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We propose and develop SG-ELM, a stable online learning algorithm based on stochastic gradients and
Extreme Learning Machines (ELM). We propose SG-ELM particularly for systems that are required to be
stable during learning; i.e., the estimated model parameters remain bounded during learning. We use a
Lyapunov approach to prove both asymptotic stability of estimation error and boundedness in the model
parameters suitable for identification of nonlinear dynamic systems. Using the Lyapunov approach, we
determine an upper bound for the learning rate of SG-ELM. The SG-ELM algorithm not only guarantees a
stable learning but also reduces the computational demand compared to the recursive least squares
based OS-ELM algorithm (Liang et al., 2006). In order to demonstrate the working of SG-ELM on a real-
world problem, an advanced combustion engine identification is considered. The algorithm is applied to
two case studies: An online regression learning for system identification of a Homogeneous Charge
Compression Ignition (HCCI) Engine and an online classification learning (with class imbalance) for
identifying the dynamic operating envelope. The case studies demonstrate that the accuracy of the
proposed SG-ELM is comparable to that of the OS-ELM approach but adds stability and a reduction in
computational effort.
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1. Introduction

Homogeneous Charge Compression Ignition (HCCI) Engines are
of significant interest to the automotive industry owing to their
ability to reduce emissions and fuel consumption significantly
compared to existing methods such as spark ignition (SI) and
compression ignition (CI) engines [1-3]. Although HCCI engines
tend to do well in laboratory controlled tests, practical imple-
mentation is quite challenging because HCCI engines do not have a
direct trigger for ignition (such as spark in SI or fuel injection in
CI). Further, HCCI requires some special engine designs such as
exhaust gas recirculation (EGR) [4], variable valve timings (VVT)
[5], intake charge heating [6] among others. Such advanced
designs also increase the complexity of the engine operation
making it unstable and extremely sensitive to operational dis-
turbances [7,8]. A model based control is typically opted to address
the challenges involved in controlling HCCI [9,5,10]. For model
development, both physics based approaches [9,5,10] and data
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based approaches [11-14] were shown to be effective. A key
requirement for a model based control is the ability of the models
to accurately predict the engine state variables for several oper-
ating cycles ahead of time, so that a control action with a known
consequence can be applied to the engine. Further, in order to be
vigilant against the engine drifting towards instabilities such as
misfire, ringing, knock, etc. [15,16], the operating limits of the
engine particularly in transients, is required to be known. In order
to develop controllers and operate the engine in a stable manner,
both models of the engine state variables as well as the operating
envelope are necessary.

Data based modeling approaches for the HCCI engine state
variables and dynamic operating envelope were demonstrated
using neural networks [11], support vector machines [12], extreme
learning machines [13,14] by the authors. However, previous
research considered an offline approach where the data collected
from engine experiments were taken offline and models were
developed using computer workstations that had high processing
and memory. However, a key requirement in advancing HCCI
modeling is to perform online learning for the following reasons.
The models developed offline are valid only in the controlled
experimental conditions. For instance, the experiments are per-
formed at a controlled ambient temperature, pressure and
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humidity conditions. As a result, the models developed are valid
for the specified conditions and when the models are imple-
mented on a vehicle, the expectation is that the model works on a
wide range of climatic conditions that the vehicle is exposed to,
possibly on conditions that were not experimented. Hence, an
online adaptation to learn the behavior of the system at new/
unfamiliar situations is required. Also, since the offline models are
developed directly from experimental data, they may perform
poorly in certain operating regions where the density of experi-
mental data is low. As more data becomes available in such
regions, an online mechanism can be used to adapt to such data. In
addition, the engine produces high velocity streaming data;
operating at about 2500 revolutions per minute, an in-cylinder
pressure sensor can produce about 1.8 million data observations
per day. It becomes infeasible to store this volume of data for
offline model development. Thus, an online learning framework
that processes every data observation, updates the model and
discards the data is required for advanced engines like HCCI.

