
1/2OP(n

−1/(γ+2)), Î ≤ 1 + I0

or
ĥ ≤ OP(λ

1/2
n I0), Î ≤ OP(I0).

Both scenarios conclude the proof if we setλ−1
n = OP(n

2/(γ+2)(1 + I0)).

169



Chapter 6. Estimation of divergence functionals and the likelihood ratio

Case c. ĥ ≤ n−1/(2+γ)(1 + Î + I0)
1/2 andÎ ≥ 1 + I0. From (6.38)

ĥ2/4 + λnÎ
2/2 ≤ OP(n

−2/(2+γ))Î ,

which implies that̂h ≤ OP(n
−1/(2+γ))Î1/2 andÎ ≤ λ−1

n OP(n
−2/(2+γ)). This means that

ĥ ≤ OP(λ
1/2
n )(1 + I0), Î ≤ OP(1 + I0)

if we setλ−1
n = OP(n

2/(2+γ))(1 + I0).
Case d. ĥ ≤ n−1/(2+γ)(1 + Î + I0)

1/2 and Î ≤ 1 + I0. Part (a) of the theorem is
immediate.

Finally, part (b) is a simple consequence of part (a) using the same argument as in
Thm 6.9.

6.9 Simulation results

In this section, we describe the results of various simulations that demonstrate the practical
viability of our estimators, as well as their convergence behavior. We experimented with
our estimators using various choices ofP and Q, including Gaussian, beta, mixture of
Gaussians, and multivariate Gaussian distributions. Here we report results in terms of KL
estimation error. For each of the eight estimation problems described here, we experiment
with increasing sample sizes (the sample size,n, ranges from100 to 104 or more). Error
bars are obtained by replicating each set-up 250 times.

For all simulations, we report our estimator’s performance using the the simple fixed
rateλn ∼ 1/n, noting that this may be a suboptimal rate. We set the kernel width to be
relatively small (σ = .1) for one-dimension data, and largerσ for higher dimensions. We
use M1 to denote the method in whichG is the RKHS, and M2 for the method in which
log G is the RKHS. Our methods are compared to algorithmA in Wang et al[Wanget al.,
2005], which was shown empirically to be one of the best methods in the literature. Their
method, to be denoted by WKV, is based on data-dependent partitioning of the covariate
space. Naturally, the performance of WKV is critically dependent on the amounts of data
allocated to each partition; here we report results withs ∼ nγ, whereγ = 1/3, 1/2, 2/3.

The first four plots present results with univariate distributions. In the first two, our
estimatorsM1 andM2 appear to have faster convergence rate than WKK. The WKV esti-
mator performs very well in the third example, but rather badly in the fourth example. The
next four plots present results with two and three dimensional data. Again, M1 has the best
convergence rates in all examples. The M2 estimator does not converge in the last example,
suggesting that the underlying function class exhibits very strong bias. WKV have weak
convergence rates despite different choices of the partition sizes. It is worth noting that as
one increases the number of dimensions, histogram based methods such as WKV become
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Figure 6.1. Results of estimating KL divergences for various choices of probability dis-
tributions. In all plots, the X-axis is the number of data points plotted on a log scale, and
the Y-axis is the estimated value. The error bar is obtained by replicating the experiment
250 times.Nt(a, Ik) denotes a truncated normal distribution ofk dimensions with mean
(a, . . . , a) and identity covariance matrix.
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Figure 6.2. Results of estimating KL divergences for various choices of probability dis-
tributions. In all plots, the X-axis is the number of data points plotted on a log scale, and
the Y-axis is the estimated value. The error bar is obtained by replicating the experiment
250 times.Nt(a, Ik) denotes a truncated normal distribution ofk dimensions with mean
(a, . . . , a) and identity covariance matrix.
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increasingly difficult to implement, whereas increasing dimension has only a mild effect
on our method.
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Appendix 6.A Increments of empirical processes

In this section we summarize several key theorems from empirical process theory that have
been used in the proof of theorems in this chapter.

The following theorem (Thm 3.7 in[van de Geer, 1999]) specifies conditions under
which the supremum of an empirical process goes to 0 almost surely.

Theorem 6.15. Let G be the envelope function forG. Assume that
∫
GdP < ∞, and

suppose that for anyδ > 0, 1
n
Hδ(G, L1(Pn))

P−→ P0, thensupg∈G
∫
gd(Pn − P)

a.s.−→ 0.

