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Abstract

We establish a general correspondence between two classes of statistical functions: Ali-
Silvey distances (also known as f -divergences) and surrogate loss functions. Ali-Silvey
distances play an important role in signal processing and information theory, for instance
as error exponents in hypothesis testing problems. Surrogate loss functions (e.g., hinge
loss, exponential loss) are the basis of recent advances in statistical learning methods for
classification (e.g., the support vector machine, AdaBoost). We provide a connection be-
tween these two lines of research, showing how to determine the unique f -divergence
induced by a given surrogate loss, and characterizing all surrogate loss functions that real-
ize a given f -divergence. The correspondence between f -divergences and surrogate loss
functions has applications to the problem of designing quantization rules for decentral-
ized hypothesis testing in the framework of statistical learning (i.e., when the underlying
distributions are unknown, but the learner has access to labeled samples).

1 Introduction

The class of Ali-Silvey distances or f -divergences plays a fundamental role in statistics, signal
processing, information theory and related fields [1, 7]. Many of these divergences arise natu-
rally as error exponents in an asymptotic setting. For instance, the Kullback-Leibler divergence
specifies the exponential rate of decay of error probability in the Neyman-Pearson setting, and
the Chernoff distance appears as the corresponding error exponent in a Bayesian setting [6, 4].
Motivated by such connections, various researchers from the 1960’s onwards—studying prob-
lems such as signal selection or quantizer design in hypothesis testing—advocated the maxi-
mization of various types of f -divergences so as to sidestep the intractable problem of mini-
mizing the probability of error directly [e.g., 9, 12, 16].

A similar set of issues has arisen in recent years in the field of statistical learning theory.
Consider, for example, the binary classification problem, in which the learner is given access
to samples from two underlying distributions and is asked to find a discriminant function that
effectively classifies future samples from these distributions. This problem can be formulated
in terms of minimizing the Bayes risk—the expectation of the 0-1 loss. This minimization
problem is intractable, and the recent literature on statistical learning has focused on the notion
of a computationally-tractable surrogate loss function—a convex upper bound on the 0-1 loss.
Many practical and widely-used algorithms for learning classifiers can be formulated in terms
of minimizing empirical averages of such surrogate loss functions. Well-known examples in-
clude the support vector machine based on the hinge loss [5], and the AdaBoost algorithm
based on exponential loss [8]. A number of researchers [e.g., 2, 14, 19] have investigated the
statistical consequences of using such surrogate loss functions— for instance, in character-
izing the properties of loss functions required for consistent learning methods (methods that
approach the minimum of the Bayes risk as the size of the sample grows).

The main contribution of this paper is to establish a connection between these two lines
of research. More specifically, we elucidate a general correspondence between the class of



f -divergences, and the family of surrogate loss functions.1 Our methods are constructive—we
describe how to determine the unique f -divergence associated with any surrogate loss, and
conversely we specify how to construct all surrogate losses that realize a given f -divergence.
This correspondence has a number of interesting consequences. First, it partitions the set of
surrogate loss functions into a set of equivalence classes, defined by the relation of inducing
the same f -divergence measure. Second, it allows various well-known inequalities between f -
divergences [15] to be leveraged in analyzing surrogate loss functions and learning procedures.

This work was partially motivated by the problem of designing local quantization rules for
performing decentralized detection in a sensor network. Our previous work [10] addressed this
decentralized detection problem in the learning setting, in which the underlying hypotheses are
unknown but the learner has access to labeled samples. We developed a practical algorithm for
learning local decision rules at each sensor as well as the fusion center rule, using surrogate loss
functions. The correspondence developed here turns out to be useful in analyzing the statistical
consistency of our procedures, as we discuss briefly in this paper. More broadly, it is interesting
to note that the choice of decentralized decision rules can be viewed as a particular type of
problem in experimental design, which motivated the classical research on f -divergences.

2 Background

We begin with necessary background on f -divergences and surrogate loss functions. We dis-
cuss the role of f -divergences and surrogate loss functions in experimental design problems,
using decentralized detection as an illustrative example.