Online learning, as the name suggests, refers to obtaining a
model online; i.e., learning happens when the system is in
operation and as data is streaming in. Typically, the learning is
sequential; i.e., the data from the system is processed one-by-one
or batch-by-batch and the model parameters are updated. A data
processor on-board a combustion engine usually is low on com-
putation power and memory. Thus, simple linear models used to
be the natural choice for combustion engines. However, for a
system like the HCCI engine, linear models may be insufficient to
capture the complex dynamics, particularly for predicting several
steps ahead in time [11]. While numerous nonlinear methods for
online learning do exist in machine learning literature, a complete
survey is beyond the scope of this paper. The recent paper on
online sequential extreme learning machines (OS-ELM) [17] sur-
veys popular online learning algorithms in the context of classifi-
cation and regression and develops an efficient algorithm based on
recursive least squares. The OS-ELM algorithm appears to be the
present state of the art (although some variants have been pro-
posed such as [18-20]) for classification/regression problems
achieving a global optimal solution, high generalization accuracies
and most importantly, in quick time. Also, based on observations
from our previous work [21], we choose extreme learning
machines (ELM) over other popular methods such as neural net-
works and support vector machines for the HCCI engine problem.
It has been shown that both polynomial and linear methods were
inferior in terms of prediction accuracy [12,11] although they have
simple algorithms suitable for online applications. The online
variants of SVM usually work by approximating the batch (offline)
loss function so that data can be processed sequentially [22,23]
and achieve accuracies similar to that of the offline learning
counterparts. However, SVMs Come with a high computation and
memory requirement to be used efficiently on a memory limited
system such as the engine control unit [13]. Thus we prefer ELM
over SVM and other state of the art nonlinear models.

In spite of its known advantages, an over-parameterized ELM
may suffer from ill-conditioning problem when a recursive least
squares type update is performed (as in OS-ELM). This sometimes
results in poor regularization behavior as reported in
[24,25,20,26,27], which leads to an unbounded growth of the
model parameters and unbounded model predictions. This may
not be a serious problem for many applications as the model
usually improves as more data becomes available. However, for
control problems in particular, if decisions are made simulta-
neously based on the online learned model (as in adaptive control
[28]), it is critical that the parameter estimation algorithm behaves
in a stable manner so that control actions can be trusted at all
times. Hence a guarantee of stability and parameter boundedness
is of extreme importance. To address this issue, we propose the

SG-ELM, a stable online learning algorithm based on stochastic
gradient descent and extreme learning machines. By extending
ELM to include a notion of stable learning, we hope that the
simplicity and generalization power of ELM can be retained along
with stability of identification, suitable for real-time control
applications. We use a Lyapunov approach to prove both asymp-
totic stability of estimation error and boundedness in the esti-
mated parameters suitable for identification of nonlinear dynamic
systems. Using the Lyapunov approach, we determine an upper
bound for the learning rate of SG-ELM that seems to avoid bad
regularization that may arise during online learning. These are the
main contributions of this paper. Further, we also apply the SG-
ELM algorithm to two real-world HCCI identification problems
including online state estimation and online operating boundary
estimation which is a novel application of online extreme learning
machines.

The remainder of the article is organized as follows. The ELM
modeling approach is described in Section 2 along with algorithm
details on batch (offline) learning as well as the present state of
the art; the OS-ELM algorithm. In Section 3, the stochastic gradient
based ELM algorithm is derived along with a stability proof. In
Section 4, the background on HCCI engine and experimentation
are discussed. Sections 5 and 6 cover the discussions on the
application of the SG-ELM algorithm on the two applications,
followed by conclusions in Section 7.

2. Extreme learning machines

Extreme Learning Machine (ELM) is an emerging learning
paradigm for multi-class classification and regression problems
[29,30]. An advantage of the ELM method is that the training
speed is extremely fast, thanks to the random assignment of input
layer parameters which do not require adaptation to the data. In
such a setup, the output layer parameters can be analytically
determined using a linear least squares approach. Some of the
attractive features of ELM [29] include the universal approxima-
tion capability of ELM, the convex optimization problem of ELM
resulting in the smallest training error without getting trapped in
local minima, closed form solution of ELM eliminating iterative
training and better generalization capability of ELM [30]. In com-
parison, a backpropagation neural network has the same objective
function as that of ELM but they often get trapped in local minima
whereas ELM do not. Support vector machines on the other hand,
solves a convex optimization problem but the computation
involved is quite high and running times are slow for large data-
sets. Thus, ELM appears to be very efficient both in terms of
accuracy and running times compared to several state-of-the-art
algorithms.