Next, this is a result on the convergence rate of the supremum of an empirical process
(Thm 5.11 in[van de Geer, 1999]):

Theorem 6.16.LetK,R be some constants,G satisfysupg∈G ρK(g) ≤ R. If there hold,
for some sufficiently large universal constantC:

a ≤ C1

√
nR2/K

a ≥ C0

( ∫ R

0

HB
u (G, ρK)1/2du ∨R

)
C2

0 ≥ C2(C1 + 1),

then

P

(
sup
g∈G

|
√
n

∫
gd(Pn − P)| ≥ a

)
≤ C exp

[
− a2

C2(C1 + 1)R2

]
.

Finally, we shall present several results on the modulus of continuity of the supremum
of empirical processes. Consider a uniformly bounded class of functions, say:

sup
g∈G

|g − g0|∞ ≤ 1. (6.39)

Assume more over that

HB
δ (G, L2(P)) ≤ Aδ−α, for all δ > 0, (6.40)

for some constant0 < α < 2, and some constantA. A direct consequence of Lemma 5.13
of [van de Geer, 1999] is the following:

Lemma 6.17.Assume(6.39) and (6.40), then asn→∞, for δn = n−1/(2+α) there holds:

sup
g∈G

√
n|

∫
(g − g0)d(Pn − P)|

‖g − g0‖1−α/2
L2(P) ∨

√
nδ2

n

= OP(1).

174



Chapter 6. Estimation of divergence functionals and the likelihood ratio

This lemma can be extended to function classes of infinite size (in terms of entropy
and other metrics), and proves useful in the analysis of M-estimators with penalties. In the
remainder of this appendix we state this result.

Suppose thatG has infinite entropy, but that

G = ∪1≤M≤∞GM , (6.41)

whereGM := {g | I(g) ≤M} is a ball determined byI(·). Here, we think ofI(g) as the
complexity of irregularity of the functiong (e.g., some Sobolev or Besov norm).

We shall present a result of modulus of continuity of the (infinite) function classG in
terms of a general distance functiond(·, ·) such that:

‖g − g0‖L2(P) ≤ d(g, g0). (6.42)

Our result is also applicable if the above condition holds up to a multiplicative constant.
The following conditions will be used: there exist constants0 < α < 2, 0 ≤ β ≤

1, c0 > 0 andA > 0 such that for allM ≥ 1,

sup
g∈GM

d(g, g0) ≤ c0M. (6.43)

HB
δ (GM , L2(P)) ≤ A

(
M

δ

)α

. (6.44)

sup
g∈GM ,d(g,g0)≤δ

|g − g0|∞ ≤ (c0δ)
βM1−β, for all δ > 0. (6.45)

Now we are ready to state Lemma 5.14 of[van de Geer, 1999]:

Lemma 6.18. Assume(6.42), (6.43), (6.44), (6.45). Then, for some constantsc andn0

depdending onα, β, c0 andA, we have for allT ≥ c andn ≥ n0,

P
(

sup

g∈G, d(g,g0)≤n
− 1

2+α−2β I(g)

|
∫

(g − g0)d(Pn − P)|
I(g)

≥ Tn−
2−β

2+α−2β

)
≤ c exp

[
−Tn

α
2+α−2β

c2

]
.

Moreover, forT ≥ c, n ≥ n0,

P
(

sup

g∈G, d(g,g0)>n
− 1

2+α−2β I(g)

√
n|

∫
(g − g0)d(Pn − P)|

d(g, g0)1−α/2I(g)α/2
≥ T

)
≤ c exp

[
− T

c2

]
.
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Conclusions and suggestions

In this thesis we have investigated several settings of decision-making in decentralized
systems. Our main contributions can be summarized as follows:

• a nonparametric approach to centralized detection estimation tasks and its application
to the problem of localization in ad hoc sensor network

• a nonparametric aproach to decentralized detection problem

• a characterization of optimal decision rules of sequential decentralized detection
problem

• a characterization of the correspondence between surrogate loss and divergence func-
tionals.

• a nonparametric estimation method for divergence functionals and the likelihood ra-
tio

There are a number of issues and open questions arising from this thesis. In the follow-
ing we shall outline several of such issues, and in some cases suggest possible avenues of
attack.