2.1 Divergence measures

The class of f -divergences or Ali-Silvey distances [1, 7] provides a notion of distance between
probability distributions µ and π. Specializing to discrete distributions for simplicity, we have

Definition 1. Given any continuous convex function f : [0, +∞) → R ∪ {+∞}, the f -
divergence between measures µ and π is given by

If (µ, π) :=
∑

z

π(z)f

(

µ(z)

π(z)

)

. (1)

The Kullback-Leibler divergence is an f -divergence; if we set f(u) = u log u, then defini-
tion (1) yields If (µ, π) =

∑

z µ(z) log µ(z)
π(z)

. Other examples include the variational distance
If (µ, π) :=

∑

z |µ(z) − π(z)| generated by f(u) := |u − 1|, and the (squared) Hellinger
distance If (µ, π) :=

∑

z∈Z(
√

µ(z) −
√

π(z))2 generated by f(u) = 1
2
(
√

u − 1)2,

2.2 Learning methods based on surrogate loss functions

The standard binary classification problem in statistical learning can be stated formally as fol-
lows. Let X be a random vector taking values in some Euclidean space X , and let Y be a
random variable taking values in the label space Y := {−1, +1}. A standard assumption is
that the Cartesian product space X × Y is endowed with some Borel regular probability mea-
sure P , but that P is unknown to the learner. The learner is instead given a collection of i.i.d.
samples from P of the form {(x1, y1), . . . , (xn, yn)}, and the goal is to learn a decision rule.

1Proofs are omitted from this manuscript for lack of space; see [11] for proofs of all of our results.
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Figure 1. (a) Illustration of various convex loss functions that act as surrogates to the 0-1 loss
(solid line). Shown are the hinge loss φ(t) := max(0, 1 − t), the exponential loss φ(t) =
exp(−t) and the logistic loss φ(t) = log[1+exp(−t)]. (b) Decentralized detection system with
S sensors, in which Y is the unknown hypothesis, X = (X1, . . . , XS) is the vector of sensor
observations, and Z = (Z1, . . . , ZS) are the quantized messages transmitted from the sensors
to the fusion center.

More formally, we consider measurable functions γ mapping from X to the real line R; for
any x ∈ X , the associated decision is given by sign(γ(x)). The goal is to choose γ so as to
minimize the Bayes risk—the probability of misclassification P (Y 6= sign(γ(X))).

Defining the 0-1 loss as the function I(t) that is equal to 1 if t ≤ 0 and 0 otherwise (see
Figure 1 for an illustration), we note that the Bayes risk corresponds to the expectation of
I(t): P (Y 6= sign(γ(X))) = E[I(Y γ(X))], where Y γ(X) is known as the margin. This fact
motivates the strategy of choosing γ by minimizing the empirical expectation of the 0-1 loss.
Given the non-convexity of this minimization problem, it is natural to consider instead the
empirical expectation of some convex function φ that upper bounds γ—this “convexifies” the
problem. In fact, a variety of practical algorithms used for classification, including the support
vector machine (SVM) [5] and the AdaBoost algorithm [8], can be understood in this general
framework. The SVM corresponds to replacing 0-1 loss with the hinge loss φ(t) := max(0, 1−
t), whereas the AdaBoost algorithm operates on the exponential loss φ(t) := exp(−t). See
Figure 1(a) for illustrations of these two convex surrogates, as well as the closely related logistic
loss φ(t) = log[1 + exp(−t)].

2.3 Experimental design and decentralized detection

Our focus in this paper is the following extension of the standard binary classification problem.
Suppose that the decision-maker, rather than having direct access to X , only observes some
variable Z ∈ Z that is obtained via a (possibly stochastic) mapping Q : X → Z . The mapping
Q is referred to as an experiment in the statistical literature. We let Q denote the space of all
stochastic experiments Q, and let Q0 denote its deterministic subset. Given a fixed experiment
Q, we can then consider the standard binary classification problem associated with the space
Z–namely, to find a measurable function γ ∈ Γ := {Z → R} that minimizes the Bayes risk
P (Y 6= sign(γ(Z))). When the experiment Q is also allowed to vary, we are led to the broader
question of determining both the classifier γ ∈ Γ, as well as the experiment Q ∈ Q so as to
minimize the Bayes risk.



Decentralized hypothesis testing: An important example of such an experimental design
problem is that of decentralized detection. This problem arises in a variety of applications,
including human decision making, sensor networks, and distributed databases. Figure 1(b)
provides a graphical representation of a binary decentralized detection problem. The system
depicted in the figure consists of a set of S sensors that receive observations from the environ-
ment. The decentralized nature of the system arises from the fact the each sensor is permitted
to relay only a summary message (as opposed to the full observation) back to the central fusion
center. The goal is to design a local decision rule Qi for each sensor i ∈ {1, . . . , S} so as to
to minimize to overall probability of error. Note that the choice of these decision rules can be
viewed as a choice of experiments in the statistical sense. There is a considerable literature on
such problems when the distributions are known [18, 3, 17]. In contrast, our previous work [10]
has focused on the statistical learning setting, in which the decision rules must be designed on
the basis of labeled samples.