Consider the following data set

{(x1,¥1); -, (XN, YN} € (X, D), M

where N denotes the number of training samples, X denotes the
space of the input features and ) denotes labels whose nature
differentiate the learning problem in hand. For instance, if )V takes
integer values (1,2,3 ,.. } then the problem is referred to as clas-
sification and if ) takes real values, it becomes a regression pro-
blem. ELMs are well suited for solving both regression and clas-
sification problems faster than state of the art algorithms [30]. A
further distinction could be made depending on the availability of
training data during the learning process, as offline learning (or
batch learning) and online learning (or sequential learning). Off-
line learning could make use of all training data simultaneously as
all data is available to the algorithm and time is generally not a
limiting factor. So it is possible to have the model see the data
several times (iterations) so that the best accuracy can be
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achieved. On the other hand, there may be situations where offline
learning becomes infeasible and one has to resort to online
learning, such as those involving high velocity steaming data
where time taken for learning becomes a bottleneck. In an online
learning setting, data is available one-by-one or batch-by-batch
and needs to be processed with limited computational effort and
storage. Further, inference is required to be made with each new
available data along with the ones recorded in the past.

2.1. Batch (Offline) ELM

When the entire data is available and a model is required to be
trained using all the available data, batch learning is adopted. In
this case, the ELM algorithm involves solving the following opti-
mization problem similar to that of a ridge regression

. 2 2
mv‘}n{HHW—YII +AIWI } @)

H =y (W{x(k)+by) e ™1, 3)

where A represents the regularization coefficient determined
using cross-validation, Y represents the vector of labels, y repre-
sents the hidden layer activation function (sigmoidal, sinusoidal,
radial basis, etc. [30]) and W, e R™"™, W e R™*Y¢ represents the
input and output layer parameters respectively. Here, n represents
the dimension of inputs x(k), n, represents the number of hidden
neurons of the ELM model, H represents the hidden layer output
matrix and y, represents the dimension of outputs Y. The matrix
W, consists of randomly assigned values that map the input vector
to a high dimensional feature space while b, e R™ is a bias com-
ponent assigned in a random manner similar to W,. The number of
hidden neurons determines the expressive power of the trans-
formed feature space. The values of W, and b, can be assigned
based on any continuous random distribution [30] and remains
fixed during the learning process. Hence the training reduces to a
single step calculation given by Eq. (4). The ELM decision
hypothesis can be expressed as in Eq. (5) for classification and as in
Eq. (6) for regression. It should be noted that the hidden layer and
the corresponding activation functions give a nonlinear mapping
of the data, which if eliminated, the ELM model becomes a linear
least squares (Linear LS) model and is considered as one of the
baseline models in this study.

W = (HTH+/11) “hry 4)
) = sgn(WTr(W]x+b)). &)
fx) =Wy (Wlx+b)] (6)

Since training involves solving a linear least squares with a
convex objective function, the solution obtained by ELM is extre-
mely fast and is a global optimum for the chosen nj,, W, and b,.
The above formulation for classification (5) is not designed to
handle imbalanced or skewed data sets [13]. As a modification to
weigh the minority class data more, a simple weighting method
can be incorporated in the ELM objective function (2) as

mv‘i/n{(HW— V) T(HW — Y)+,1WTW} )
yv1. 0 . .0
0 .. 0
- 72 0
0 0 . . 7N
1 majority class data g
Yi=rxf, minority class data ®)

where I represents the weight matrix, r represents the ratio of
number of majority class data to number minority class data and f
represents a scaling factor to be tuned for a given data set [13].
This results in the training step given by Eq. (9) and the decision
hypothesis takes the same form as in Eq. (5):

W= (H'TH+AI) "HTrY. )

2.2. Online Sequential ELM (OS-ELM)

The OS-ELM [17] is a recursive version of the batch ELM algo-
rithm. This version of the algorithm is used for online learning
purposes where data is processed one-by-one or batch-by-batch
and the model parameters are updated after which the data is not
required to be stored. In this process, training involves two steps —
an initialization step and a sequential learning step. During the
initialization step, a set of data observations (Np) are required to
initialize Hy and Wy by solving the batch ELM optimization pro-
blem as follows

n‘}/ion{I\HOWO—YO\\2+/1\\WO\\2} (10)

Ho =[g(W]Xo+bn)]" & RNox™, (11)
The solution Wy, is given by
Wo =Ky 'HLY, (12)

where Ky :1—151—10 +Al. Suppose given another new data x;, the
problem becomes

Ho Yo
The solution can be derived as

Wi =Wo+Ky 'H{ (Y, —HWo)
K1 =Ko+HTH;.

