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Abstract. The computational and/or communication constraints associated with
processing large-scale data sets using support vector machines) (8\ddn-
texts such as distributed networking systems are often prohibitively heghltr

ing in practitioners of SVM learning algorithms having to apply the algorithm
on approximate versions of the kernel matrix induced by a certain dedrata
reduction. In this paper, we study the tradeoffs between data reductibtha
loss in an algorithm’s classification performance. We introduce and zaaly
consistent estimator of the SVM'’s achieved classification error, anddégwve
approximate upper bounds on the perturbation on our estimator. Thed isu
shown to be empirically tight in a wide range of domains, making it practwwal f
the practitioner to determine the amount of data reduction given a perhaissib
loss in the classification performarite.
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1 Introduction

The popularity of using support vector machines (SVM) fassification has led to
their application in a growing number of problem domains smécreasingly larger
data sets [1-4]. An appealing key feature of the SVM is thatdhly interface of
the learning algorithm to the data is through its kernel matn many applications,
the communication-theoretic constraints imposed by &tiohs in the underlying dis-
tributed data collection infrastructure, or the computadi bottleneck associated with a
large-scale kernel matrix, naturally requires some degféata reduction. This means
that practitioners usually do not have the resources to thed SVM algorithm on the
original kernel matrix. Instead, they must rely on an apprate, often simplified, ver-
sion of the kernel matrix induced by data reduction.

Consider, for instance, the application of an SVM to a datadask in a distributed
networking system. Each dimension of the covarfatepresents the data captured by a
monitoring device (e.g., network node or sensor), whichticolously ships its datato a
coordinator for an aggregation analysis using the SVM élgor. Due to the communi-
cation constraints between nodes within the network angdiaesr constraints of each

4 The authors would like to thank Michael I. Jordan, Noureddine El Kiaaad Ali Rahimi for
helpful discussions.
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node (e.g., for battery-powered sensors), the monitoréwicds do not ship all of their
observations to the coordinator; rather, they must apfatgly down-sample the data.
From the coordinator’s point of view, the data analysis (M@SVM or any other algo-
rithm) is not applied to the original data collected by thenitaring devices, but rather
to an approximate version. This type of in-network distréaliprocessing protocol has
become increasingly popular in various fields, includingteyns and databases [5, 6],
as well as in signal processing and machine learning [7/3hée case where the coor-
dinator uses an SVM for classification analysis, the SVM ltagss not to the original
data set, but rather to only an approximate version, whiab tlields an approximate
kernel matrix. The amount of kernel approximation is diethby the amount of data
reduction applied by the monitoring devices.

Within the machine learning field, the need for training wathapproximate kernel
matrix has long been recognized, primarily due to the coatpmrtal constraints asso-
ciated with large kernel matrices. As such, there are varioethods that have been
developed for replacing an original kernel matfixwith a simplified versionk: ma-
trices with favorable properties such as sparsity, lovkyaic [10-14].

To our knowledge, there has been very little work focusinghertradeoffs between
the amount of data reduction and the classification accuiiddy issue has only been
recently explored in the machine learning community; s&fdr a general theoretical
framework. Understanding this issue is important for le@agralgorithms in general,
and especially for SVM algorithms, as it will enable theiphgation in distributed
systems, where large streams of data are generated irbdisttidevices, but not all
data can be centrally collected. Furthermore, the tradewffysis has to be achieved in
simple terms if it is to have impact on practitioners in apglfields.

The primary contribution of this paper is an analysis of ttagl¢off between data
reduction and the SVM classification error. In particulag, am to produce simple and
practically useful upper bounds that specify the amounbs$ lof classification accu-
racy for a given amount of data reduction (to be defined fdyhalo this end, the
contributions are two-fold: (i) First, we introduce a noestimate, called thelassifica-
tion error coefficient”, for the classification error produced by the SVM, and privat t
it is a consistent estimate under appropriate conditiohs.derivation of this estimator
is drawn from the relationship between the hinge loss (usetthd SVM) and the 0-1
loss [16]. (ii) Second, using the classification error coedfitC' as a surrogate for the
classification accuracy, we introduce upper bounds on taegéinC' given an amount
of data reduction. Specifically, Idt be the kernel matrix on the original data that we
don't have access tdy the kernel matrix induced by data reduction, and suppoge tha
each element o\ = K — K has variance bounded by. Let C be the classification
error coefficient associate . We express an upper bound @f— C' in terms ofo
and matrixk. The bound is empirically shown to be remarkably tight foridewange
of data domains, making it practical for the practitionettod SVM to determine the
amount of data reduction given a permissible loss in thesiflaation performance.