Approaches to experimental design: We now return to the problem of choosing both the
classifier γ ∈ Γ, as well as the experiment choice Q ∈ Q so as to minimize the Bayes risk.
Given priors q = P (Y = −1) and p = P (Y = 1), define nonnegative measures µ and π:

µ(z) = P (Y = 1, z) = p

∫

x

Q(z|x)dP (x|Y = 1)

π(z) = P (Y = −1, z) = q

∫

x

Q(z|x)dP (x|Y = −1).

As a consequence of Lyapunov’s theorem, the space of {(µ, π)} obtained by varying Q ∈ Q
(or Q0) is both compact and convex [cf. 16]. For simplicity, in this paper, we assume that the
space Q is restricted such that both µ and π are strictly positive measures.

One approach to choosing Q is to define an f -divergence between µ and π; indeed this is
the classical approach referred to earlier [e.g., 12]. Rather than following this route, however,
we take an alternative path, setting up the problem in terms of the expectation of a surrogate
loss φ, a quantity that we refer to as the “φ-risk”:

Rφ(γ,Q) = E[φ(Y γ(Z))] =
∑

z

φ(γ(z))µ(z) + φ(−γ(z))π(z). (2)

This representation of the φ-risk in terms of µ and π allows us to compute the optimal value
of γ(z) for all z ∈ Z , as well as the optimal φ-risk for a fixed Q. Let us define, for each Q,
Rφ(Q) := infγ∈Γ Rφ(γ,Q).

2.3.1 Illustrative examples

We illustrate this calculation using the four loss functions shown in Figure 1.

0-1 loss. If φ is 0-1 loss, then γ(z) = sign(µ(z) − π(z)). Thus the optimal Bayes risk given
a fixed Q takes the form

Rbayes(Q) =
∑

z∈Z

min{µ(z), π(z) =
1

2
− 1

2

∑

z∈Z

|µ(z) − π(z)| =
1

2
(1 − V (µ, π)),

where V (µ, π) :=
∑

z∈Z |µ(z) − π(z)| denotes the variational distance between two measures
µ and π.



Hinge loss. Consider the hinge loss φhinge(yγ(z)) = (1− yγ(z))+, illustrated in Figure 1. In
this case, the optimal decision rule is γ(z) = sign(µ(z) − π(z)), so that that optimized φ-risk
takes the form

Rhinge(Q) =
∑

z∈Z

2 min{µ(z), π(z)} = 1 −
∑

z∈Z

|µ(z) − π(z)| = 1 − V (µ, π) = 2Rbayes(Q).

(3)

Logistic loss. For the logistic loss φlog(yγ(z)) := log
(

1 + exp−yγ(z)
)

, the optimal decision

rule is given by γ(z) = log µ(z)
π(z)

. Calculating the optimized risk, we obtain

Rlog(Q) =
∑

z∈Z

µ(z) log
µ(z) + π(z)

µ(z)
+π(z) log

µ(z) + π(z)

π(z)
= log 2−KL(µ||µ + π

2
)−KL(π||µ + π

2
),

where KL(U, V ) denotes the Kullback-Leibler (KL) divergence. (The quantity C(U, V ) :=
KL(U ||U+V

2
) + KL(V ||U+V

2
) is known as the capacitory discrimination distance).

Exponential loss: Now considering the exponential loss φexp(yγ(z)) = exp(−yγ(z)), we
calculate the optimal decision rule γ(z) = 1

2
log µ(z)

π(z)
. Thus we have

Rexp(Q) =
∑

z∈Z

2
√

µ(z)π(z) = 1 −
∑

z∈Z

(
√

µ(z) −
√

π(z))2 = 1 − 2h2(µ, π),

where h(µ, π) denotes the Hellinger distance between measures µ and π.
Observe that all of the distances given above are particular instances of f -divergences.

This fact hints at a deeper connection between optimized φ-risks and f -divergences that we
elucidate in the following section.

3 Correspondence between divergence and surrogate loss

In this section, we develop the correspondence between f -divergences and loss functions. We
begin by providing a more precise definition of the notion of a surrogate loss function.