2

min
W,

13)

Based on the above, a generalized recursive algorithm for updating
the least-squares solution can be computed as follows [17]

M1 =My—MH[, (I +He 1 MHg )~ "Hi 1M (14)

Wip1=Wi+M 1 He (Yo —Hie 1 Wy (15)

where M represents the covariance of the parameter estimate.

3. Stochastic gradient based ELM algorithm

In this section, we propose an extension of the ELM algorithm
for online learning using stochastic gradient descent (SGD). Sto-
chastic gradient descent methods have been popular for several
decades for online learning but practically limited because of poor
optimization characteristics (failure to converge to an absolute
minimum, for instance) and slow convergence rates. However,
only recently, the asymptotic behavior of SGD methods has been
analyzed indicating that SGD methods can be very powerful for
learning large data sets [31,32]. SGD based algorithms have been
developed successfully for perceptron models, K-means, SVM and
Lasso [31]. In this work, we propose to use the simple and scalable
SGD algorithm to extreme learning machines and derive stability
properties, so that an online learning algorithm useful for control
purposes can be developed.

The justification of SGD based algorithms in machine learning
can be briefly discussed as follows. In any learning problem, three
types of errors are encountered, namely the approximation error,
the estimation error and the optimization error [31], and the
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expected risk Ex(f) and the empirical risk E.mp(f) for a supervised
learning problem can be given by

Ee(f) = / I(f).y)dP(x. )

1 N
Eemp(f) = > I6Fx0). )

i=1

where [(f(x),y) denotes the loss function between the prediction
f(x) and label y, P(x,y) denote the joint probability density of x and
y. Let f* = argmingE.x(f) be the best possible prediction function.
In practice, the prediction function is chosen from a family of
parametric functions denoted by F. Let f3 = argminy . rEexp(f) be
the best prediction function chosen from a parameterized family
of functions . When a finite training data set becomes available,
the empirical risk becomes a proxy for the expected risk for the
learning problem [33]. Let f’; = argminy _ zEemp(f) be the solution
that minimizes the empirical risk. However, the global solution is
not typically obtained because of computational limitations and
hence the solution of the learning problem is reduced to finding
fr= argminf < 7Eemp(f).

Using the above setup, the approximation error (Eqyp) is the
error introduced in approximating the true function space with a
family of functions F, the estimation error (E.sy) is the error
introduced in optimizing over Eemp(f) instead of Ex(f), the opti-
mization error (Eop) is the error induced as a result of stopping the
optimization to ff. The total error E;: can be expressed as

Eapp = Eexp(f*) - Eexp(f*}‘)
Eest = Eexp(f?:) - Eemp(fjr)

e _
Eopt = Eemp(f ) = Eemp(f )
Etot = Eqpp +Eest +Eopt

The following observations are taken from the asymptotic
analysis of SGD algorithms [31,34].

1. The empirical risk Eemp(f) is only a surrogate for the expected
risk Eexp(f) and hence an increased effort to minimize E,p; may
not translate to better learning. In fact, if E,p; is very low, there is
a good chance that the prediction function will over-fit the
training data.

2. SGD are worst optimization algorithms (in terms of reducing
Eqpt) but they minimize the expected risk relatively quickly.
Therefore, in the large scale setup, when the limiting factor is
computational time rather than the number of examples, SGD
algorithms perform asymptotically better.

3. SGD results in a faster convergence when the loss function has
strong convexity properties.

The last observation is key in developing our algorithm based
on ELM models. The ELM models have a squared loss function and
when the hidden neurons are randomly assigned and fixed, the
training translates to solving a convex optimization problem. This
motivates the use of ELM models for performing SGD based
learning. The SGD based algorithm can be derived for the ELM
models as follows.

3.1. SG-ELM parameter update

Let (x;,y;) where i=1,2,. N be the streaming data in con-
sideration. The data can be considered to be available to the
algorithm from a one-by-one continuous stream or artificially
sampled one-by-one from a very large data set. Let the ELM

empirical risk be defined as follows
](W)—minlzN: ly; — T Wi
Tw 24 Yi— @i
.1 1
=mv‘1/n{j\ly1 _¢{Wu2+---+juyN—¢quz}
=min{J;(W)+/,(W)+-+y(W)}. (16)

where W e R™Y4, y; e RPVd ¢h e R™Ve is the hidden layer output
(see H' in Eq. (3)). If an error e;e R" can be defined as
(y,-—qﬁ,»TW), the learning objective for a data observation i can be
given by

_Lr,
JiW) = 5eje;
1
=50~ W) i =i W)
1 1
= EYiTYi+§WT¢i¢iTW*YiT¢iTW
a .
aiv\l/ — it W=y = (I W —yy)

= — ¢iei. (1 7)

In a regular gradient descent (GD) algorithm, the gradient of J(W)
is used to update the model parameters as follows.