The remainder of the paper is organized as follows: in Se@jave provide back-
ground information about the SVM algorithm, and descritedbntexts that motivate
the need for data reduction and approximate kernel matiic&ection 3, we describe
the main results of this paper, starting with a derivatiod eonsistency analysis of the
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classification error coefficien®', and then presenting upper bounds on the change of
C due to kernel approximation; in Section 4, we present an eoapevaluation of our
analyses; and in Section 5, we discuss our conclusions.

2 SVM, data reduction and kernel matrix approximation

2.1 SVM Background

In a classification algorithm, we are given as our trainingeai.i.d. samplegz;, v;) ,
in X x {£1}, whereXx denotes a bounded subseftstf. A classification algorithm in-
volves finding a discriminant function = sign(f(x)) that minimizes the classification
error P(Y # sign(f(X))).

Central to a kernel-based SVM classification algorithm is tiotion of a kernel
function K (x, 2') that provides a measure of similarity between two data paireind
z' in X. Technically,K is required to be a symmetric positive semidefinite kernef. F
such a function, Mercer’s theorem implies that there musttexreproducing kernel
Hilbert spaceH = sparf{®(x)|xz € X'} in which K acts as an inner product, i.e.,
K(z,2") = (P(x), P(2')). The SVM algorithm chooses a linear function in this feature
spacef(x) = (w, ®(x)) for somew that minimizes the regularized training error:

m

min L ;qs(y,»f(xi)) + A [W]1%/2. (2)

Here),,, denotes a regularization parameter, ardknotes an appropriate loss function
that is a convex surrogate to the 0-1 Idgég # sign(f(x))). In particular, the SVM
uses hinge losg(y f(x)) = (1 — yf(x))+ [3]. It turns out that the above optimization
has the following dual formulation in quadratic programgiin

1 1
For notational convenience, we define matghsuch that;; = K(x;,z;)y;y;. The
solution o of the above dual formulation defines the optinfahnd w of the primal
formulation via the following:

W= % Z a; P(x;) (3)
moi=1
f(z) = mi\m ZaiK(xi,x). 4)

i=1

2.2 In-network data reduction and approximate kernel matrices

As seen from the dual formulation (2), the kernel mafkix= { K (x;, x;); ;} and the
label vectory = [y, ..., ym] form sufficient statistics of the SVM. However, there is
substantial previous work that focuses on the applicatf@n@&VM to an approximate
version K of the kernel matrix from data reduction. We extend this wirocus in
particular on the application of SVM in distributed systenvieonments.
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Suppression of data streams and data quantization in digteid systemsA primary
motivation regarding this work is the application of SVMskd classification analysis
to distributed settings in a number of fields, including Bates, distributed systems,
and sensor networks [5, 6, 9]. In a distributed system gpttimere ared monitoring
devices which receive streams of raw data representedibgimensional covariat&’
and send the data to a central coordinator for classificatiatysis. Because of commu-
nication constraints, each monitoring devices cannot sdrith received data; instead,
they must send as little data as possible.eAuppression algorithm is frequently used:
each monitoring deviceg j = 1, ..., d, send the-th data point to the coordinator only
if: | X7 — X/ || > e. Using these values, the coordinator reconstructs an =ippate
view X of the true dataX, such that] X — X||., < e. A key question in the design of
such systems is how to determine the data reduction paramejiven a permissible
level of loss in the classification accuracy.