3.1 Properties of surrogate loss functions

First, we require that any surrogate loss function φ is continuous and convex. Second, the
function φ must be classification-calibrated [2], meaning that for any a, b ≥ 0 and a 6= b,
infα:α(a−b)<0 φ(α)a + φ(−α)b > infα∈R φ(α)a + φ(−α)b. To gain intuition for these require-
ments, recall the representation of the φ-risk given in equation (2): it implies that given a
fixed Q, the optimal γ(z) takes a value α that minimizes φ(α)µ(z) + φ(−α)π(z). In order
for the decision rule γ to behave equivalently to the Bayes decision rule, we require that the
optimal value of α (which defines γ(z)) should have the same sign as the Bayes decision rule
sign(P (Y = 1|z) − P (Y = −1|z)) = sign(µ(z) − π(z)).

It can be shown [2] that in the convex case φ is classification-calibrated if and only if it is
differentiable at 0 and φ′(0) < 0. Lastly, let α∗ = infα{φ(α) = inf φ}. If α∗ < +∞, then for
any δ > 0, we require that

φ(α∗ − δ) ≥ φ(α∗ + δ) (4)

The interpretation of condition (4) is that one should penalize deviations away from α∗ in the
negative direction at least as strongly as deviations in the positive direction; this requirement is
intuitively reasonable given the margin-based interpretation of α.



3.2 From φ-risk to f -divergence

We begin with a simple result that formalizes how any φ-risk induces a corresponding f -
divergence. More precisely, the following lemma proves that the optimal φ-risk for a fixed
Q can be written as the negative of an f -divergence between µ and π.

Lemma 2. For each fixed Q, let γQ denote the optimal decision rule. The φ-risk for (Q, γQ) is
an f -divergence between µ and π for some convex function f :

Rφ(Q) = −If (µ, π). (5)

Proof. The optimal φ-risk takes the form:

Rφ(Q) =
∑

z∈Z

inf
α

(φ(α)µ(z) + φ(−α)π(z)) =
∑

z

π(z) inf
α

(

φ(−α) + φ(α)
µ(z)

π(z)

)

.

For each z let u = µ(z)
π(z)

, then infα(φ(−α)+φ(α)u) is a concave function of u (since minimiza-
tion over a set of linear function is a concave function). Thus, the claim follows by defining

f(u) := − inf
α

(φ(−α) + φ(α)u). (6)

3.3 From f -divergence to φ-risk

In the remainder of this section, we explore the converse of Lemma 2. Given a divergence
If (µ, π) for some convex function f , does there exists a function φ for which Rφ(Q) =
−If (µ, π)? We provide a precise characterization of the set of f -divergences that can be real-
ized in this way, as well as a constructive procedure for determining all φ that realize a given
f -divergence.

Our method requires the introduction of several intermediate functions. First, let us define,
for each β, the inverse mapping φ−1(β) := inf{α : φ(α) ≤ β}, where inf ∅ := +∞. Using the
function φ−1, we then define a new function Ψ : R → R by

Ψ(β) :=

{

φ(−φ−1(β)) if φ−1(β) ∈ R,

+∞ otherwise.
(7)

Note that the domain of Ψ is Dom(Ψ) = {β ∈ R : φ−1(β) ∈ R}. Define

β1 := inf{β : Ψ(β) < +∞} and β2 := inf{β : Ψ(β) = inf Ψ}. (8)

It is simple to check that inf φ = inf Ψ = φ(α∗), and β1 = φ(α∗), β2 = φ(−α∗). Furthermore,
Ψ(β2) = φ(α∗) = β1, Ψ(β1) = φ(−α∗) = β2. With this set-up, the following lemma captures
several important properties of Ψ:

Lemma 3. (a) Ψ is strictly decreasing in (β1, β2). If φ is decreasing, then Ψ is also decreas-
ing in (−∞, +∞). In addition, Ψ(β) = +∞ for β < β1.

(b) Ψ is convex in (−∞, β2]. If φ is decreasing, then Ψ is convex in (−∞, +∞).

(c) Ψ is lower semi-continuous, and continuous in its domain.

(d) There exists u∗ ∈ (β1, β2) such that Ψ(u∗) = u∗.

(e) There holds Ψ(Ψ(β)) = β for all β ∈ (β1, β2).