A _dh s In
w=aw aw T aw
aq
oW —¢re1—ye2— - —pyen

0,
Wiy = Wk—rscd—d/

= Wi+ sc(dhe1)+ -+ sc(dyen) (18)

where k is the iteration count, I'sc e R™*™ represents the step size
or update gain matrix for the GD algorithm.

It can be seen from Eq. (18) that the parameter matrix W is
updated based on gradients calculated from all the available
examples. If the number of data observations is large, the gradient
calculation can take enormous computational effort. The stochas-
tic gradient descent algorithm considers one example at a time
and updates W based on gradients calculated from (x;, y;) as shown
in

Wit =W+ se(gep). (19)

From Eq. (18), it is clear that the optimal W is a function of gra-
dients calculated from all the examples. As a result, as more data
becomes available, W converges close to its optimal value in SGD
algorithm. Processing data one-by-one significantly reduces the
computational requirement making the algorithm scale well to
large data sets.

In order to handle class imbalance, the algorithm in (19) can be
modified by weighting the minority class data more. The modified
algorithm can be expressed as

Wiy = Wi+ il sc(die:) (20)

where [y, =1 x fg, 7 and fg represent the imbalance ratio (a
running count of majority class data to minority class data until
that instant) and the scaling factor that needs to be tuned to obtain
tradeoffs between high false positives and missed detections for a
given application.

3.2. Stability analysis

The stability analysis of the SG-ELM algorithm can be derived
as follows. The ELM structure makes the analysis simple and
similar to that of a linear gradient based algorithm [35].

The instantaneous prediction error e; (Here the error e and
output y are transposed as opposed to their previous definition in
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Table 1
Specifications of the experimental HCCI engine.

Engine type 4-stroke In-line
Fuel Gasoline
Displacement 20L
Bore/stroke 86/86 mm
compression ratio 11.25:1

Injection type Direct injection

Variable valve timing with

hydraulic cam phaser having

119° constant duration,

defined at 0.25 mm lift, 3.5 mm peak.
lift and 50° crank angle, and

phasing authority.

Exhaust recompression

using negative valve overlap

Valvetrain

HCCI strategy

Section 3.1 for ease of derivations) can be expressed in terms of the
parametric error (W = W, —W) as

ej=y;—W'¢;
=Wigi—W'e;
T
=W ¢, 21

where W, represents true model parameters. Further, the para-
metric error dynamics can be obtained as follows.

Wi+l = W**le
=W.—-W;—TI'scpie]
=W;—T'scpiel (22)

Consider the following positive definite, decrescent and radially
unbounded [35] Lyapunov function V

VW) = tr(W ' T W) 23)
where tr represents the trace of a matrix.
AVW)=V(Wi, ) - V(W)

— (W], T Wi )= rW{ T W)

= tr(Wi—Lsopie)) T'sg' (Wi—T'sopie]))

— (W T W)

= tr(—2W, hie] +eip] Tsepiel)

= tr(—2eie] +eip; 'scipiel)

= —2ele;+eleipl 'soeh;

= —2ele;+el pl ['sciei
—elMgge; (24)

where Mg = 2—¢iTFSG¢i. It can be seen that V; {1 —V; <0 if Mg
>0 or 2—¢! 'sgh; > 0 or

0 < Amax(I'sg) < 2 (25)
When (25) is satisfied, V(W) > 0 is non-increasing in i and the
limit

Jim VW)=V, (26)
exists. From (24),

T
Vi1 —Vi= —e; Mgce;

D Vi V== elMgce 27
i=0 i=0

=Y e[Msce; =V(0)—Vy <o (28)
i=0

Also,

> ellei< > elMscei < o0 (29)
=0 izo

when Mg > I or when
Amax(I'sg) < 1. (30)

Hence, when (30) is satisfied, e;eL,. From (19), (Wi, 1 —W))
€ Ly N L. Using discrete time Barbalat's lemma [36],

lime; =0 31
1—-00
im Wi =W, (32)
1—-00

Hence, the SGD learning law in (19) guarantees that the esti-
mated output y; converges to the actual output y; and the model
parameters W converge to some constant values. The parameters
converge to the true parameters W, only under conditions of
persistence of excitation [35] in input signals of the system
(amplitude and frequency richness of x). Further, using bounded-
ness of V;, e; e L, which guarantees that the online model pre-
dictions are bounded as long as the system output is bounded. As
the error between the true model and the estimation model
converges to zero, the estimation model becomes a one-step
ahead predictive model of the nonlinear system. In the next few
sections, we evaluate our SG-ELM algorithm on a HCCI engine
identification problem.