In signal processing, data reduction is achieved by quatitiz or binning: each
dimension ofX is discretized into a given number of bins before being serthé
central coordinator [7, 8]. The bin size is determined byrhenber of bits available
for transmission: for bins of equal size the number of bins is proportional /e,
corresponding to usinpg(1/€) number of bits. As before, the coordinator receives
an approximate versioi, such that| X — X| .. < e. OnceX is received by the
coordinator, one obtains an approximate kernel matrix kphapg the kernel function
K to X. Suppose that a Gaussian kernel with width parameter0 is used, then we

obtain the approximate kern&l asK (X;, X;) = exp (—%)

Kernel matrix sparsification and approximatioBeside applications in in-network and
distributed data processing, a variety of methods have degised to approximate
a large kernel matrix by a more simplified version with dddigproperties, such as
sparsity and low-rank (e.g., [L0-14]). For instance, [Iffposes a simple method to
approximatei by randomly zeroing out its entries:

~ _ ~ _ [ 0 with probabilityl — 1/,
Kij = Rji = {51@,— with probability1/5,

wheres > 1 controls the degree of sparsification on the kePrighis sparsification was
shown to greatly speed up the construction and significaatiyce the space required
to store the matrix. Our analysis can also be applied to aedlye tradeoff of kernel
approximation error and the change in classification error.

3 Classification error coefficient and effects of data redudbn

We begin by describing the set-up of our analysis. Kebe a (random) kernel matrix
that is an approximate version of kernel mathixinduced by a data reduction scheme
described above (e.g., quantization or suppression)CLetndCy be the (population)

5 This method may not retain the positive definiteness of the kernel matvizizh case positive
values have to be added to the matrix diagonal.
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classification error associated with the SVM classifieneediwith kernel matrix<” and

K, respectively. We wish to bound’, — Cy| in terms of the “magnitude” of the error
matrix A = K — K, which we now define. For a simplified analysis, we make the
following assumption about the error mateik

A0. Conditioned onk andy, all elements:;; (i,5 = 1,...,m;i # j) of A are uncor-
related, have zero mean, and the variance bounded by

We uses to control the degree of our kernel matrix approximationesoh, abstracting
away from further detail. It is worth noting that certain ker matrix approximation
schemes may not satisfy the independence assumption. @mé¢heand, it is possible
to incorporate the correlation of elementsdfnto our analysis. On the other hand, we
find that the correlation is typically small, such that elation does not significantly
improve our bounds in most cases.

Our ultimate goal is to produce practically useful boundgin- Cy in terms ofo
and kernel matrix<’. This is a highly nontrivial task, especially since we haveess
only to approximate data (throughi, but notK).

3.1 Classification error coefficient

In order to quantify the effect on the population SVM classifion errorCy, we first
introduce a simple estimate 6% from empirical data. In a nutshell, our estimator relies
on the following intuitions:

1. The SVM algorithm involves minimizing over a surrogatsddthe hinge loss),
while we are interested in the performance in terms of 0-&.1@d&us, we need to
be able to compare between these two losses.

2. We are given only empirical data, and we replace the risk|ffation expectation
of a loss function) by its empirical version.

3. We avoid terms that are “nonstable” for the choice of leayparameters, which is
important for our subsequent perturbation analysis.

The first key observation comes from the fact that the opterpectedy-risk using the
hinge loss is shown to be twice the optimal Bayes error (ising 0-1 loss) (cf. [16],
Sec. 2.1):

min P(Y # (X)) = 5 min Eo(Y f(X), Q

where F denotes an arbitrary class of measurable functions thaaicenthe optimal
Bayes classifier.

Note that we can estimate the optimal expectetkk by its empirical version de-
fined in Eqgn. (1), which equals its dual formulation (2). keetbe the solution of (1).
As shown in the proof of Theorem 1, X,,, — 0 sufficiently slowly asm — oo, the
penalty term\,,, ||w||? vanishes as» — oo. Due to (3), the second quantity in the dual
formulation (2) satisfies

1

S O iy K (@i, 2;) = A [[2/2 = 0.
m Y
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As a result, we have:

. 1 &
inf E¢(Y f(X)) + Am|w|?/2 = — i = Al W% /2. 6
Jdnf E(Y (X)) + AW/ m;a [[W[|=/ (6)
Approximating the optimad-risk in (5) by its empirical version ovétt, and drop-

ping off the vanishing term,,, |||? from Eqn. (6), we obtain the following estimate:

Definition 1. Let « be the solution of the SVM’s dual formulati¢®), the following
quantity is called thelassification error coefficient:

1 m

An appealing feature af is thatC' € [0, 1/2]. Furthermore, itis a simple function of

As we show in the next section, this simplicity significarftigilitates our analysis of the
effect of kernel approximation error. Applying consistgmesults of SVM classifiers
(e.g., [18]) we can show that is also a universally consistent estimate for the optimal
classification error under appropriate assumptions. Tagsemptions are:

Al. K is auniversal kernel o®’, i.e., the function clas§(w, @(-)|w € H)} is dense in
the space of continuous functions ahwith respect to the sup-norm (see [18] for
more details). Examples of such kernels include the Gaussmel K (z,z') =
exp ( ) among others.

A2. \,, — 0suchthatn),, — .

_ =2’

Theorem 1. Suppose thatX;,Y;)", are drawn i.i.d. from a Borel probability mea-
sure P. Under assumptional and A2, there holds asn — oo:

— inf P(Y X)—0i ility.
C jnf. (Y # f(X)) — 0 in probability.

See the appendix for a proof. It is worth noting that this tasikernel-independent.

Let K, &, f, C denote the corresponding counterparts for kernel métithe dual
formulation’s solutionsy, classifierf, and the classification coefficie@t, respectively.
For the data suppression and quantization setting desddrilf@ection 2, suppose that a
universal kernel (such as Gaussian kernel) is applied to tdginal and approximate
data. By Theorem 1, bott' andC are consistent estimates of the classification error
applied on original and approximate data, respectivelysTthe differenc€ — C can
be used to evaluate the loss of classification accuracy dd¥id. This is the focus of
the next sectiorf

 We make several remarks: (i) The rates at whittand C' converge to the respective mis-
classification rate may not be the same. To understand this issue onetalas itato account
additional assumptions on both the kernel function, and the underlyingbdtion P. (ii)
Although quantization of data does not affect the consistency of theifatatisn error co-
efficient since one can apply the same universal kernel functiondatqued data, quantiz-
ing/approximatinglirectly the kernel matrix (such as those proposed in [17] and described in
Sec. 2) may affect both consistency and convergence rates in dviambranner. An investi-
gation of approximation rates of tlygiantized/sparsifiekernel function class is an interesting
open direction.



SVM, data reduction and approximate kernel matrices 7

3.2 Effects of data reduction on classification error coeffient

In this section, we analyze the effects of the approximatithe kernel matrixx’ — K
on the classification error coefficient difference- C.

Letr = #{i : o; # &;}. From Eqn. (7), the difference of the classification
coefficients is bounded via Cauchy-Schwarz inequality:

- 1. 1 -
€= Cl < o—lla—al < o—Vrlla—al, (8)

from which we can see the key point lies in deriving a tight tbwn theL, norm
& — «||. Define two quantities:

& — alf?
(@—a)TQa—-a)’

Proposition 1. If o and & are the optimal solution of the progra2) using kernel
matrix K and K respectively, then:
T

~ B T
C-Cl<—|la—al < —
c-clsLja-al <L

(a-a)"(Q-Qd

Ry = ~
& — of

Ry =

RiRs.

For a proof, see the Appendix. Although it is simple to derigerous absolute bounds
on R; and R,, such bounds are not practically useful. IndeRd js upper bounded by
the inverse of the smallest eigenvalughfwhich tends to be very large. An alternative
solution is to obtain probabilistic bounds that hold witlyihiprobability, using Prop. 1
as a starting point. Note that given a data reduction schémeg is an induced joint
distribution generating kernel matri¥, its approximate versiok’, as well as the label
vectory. Matrix Q = K oyy” determines the value of vectarthrough an optimization
problem (2). LikewiseQ = K o yy” determinesy. Thus,a anda are random under
the distribution that marginalizes over random matriQesnd(, respectively.