The connection between Ψ and an f -divergence arises from the following fact. Given the
definition (7) of Ψ, it is possible to show that

f(u) = sup
β∈R

(−βu − Ψ(β)) = Ψ∗(−u), (9)

where Ψ∗ denotes the conjugate dual of the function Ψ. Hence, if Ψ is a lower semicontinuous
convex function, it is possible to recover Ψ from f by means of convex duality [13]: Ψ(β) =
f ∗(−β). Thus, equation (7) provides means for recovering a loss function φ from Ψ. Indeed,
the following theorem provides a constructive procedure for finding all such φ when Ψ satisfies
necessary conditions specified in Lemma 3:

Theorem 4. (a) Given a lower semicontinuous convex function f : R → R, define:

Ψ(β) = f ∗(−β). (10)

If Ψ is a decreasing function satisfying the properties specified in parts (c), (d) and (e) of
Lemma 3, then there exist convex continuous loss functions φ for which (5) and (6) hold.
(b) More precisely, all such functions φ are of the form: For any α ≥ 0,

φ(α) = Ψ(g(α + u∗)), and φ(−α) = g(α + u∗), (11)

where u∗ ∈ (β1, β2) satisfies Ψ(u∗) = u∗ and g : [u∗, +∞) → R is any increasing continuous
convex function such that g(u∗) = u∗. Moreover, g is differentiable at u∗+ and g′(u∗+) > 0.

One interesting consequence of Theorem 4 that any realizable f -divergence can be obtained
from a fairly large set of φ loss functions. Indeed, Theorem 4(b) reveals that for α ≤ 0, we
are free to choose a function g that must satisfy only mild conditions; given a choice of g, then
φ is specified for α > 0 by equation (11). We describe below how the Hellinger distance, for
instance, is realized not only by the exponential loss (as described earlier), but also by many
other surrogate loss functions.

3.4 Illustrative examples

We provide a few examples to illustrate Theorem 4; see [11] for additional examples.

Hellinger distance: As a first example, consider Hellinger distance, which is an f -divergence2

with f(u) = −2
√

u. Augment the domain of f with f(u) = +∞ for u < 0. Following the
prescription of Theorem 4(a), we first recover Ψ from f :

Ψ(β) = f ∗(−β) = sup
u∈R

(−βu − f(u)) =

{

1/β when β > 0

+∞ otherwise.

Clearly, u∗ = 1. Now if we choose g(u) = eu−1, then we obtain the exponential loss φ(α) =
exp(−α). However, making the alternative choice g(u) = u, we obtain the function φ(α) =
1/(α + 1) and φ(−α) = α + 1, which also realizes the Hellinger distance.

2We consider f -divergences for two convex functions f1 and f2 to be equivalent if f1 and f2 are related by a
linear term, i.e., f1 = cf2 + au + b where c > 0, because then If1

and If2
differ by a constant.



0-1 loss: Recall that we have shown previously that the 0-1 loss induces the variational dis-
tance, which can be expressed as an f -divergence with fvar(u) = −2 min(u, 1) for u ≥ 0. It is
thus of particular interest to determine other loss functions that also lead to variational distance.
If we augment the function fvar by defining fvar(u) = +∞ for u < 0, then we can recover Ψ
from fvar as follows:

Ψ(β) = f ∗
var(−β) = sup

u∈R

(−βu − fvar(u)) =

{

(2 − β)+ when β ≥ 0

+∞ when β < 0.

Clearly u∗ = 1. Choosing g(u) = u leads to the hinge loss φ(α) = (1 − α)+, consistent
with our earlier findings. Making the alternative choice g(u) = eu−1 leads to a rather different
loss—namely, φ(α) = (2 − eα)+ for α ≥ 0 and φ(α) = e−α for α < 0—that also realizes the
variational distance.

Remark: It is worth noting that not all f -divergences can be realized by a (margin-based)
surrogate loss. The list of non-realizable f -divergences includes the KL divergence KL(µ||π)
(as well as KL(π||µ)). Interestingly, however, the symmetric KL divergence KL(µ||π) +
KL(π||µ) is a realizable f -divergence. One of the corresponding φ losses constructed via
Theorem 4 turns out to have the simple closed-form expression φ(α) = e−α − α; see [11].

4 Equivalence of loss functions and decentralized detection

The previous section was devoted to study of the correspondence between f -divergences and
the optimal φ-risk Rφ(Q) for a fixed experiment Q. Recall that our ultimate goal is that of
solving the experimental design problem of choosing an optimal Q. As discussed previously,
the function Q might correspond to a local decision rule in a sensor network [16, 10].

Our approach to this problem is the natural one of jointly optimizing the φ-risk (or more
precisely, its empirical version) over both the decision γ and the choice of experiment Q (here-
after referred to as a quantizer). This procedure raises the natural theoretical question: for
what loss functions φ does such joint optimization lead to minimum Bayes risk? Note that
the minimum here is taken over both the decision rule γ and the space of experiments Q, so
that this question is not covered by standard consistency results [19, 14, 2]. To this end, we
shall consider the comparison of loss functions and the comparison of quantization schemes.
Then we describe how the results developed herein can be leveraged to resolve the issue of
consistency of learning optimal quantizer design from empirical data.