7.1 Tradeoff between quantization rates and statis-
tical error

In Chapter3 we considered the problem of learning local quantization rules and global
decision rule so as to minimize the detection error. The quantization rules are constrained
by the number of bits (which is decideda priori) to be transmitted by each sensor. There
are two key quantities, the communication constraint and the statistical efficiency, whose
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interplay is of interest. From a practical viewpoint, it is useful for a designer to specify a
priori a desirable level of detection error, based from which communication constraints are
set and the quantization rules are learned. Thus, one key issue here is to study the tradeoff
between the number of bits allowed and the optimal detection error.

In the setting of binary classification, in Chapter4 we have shown that the optimal de-
tection error is equal to the correspondingf -divergence between the two distributions un-
derlying the binary hypotheses. As a result, the relationship between detection error and bit
constraints hinges on the approximation error rate of thef -divergence, since the communi-
cation constraints (especially for continuous data) essentially amount to an approximation
method using step functions. It appears that results from approximation theory[DeVore
and Lorentz, 1993] can be applied. Furthermore, key properties such as the subadditivity
of certainf -divergences (e.g., the KL divergence and log-sum inequality, cf.[Cover and
Thomas, 1991]) could be exploited (for an example, see[Birman and Solomjak, 1967]).

We could consider alternative routes that are more amenable to the analysis. For in-
stance, the class of quantization rules can be specified up front, and the tradeoff between
the quantization rates and the statistical error rate can be studied within this class of quanti-
zation rules. Although the optimal quantization rules do not necessarily lie within the speci-
fied class, the loss might be negligible in practice, and searching for the optimal rules within
the specified class might be a more tractable task. This is the approach taken by[Huanget
al., 2007] in the context of an anomaly detection method using principle component anal-
ysis. In this work the quantization rules are simple rules based on thresholding the data
magnitude. By studying the effects of approximating the covariance matrix the authors
are able to characterize the tradeoff between the number of bits and the anomaly detection
error. It is of interest to extend this approach to other settings such as classification and
regression.

7.2 Nonparametric estimation in sequential detec-
tion setting

In Chapter5 we have studied the sequential setting of the decentralized detection problem.
We have obtained results on the characterization of (asymptotically) optimal quantization
rules. One key issue is: How can the quantization rules be learned for a decentralized
system? In a parametric setting, where the (binary) hypotheses are assumed to be known,
the asymptotic formulae given in Lemma5.1 provides a method for computing the quan-
tization rules by minimizing over a sum of the inverse of two KL divergences. Thus, it
is of substantial interest to come up with efficient algorithms for optimizing divergence
functionals over a class of quantization rules.

In the nonparametric setting, the underlying distributions are typically not known, but
assumed to be within certain function classes. Results in Chapter5 can be used to jus-
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tify our focus to classes of stationary quantizers. The objective functional involves the KL
divergences, which can be estimated using the nonparametric method developed in Chap-
ter 6. It would be interesting to explore efficient algorithms for learning quantizer rules by
optimizing such objective functional.

While the main focus of the thesis is in binary sequential hypothesis testing, it is a
promising direction to consider various other statistical tasks (e.g, point estimation, regres-
sion, dependence testing) in a decentralized system. For such different tasks, it is promising
to consider other statistical functionals (other thanf -divergence functionals) and accompa-
nying nonparametric sequential procedures[Sen, 1981]. Many such procedures are not of
the M-estimation type, and are potentially more tractable from a computational viewpoint.

7.3 Multiple dependent decentralized subsystems

Throughout the thesis, we considered a decentralized system that consists of multiple mea-
surements (collected by local monitoring devices) and a global fusion center aggregating
the local measurements. From the viewpoint of each monitoring device, the processing is
distributed, but the whole system is coordinated centrally by the fusion center to solve a
singlestatistical task (e.g., detection, estimation, etc). In practice, we may be given a dis-
tributed architecture in which there aremultiplestatistical tasks that partially share the set
of measurements. In other words, each statistical task corresponds to a subsystem within
a decentralized system. It is an important problem to devise distributed protocol that fa-
cilitate the performance for the dependent statistical tasks in a computationally efficient
manner.

For concreteness, consider the following application. There are a number of sensors
placed in a geographical area such as highway or building. We are interested in finding
sequential procedures for detecting the failure of these sensors. Typically, only one sen-
sor fails at a time, and so a reasonable statistic to be exploited is the correlations among
neighboring sensors. If there is a change in the distribution of the correlation between two
neighboring sensors, then at least one of them must have probably failed. Thus, we can
have a set-up involving multiple sequential detection problems, each of which is concerned
with the status of one sensor. Furthermore, these detection problems are dependent because
they have shared measurements.