The difficult aspect of our analysis lies in the fact that wendbhave closed forms
of eithera or @, which are solutions of quadratic programs parameterize@ land
Q, respectively. We know a useful fact, however, regardiregdistributions of vector
« anda. Since the training data are i.i.d., the rolesngfanda; for: = 1,...,m are
equivalent. Thusa;, &;) have marginally identical distributions for=1, ..., m.

We first motivate our subsequent perturbation analysis bgtmervation that the
optimal classification error defined by Eq. (5), for whi€his an estimate, is a con-
cave function with respect jointly to the class probabilitigtributions (P(X|Y =
1), P(X]Y = —1)) (cf. [16], Sec. 2). When the data is perturbed (e.g., via quant
zation/suppression) the joint distributid®(X|Y = 1), P(X|Y = —1)) is also per-
turbed. Intuitively, upper bounds for a concave functiovial either linear or second-
order approximation under a small perturbation on its \éeim should also hold under
larger perturbations, even if such bounds tend to be lelsitighe latter situation. See
Fig. 3.2 for an illustration. Thus, to obtain useful probistic bounds onC' — C, we
restrict our analysis to the situation whefkeis a small perturbation from the original
matrix K. Under a small perturbation, the following assumptionslmamade:
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L o

Fig. 1. lllustration of upper bounds via perturbation analysis: Linear appraiimg; and upper
boundg: via second-order perturbation analysis of a concave funéianound a point in the
domain. The bounds continue to hold for large perturbation araynd

B1l. The random variables; — «; fori = 1,...,n are non-correlated.
B2. The random variable®; — «; have zero means.

Given Assumption B1, coupled with the fact tiat, — «;) have identical distributions
fori = 1,...,m, by the central limit theorem, as gets large, a rescaled version of
C — C behaves like a standard normal distribution. Using a rdeuktandard normal
random variables, for any constant- 0, we obtain that with probability at least—

1 —t?/2.
Tami€ /2:
G — C < ty/Var(C — C) + E(C — ¢) 4P % Var(d; — a;) + E(C - C)
i=1
t ~ Prop. 1 ¢ ~
_ —_ All2 _ . 2 P2 _
<5 VEla—aP+E(C-C) 'S \/BR}R3+E(C-C).

Our next step involves an observation that under certaimagtons to be described
below, random variabl&; is tightly concentrated around a constant, and B¥a§ can
be easily bounded.

-~ m
- tr(K)
ER} < o’mE||a|*> by Lemma 1 (10)

Ry by Lemma 2 (9)

As a result, we obtain the following approximate bound:

- VmE[a? . ss.52 ,0\/mE[a]?
6o < 2VmElal LR(G o) AeB? TV &l (11)

~ U o0(K) 2tr(K)

where Eqn. (11) is obtained by invoking Assumption B2.

Suppose that in practice we do not have acceds tthentr(X) can be approxi-
mated bytr(K). In fact, for a Gaussian kernel(K) = tr(K) = m. One slight com-
plication is estimatings||a/|?. Since we have only one training sample fét which
induces a single sample fér, this expectation is simply estimated f||*.
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When we choose¢ = 1 in bound (11), the probability that the bound is correct
is approximatelyl — e~'/2/y/2r = 75%. Fort = 2, the probability improves to
1 —e72/2V/21 = 97%. While t = 1 yields relatively tighter bound, we choose= 2
in practice. In summary, we have obtained an approximatediou

~ 112
classif. coeff. (approx. dataj classif. coeff. (original data} UtTf(C)y” (12)
T

Remark.(i) Even though our analysis is motivated by the context ddisperturbations
to the kernel matrix, bound (12) appears to hold up well ircfica whens is large. This
agrees with our intuition on the concavity of (5) discussadier. (i) Our analysis is
essentially that of second-order matrix perturbation Whiaquires the perturbation be
small so that both Assumptions B1 and B2 hold. Regarding &%, £ 1,...,m, each
pair («;, ;) corresponds to thieth training data point, which is drawn i.i.d. As a result,
(o; — &;) are very weakly correlated with each other. We show thatishesnpirically
true through a large number of simulations. (i) Assump##his much more stringent
by comparison. Whelk is only a small perturbation of matrik’, we have also found
through simulations that this assumption is very reasanadpecially in the contexts
of the data quantization and kernel sparsification methedsribed earlier.