Universal equivalence of loss functions: We begin by introducing a notion of equivalence
between arbitrary loss functions φ1 and φ2, or alternatively between the corresponding diver-
gences induced by f1 and f2.

Definition 5. The surrogate loss functions φ1 and φ2 are universally equivalent, denoted by
φ1

u≈ φ2 (and f1
u≈ f2), if for any P (X,Y ) and quantization rules Q1, Q2, there holds:

Rφ1
(Q1) ≤ Rφ1

(Q2) ⇔ Rφ2
(Q1) ≤ Rφ2

(Q2). (12)

The following result provides necessary and sufficient conditions for universal equivalence:

Theorem 6. Suppose that f1 and f2 are differentiable a.e., convex functions that map [0, +∞)

to R. Then f1
u≈ f2 if and only if f1(u) = cf2(u) + au + b for constants a, b ∈ R and c > 0.



If we restrict our attention to convex and differentiable a.e. functions f , then it follows that
all f -divergences universally equivalent to the variational distance must have the form

f(u) = −c min(u, 1) + au + b with c > 0. (13)

As a consequence, the only φ-loss functions universally equivalent to 0-1 loss are those that
induce an f -divergence of this form. One well-known example of such a function is the hinge
loss; more generally, Theorem 4 allows us to construct all such φ.

Consistency in experimental design: The notion of universal equivalence might appear
quite restrictive because condition (12) must hold for any underlying probability measure
P (X,Y ). However, this is precisely what we need when P (X,Y ) is unknown. Assume that
the knowledge about P (X,Y ) comes from an empirical data sample (xi, yi)

n
i=1.

Consider any algorithm (such as that proposed by Nguyen et al. [10]) that involves choosing
a classifier-quantizer pair (γ,Q) ∈ Γ ×Q by minimizing an empirical version of φ-risk:

R̂φ(γ,Q) :=
1

n

n
∑

i=1

∑

z

φ(yiγ(z))Q(z|xi).

More formally, suppose that (Cn,Dn) is a sequence of increasing compact function classes such
that C1 ⊆ C2 ⊆ . . . ⊆ Γ and D1 ⊆ D2 ⊆ . . . ⊆ Q. Let (γ∗

n, Q
∗
n) be an optimal solution to the

minimization problem min(γ,Q)∈(Cn,Dn) R̂φ(γ,Q), and let R∗
bayes denote the minimum Bayes

risk achieved over the space of decision rules (γ,Q) ∈ (Γ,Q). We call Rbayes(γ
∗
n, Q

∗
n)−R∗

bayes

the Bayes error of our estimation procedure. We say that such a procedure is universally
consistent if the Bayes error tends to zero as n → ∞, i.e., for any (unknown) Borel probability
measure P on X × Y ,

lim
n→∞

Rbayes(γ
∗
n, Q

∗
n) − R∗

bayes = 0 in probability.

When the surrogate loss φ is universally equivalent to 0-1 loss, we can prove that suitable
learning procedures are indeed universally consistent. At a high level, our approach leverages
the framework developed by various authors [19, 14, 2] for the case of ordinary classification:
in particular, we exploit the strategy of decomposing the Bayes error into a combination of

(a) approximation error introduced by the bias of the function classes Cn ⊆ Γ: E0(Cn,Dn) =
inf(γ,Q)∈(Cn,Dn) Rφ(γ,Q) − R∗

φ, where R∗
φ := inf(γ,Q)∈(Γ,Q) Rφ(γ,Q).

(b) estimation error introduced by the variance of using finite sample size n, E1(Cn,Dn) =
E sup(γ,Q)∈(Cn,Dn) |R̂φ(γ,Q) − Rφ(γ,Q)|, where the expectation is taken with respect to
the (unknown) probability measure P (X,Y ).

Complete details can be found in the technical report [11].

5 Conclusions

We have presented a general theoretical connection between surrogate loss functions and f -
divergences. As illustrated by our application to decentralized detection, this connection can
provide new domains of application for statistical learning theory. We also expect that this
connection will provide new applications for f -divergences within learning theory; note in
particular that bounds among f -divergences (of which many are known; see, e.g., [15]) induce
corresponding bounds among loss functions.
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