For simplicity, suppose that we have two sensors, which can be measured by two sep-
arate covariatesX andY . Furthermore, these two sensors share a measurementZ. More
formally, given three sequences of i.i.d. data(X1, X2, . . .), (Y1, Y2, . . .), ((Z1, Z2, . . .)). At
each time pointi we receive the triple(Xi, Yi, Zi). If sensor 1 fails at time pointk1, then
there is a change in distribution forXi, i ≥ k1 from f0 to f1. Similarly, if sensor 2 fails at
k2, then there is a change in distribution forYi, i ≥ k2 from g0 to g1. The change in distribu-
tion for sequenceZi happens atmin(k1, k2) fromh0 toh1. We are interested in a sequential
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and decentralized detection procedure for sensor 1, i.e., a stopping timeν1(X,Z), based
on the sequencesX andZ, and a sequential and decentralized procedure for sensor 2, i.e.,
a stopping timeν2(Y, Z), based on the sequencesY andZ so as to minimize the delay of
the detection of the respective change-points, while maintaining an upper boundα on the
false alarm rates.

One could treat these two sequential change-point detection problem as separate, ig-
noring the shared sequenceZ. In a collaboration with Ram Rajagopal, we proposed a de-
centralized sequential detection method that involve sharing information between the two
sensors. Specifically, the two sequential procedures devised for each of two sensors also
exploit the information passed by the other sensor. We show that the resulting procedures
exhibit shorter detection delay times than the method that treat the two detection problems
separately[Rajagopal and Nguyen, 2007]. It is of significant interest to extend this idea to
the setting of multiple sensors.

7.4 Minimax rate for divergence estimation

In comparison to the problem of estimating divergence functionals (which are integrals of
two densities), the problem of estimating integrals of a single density has been studied more
extensively by[Bickel and Ritov, 1988; Donoho and Liu, 1991; Birgé and Massart, 1995;
Laurent, 1996] and others.

Let φ be a smooth function of one variable, andf belongs to some class ofd-dim
densities of smoothnessα. Then, the optimal minimax rate for estimatingT (f) =

∫
φ(f)

is n−1/2 whenα > d/4, andn−4α/(4α+d) whenα ≥ d/4.
In the case of divergences of the form

∫
φ(f, g), it is of interest to find the optimal

minimax rate. By fixing a density, sayg, to be known, the minimax rate of an integral of
two densities cannot be better than that of one density. However, does there still exist a
critical threshold of smoothness for bothf andg above which the integral can be estimated
at the semiparametric raten−1/2? It seems that such a threshold does exist for integrals of
two densities.1 Note that our estimation method developed in Chapter6 yields only the rate
of n−2α/(2α+d), which is always worse thann−1/2. This is perhaps due to the fact that our
estimator is essentially a linear estimator.

1 Personal communication with Peter Bickel, who suggested a suite of estimation methods studied
in [Bickel et al., 1998].
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7.5 Connection to dimensionality reduction and fea-
ture selection

Both decentralized detection problem and dimensionality reduction or feature selection
problem can be viewed as instances of an experiment design problem: In a decentralized
detection problem, the design is the quantization rules applied across dimensions of data;
in a dimensionality reduction problem, the design is the transformation of the original data
to lower dimensional data; in a feature selection problem, the design is a combinatorial
choice of a subset of dimensions.

There is a huge literature on the development of efficient algorithms and their analy-
sis in the context of (parametric) linear regression and basis pursuit (see, e.g.,[Tibshirani,
1996; Tropp, 2004; Tropp, 2006; Donoho, 2004; Candes and Tao, 2005; Fu and Knight,
2000; Fan and Li, 2001; Fan and Peng, 2004; Wainwright, 2006]), graph structure learn-
ing [Meinshausen and Buhlmann, 2006], classification[van de Geer, to appear], and non-
parametric regression and density estimation[Lafferty and Wasserman, 2005; Liu et al.,
2007]. With the exception of the last two references, the majority of the cited work consid-
ered variations ofl1 relaxation method to obtain computationally efficient algorithms with
good statistical properties. It would be interesting to exploit the connection of these prob-
lems to decentralized detection problems to devise more efficient procedures that overcome
the computational intractability of the learning of quantization rules. At the same time, it is
interesting to explore potential applications of the correspondence between surrogate losses
and divergences to devise and study alternative surrogate losses for the existing feature se-
lection and dimensionality reduction algorithms in the literature.
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