3.3 Technical issues

Probabilistic bounds of R; and R,. Here we elaborate on the assumptions under
which the probabilistic bounds fd®; and R, are obtained, which motivate the approx-
imation method given above. Starting willy, it is simple to obtain:

Lemma 1. Under Assumptiod0, ERy < \/ER3 < a/mE[||a|?|].

See the Appendix for a proof. Turning to the inverse of R&l&jgotient termk;, our
approximation is motivated by the following fact, which idieect consequence of Thm
2.2. of [19]:

Lemma 2. Let A be fixedm x m symmetric positive definite matrix wittounded
eigenvalues\y, ..., \,,, andz be anm-dim random vector drawn from any spherically
symmetric distribution,

Elz" Az/||2[|*] = tr(A)/m

VarlsT Al = 2 (3 A = (3 /m)?)

By this result,>” Az/||z||> has vanishing variance as — oo. Thus, this quantity is
tightly concentrated around its mean. Note thatr{fA) /m is bounded away from O,
we can also approximate/ 27 Az by m/tr(A). This is indeed the situation with most
kernels in practice: As: becomes largey(K)/m — EK (X, X) > 0. As a result, we
obtain approximation (9).
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It is worth noting that the “goodness” of this heuristic apgmation relies on the
assumption that: — & follows an approximately spectrally symmetric distrilouti On
the other hand, the concentration of the Raleigh quotienm tdso holds under more
general conditions (cf. [20]). An in-depth analysis of swtinditions ona and & is
beyond the scope of this paper.

3.4 Practical Issues

The bound we derived in Egn. (12) is readily applicable tafical applications. Re-
call from Section 2 the example of the detection task in aibligied networking system
using a SVM. Each monitoring device independently appligaantization scheme on
their data before sending to the coordinator. The size ofjttantized bin is. Equiv-
alently, one could use astsuppression scheme similar to [9]. The coordinator (e.g.,
network operation center) has access only to approximateXiabased on which it
can comput&’, K, & by applying a SVM onX. Givene, one can estimate the amount
of kernel matrix approximation errar and vice versa (see, e.g., [9]). Thus, Eqn. (12)
gives the maximum possible loss in the classification acyudae to data reduction.
The tightness of bound (12) is crucial: it allows the préatier to tune the data reduc-
tion with good a confidence on the detection performance eftstem. Conversely,
suppose that the practitioner is willing to incur a loss @fssification accuracy due to
data reduction by an amount at mésihen, the appropriate amount of kernel approx-
imation due to data reduction is:

6 - tr(K)

of = L (13)
m|a?

4 Evaluation

In this section, we present an empirical evaluation of owalysis on both synthetic
and real-life data sets. For exhaustive evaluation of theWer of the classification
error coefficient”' and the tradeoff analysis captured by bound (12), we replicar
experiments on a large number of of synthetic data sets fafrdift types in moderate
dimensions; for illustration in two dimensions, see Fig @ dEmonstrate the practical
usefulness of our analysis, we have tested (12) on nindifealata sets (from the UCI
repository [21] and one light sensor data set from the IRBoatory [7]), which are
subject to varying degrees of data reduction (quantizdiits). The data domains are
diverse, including satellite images, medicine, biologysi@ulture, handwritten digits,
and sensor network data, demonstrating the wide appligabflour analysis.

Evaluation of estimaté€’. The first set of results in Fig. 3 verify the relationship be-
tween the classification error coefficigritand test error on held-out data under varying
conditions on: (i) overlap between classification classebf{gs (a—b)), (i) sample sizes
(subfigs (c—d)) and (iii) amount of data reduction (subfigs)jelt is observed that
C estimates the test error very well in all such situationsbfoth simulated and real
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(a) Gaussian data (b) Sin-sep data (c) Sphere-int data

Fig. 2. Synthetic data sets illustrated in two dimensions.

data sets, and even when the misclassification rate is highmfisy data). In particu-
lar, Fig. 3 (e)(f) show scatter plots comparing C againdteer. Each path connects
points corresponding to varying amount of data reductiothensame data set. They
are very closely parallel to the = z line, with the points in the upper-right corner
corresponding to the most severe data reduction.