4. Homogeneous charge compression ignition engine

This section gives an overview of the homogeneous charge
compression ignition engine system and experimentation. The
engine specifications are listed in Table 1 [11]. HCCI is achieved by
auto-ignition of the gas mixture in the cylinder. The fuel is injected
early in the intake stroke and given sufficient time to mix with air
forming a homogeneous mixture. A large fraction of exhaust gas
from the previous cycle is retained to elevate the temperature and
reaction rates of the fuel and air mixture. The variable valve timing
capability of the engine enables trapping suitable quantities of
exhaust gas in the cylinder.

The engine control knobs include injected fuel mass (FM in mg/
cyc), crank angle at intake valve opening (IVO), crank angle at
exhaust valve closing (EVC), crank angle at start of fuel injection
(SOI). The valve events are measured in degrees after exhaust top
dead center (deg eTDC) while SOI is measured in degrees after
combustion top dead center (deg cTDC). Other important physical
variables that influence the performance of HCCI combustion
include intake manifold temperature T;,, intake manifold pressure
P;,, mass flow rate of air at intake r;,, exhaust gas temperature
Tex, exhaust manifold pressure Py, coolant temperature T, fuel to
air ratio (FA) etc. The engine performance metrics are given by
combustion phasing indicated by the crank angle at 50% mass
fraction burned (CA50), combustion work output given by net
indicated mean effective pressure (IMEP'). For further reading on
HCCI combustion and related variables, please refer [37].

4.1. Experiment design

In order to perform HCCI engine identification, suitable
experiments to obtain dynamic data from the engine needs to be
designed. The modeled variables such as engine states and oper-
ating envelope are dynamic variables. In order to capture both
transient and steady state behavior, a set of dynamic experiments

! IMEP and NMEP has been interchangeably used in this paper although both
refers to the net quantity.
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Fig. 1. A subset of the HCCI engine experimental data showing A-PRBS inputs and engine outputs. The misfire regions are shown in dotted rectangles. The data is indexed by

combustion cycles.

is conducted at constant rotational speeds and naturally aspirated
conditions (no supercharging/turbocharging) by varying FM, IVO,
EVC and SOI in a uniformly random manner. At every step change,
the engine makes a transition between two set points and the
transition is recorded as temporal data. In order to capture several
such transients, an amplitude modulated pseudo-random binary
sequence (A-PRBS) has been used to design the excitation signals
for FM, IVO, EVC and SOI. A-PRBS excites the engine at different
amplitudes and frequencies exploring the operating space of the
engine for the identification problem considered in this work.

4.2. HCC instabilities

A subset of the data collected from the engine is shown in Fig. 1
[12] where it can be observed that for some combinations of the
inputs (left figures), the HCCI engine misfires (shown by dotted
rectangles). HCCI operation is limited by several phenomena that
lead to undesirable engine behavior. As described in [38], the HCCI
operating range is constrained to a small region of permissible
unburned (pre-combustion) and burned (post-combustion) charge
temperature states. A sufficiently high unburned gas temperatures
are required to achieve ignition in the HCCI operating range
without which a complete misfire will occur. If the resulting
combustion cannot achieve sufficiently high burned gas tem-
peratures, commonly occurring in conditions with low fuel to
diluent ratios or late combustion phasing, various degrees of
quenching can occur resulting in reduced work output and
increased hydrocarbon and carbon monoxide emissions. Under
some conditions, this may lead to high cyclic variation due to the
positive feedback loop existing through the trapped residual gas

[15,16]. Operation with high burned gas temperature, although
stable and commonly reached at higher fueling rates where the
fuel to diluent ratio is also high, yields high heat release and thus
pressure rise rates that may pose challenges for engine noise and
durability constraints. A discussion of the temperatures at which
these phenomena occur may be found in [38].