Effects of data reduction on test errddext, we evaluate the effect of data reduction via
quantization (suppression). Fig. 4 plots the misclassifinaate for data sets subject to
varying degree of quantization, and the upper bound deedlopthis paper. Our bound
is defined as a sum of test error on original (non-quantized det plus the upper
bound ofC' — C provided by (12). As expected, the misclassification ratesiases as
one decreases the number of quantization bits. What is rexlarks that our upper
bound on the approximate data set is very tight in most ca$eseffectiveness of our
bound should allow the practitioner to determine the righbant of quantization bits
given a desired loss in classification accuracy.

It is worth highlighting that although our bound was derivesihg the viewpoint of
(small) stochastic perturbation analysis (iceis small, and number of quantization bits
is large), in most cases the bound continues to hold up fgelaand small number
of bits), even if it is becomes less tight. This strengtheusintuition based on the
concavity of the optimal Bayes error. Note also that undealsperturbation (smalt)
the mean of difference of test error in original data and egipnate data is very close
to 0. This provides a strong empirical evidence for the liof Assumption B2.

We also applied our analysis to study the tradeoff betweenekepproximation
and classification error in the context of kernel sparsificasampling described in
Section 2. The bounds are still quite good, although theynateas tight as in data
guantization (see Fig. 5). Note that in one case (subfigtt@)classification error actu-
ally decreases as the kernel becomes sparser, but our uppst fails to capture such
phenomenon. This is because in contrast to data reductitimong direct approxima-
tion schemes on the kernel matrix may influence the appraiomarror rate of the
induced kernel function class in a nontrivial manner. Thipext is not accounted for
by our classification error coefficient (see remarks following Theorem 1).
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Fig. 3. Comparison betweefi’ and the test error under varying conditions: (a—b) varying amount
of overlap between two classes (both training and test data sets haGesajfle points. Error
bars are derived from 25 replications); (c—d) varying sample s{ee$) varying amount of data
reduction via scatter plots (each path in the scatter plots connects poirgspmmding to varying
number of quantization bits ranging from 8 in low-left corner to 2 bits in wpjght corner); (g—

i) varying amount of data reduction via error bar plots. All plots skiéwemains a good estimate
of the test error even with data reduction. We use Gaussian kernelsdgpariments.

5 Conclusion

In this paper, we studied the tradeoff of data reduction dassiication error in the
context of the SVM algorithm. We introduced and analyzed timeate of the test er-
ror for the SVM, and by adopting a viewpoint of stochastic nixgterturbation theory,
we derived approximate upper bounds on the test error foS¥d in the presence
of data reduction. The bound’s effectiveness is demorstriata large number of syn-
thetic and real-world data sets, and thus can be used tamatethe right amount of
data reduction given a permissible loss in classificatiaueazy in applications. Our
present analysis focuses mainly on the effect of data remtuah the classification error
estimateC' while ignoring the its effect on approximability and the appmation rate
of the quantized (or sparsified) kernel function class. Aetimg for the latter is likely
to improve the analysis further, and is an interesting opsearch direction.
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Fig. 4. Upper bounds of test error on approximate data due to quantization lisingl (12).
(a—c) Simulated data sets with 2, 5, 10 features, respectively; (d)shhasdtellite data (6435
sample size, 36 features); (e) Wisconsin breast cancer data (Bfjflessize, 30 features); (f)
Waveform data (5000 sample size, 21 features); (g) Pen-Basegniton of digits data (10992
sample size, 16 features); (h) Ecoli data (336 sample size, 8 fept(iydds data (150 sample
size, 4 features); (j) Wine data (178 sample size, 13 features); (K)@dBio data (145K sample
size, 74 features); (I) Intel Lab light sensor data (81 sample sizes&hires). We use Gaussian
kernels for (a—i), and linear kernels for (j—l). The x-axis shows iase& bit numbers and the
correspondingly decreasing matrix erear
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6 Appendix

Proof sketch of Theorem Let R, (f) :== L 37 | o(Y f(X)), R(f) := E¢(Y f(X)),
and letI(f) = || f|l» for any f € H. To signify the dependence on sample sizeve
shall usef,, in this proof to denote the SVM classifier defined by (4). Thenpt
form (1) can be re-written as

fm = argmin gy R (f) + A ()?/2.

The classification error coefficient can be expressed by:

C= %(Rm(f) + A (fin)?).

K being a universal kernel implies thatf,cy R(f) = minger R(f) (cf. [18],
Prop. 3.2). For arbitrary > 0, let fy € H such thatR(fy) < minser R(f) + €.

By the definition of f,,,, we obtain thatR,,(f.) + Al (fm)?/2 < R, (0) +
A I(0)2/2 = R, (0) = ¢(0), implying thatI(f,,) = O(1/v/A,,). We also have:

Ron(fmn) + A d (fin)?/2 < Run(fo) + Am (f0)?/2.

Rearranging gives:

R(fm) _R(fO) < (R(fm) _Rm(fm))+(Rm(f0) _R(f0>)+)‘m(1(f0>2 _I<fm)2/2'

Now, note thatforany > 0, if I(f) < B,thenf(x) = (w, ®(x)) < |lw||/K(x,z) <

M - B, whereM := sup,y /K (z,z). Note also that the hinge logsis a Lipschitz
function with unit constant. We can now apply a result on threcentration of the supre-
mum of empirical processes to bouRd-) — R,,(-). Indeed, applying Thm. 8 of [22]
to function class{ 115 f|I(f) < B} (using their Thm. 12 to bound the Rademacher
complexity of the kernel function class), we obtain thatdoy ¢ > 0, with probability

at leastl — §:

AMI(fm) 81n(2/9)

R(fm) = B (fm) < T + MI(fm) -
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We obtain with probability at leadt— 2:

RO+l ()12 < R(fo)+ LTI g4 2L

M(I(fn\;)mﬂ(fo)) M) + 1(fo)) 81n7(j/6)

Am(1(fo)? /2.

Combining Assumption A2 with the fact that f,,) = O(1/v/A\,,), the RHS tends to
minser R(f) + e asm — oco. But R(f,,) > min;c# R(f) by definition, saR(f,,) —
minser R(f) — 0and\,,I(f)?/2 — 0in probability.

Thus we obtain that

1

C = S (Ron(f) + Al (fn)?) 2 5 i RUP) = in P(Y # (X)),

—+

AnI(fo)?/2 < min R(f) + €+ 1 N

where the last equality is due to (5).

Before completing the proof, it is worth noting that to théeraf convergence also
depends on the rate that, I(fo)? — 0 ase — 0. This requires additional knowledge of
the approximating kernel clagsdriven by kernel functiork’, and additional properties
of the optimal Bayes classifier th# tends to.

Proof sketch of Proposition 1if x, is a minimizer of a differentiable functiof’ :
R? — R over a convex domain, then for anyin the domain{z — x¢)Y VF(z) > 0.
Applying this fact to bothy and@ which are the optimizers of Eqn. (2) usiqgandQ,
respectively:

i 1 1

(6-0)" (53 7y @0 Im) 20
1,

(@ =@ (g3 Qa — 1) 20,

wherel,,, = [1...1]T. Adding up the two inequalities yields
(a—&)7T(Qa - Qa) > 0.
A minor rearrangement yields
(@-a)’(Q-Qa=(a-a)Q@a—a),

from which the proposition follows immediately.

Proof of Lemma 1:By Cauchy-SchwarzR, < ||(Q — Q)a||. Thei-th element of the
vector inside||.|| in the RHS isa; = y; Zj L €i7y;6;. Note thatK |y determines the
value ofa. Thus, by Assumption A0, we have:

m

af| K,y = ZE e | K, ylEla3|K. y] < o”E[l|a]*| K, y].

Marginalizing over( K, y) givesEa? < o2E||@||2. Thus,ER, < (ER2)'/? < o/mE][a|?.