HCCI operation is limited by a combination of the above
instabilities and during transients, it may be challenging to reac-
tively respond to instabilities. Thus, a proactive means by which
such instabilities can be determined is by developing a predictive
model for the operating envelope of the engine discussed in Sec-
tion 6.

4.3. Learning the HCCI engine data

In the HCCI modeling problem, both the inputs and the outputs
of the engine are available as sensor measurements. The HCCI
engine is a nonlinear dynamic system and sensor measurements
represent discrete time sequences. The input-output mapping can
be modeled using a nonlinear auto regressive model with exo-
genous input (NARX) [39] as follows:

YK = fnarx[uk—1) ..., u(k—ny),
y(k—=1) ..., y(k—ny)]

where u(k) e R and y(k) e R¥ represent the inputs and outputs of
the system respectively, k represents the discrete time index, fyarx
() represents the nonlinear function mapping specified by the
model, n,, ny represent the number of past input and output
samples required (order of the system) while uy and y, represent
the dimension of inputs and outputs respectively. Let x represent

(33
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the augmented input vector obtained by time-embedding the
input and output measurements from the system.

x=[u(k—1) .., u(k—ny),y(k—1) ,.., y(k—ny)]’ (34)

The measurement sequence can be converted to the form of
training data

{(X1, 1), . XN, YN} € (X, D) (35)

where N denotes the number of training samples, & denotes the
space of the input features (Here X =R%™*Yd and Y=R for
regression and Y = [+ 1, — 1] for a binary classification). The above
conversion of system measurements to training data is natural for
a series-parallel model architecture, that can be used to perform a
one-step ahead prediction (OSAP) i.e., given a set of measurements
until time index k, the model predicts the output at time k+1 (see
Eq. (36)). A parallel architecture on the other hand is used to
perform multiple step ahead predictions (MSAP)? by feeding back
the predictions of the OSAP model in a recurrent manner (see Eq.
(37)). The series-parallel and parallel architectures are well
explained in [40].

Jk+1) = f yagx (k) s (k=11 + 1), Y(K) .., Yk =11y +1)] (36)

j’(k"‘ npred) :fNARX [Ll(k—l— NMpred — ]) ey u(k_ ny+ npred)a
JA’(k'i‘ npred - ]) ey J}(k_ ny + npred)] (37)

The OSAP model is used for training as existing simple training
algorithms can be used and once the model becomes accurate for
OSAP, it can be converted to a MSAP model in a straightforward
manner. The MSAP model can be used for making long term
predictions useful for predictive control [5,41].

5. Application case study 1: online regression learning for
system identification of an hcci engine.

The problem considered in this case study is to develop a
predictive model of the state variables of the HCCI engine using
online learning. The state variables of an engine are the funda-
mental quantities that represent the engine's state of operation. As
a consequence, these variables also influence the performance of
the engine such as fuel efficiency, emissions and stability, and are
required to be monitored/regulated carefully. The significance of
the state variables for control and a data based modeling approach
were recently analyzed [11,14] where an offline model was
developed using archived data. In this paper, an online learning
framework for modeling the state variables of HCCI engine such as
the IMEP and CA50, is developed and is shown to be comparable to
that of the offline models.

The proposed SG-ELM is applied and is compared against OS-
ELM for regression performance evaluated using one-step ahead
and multi-step ahead predictions. A linear model and an offline
trained nonlinear ELM model similar to the one in [11] are inclu-
ded as baselines. The linear baseline model is included to justify
the benefits of adopting a nonlinear model while the offline
trained model is included to show the effectiveness of online
algorithms in capturing the underlying behavior fully in spite of
processing data sequentially. The offline ELM model is expected to
produce an accurate model as it has sufficient time, computation
and utilization of all training data simultaneously to learn the HCCI
behavior sufficiently well.

2 MSAP predictions are necessary for planning trajectories for a given engine
operation, such as in the case of optimal control.

5.1. Model setup and evaluation metric

For the purpose of demonstration, the variables IMEP and CA50
are considered as outputs whereas the control variables such as
fueling (FM), exhaust valve closing (EVC) and fuel injection timing
(SOI) are considered inputs. Transient data from the HCCI engine
at a constant speed of 1800 RPM and naturally aspirated condi-
tions is used. A NARX model as shown in Section 4.3 is considered
where u=[FM EVC SOI" and y=[IMEP CA50]", n, and n,
chosen as 1 (tuned by trial and error). The nonlinear model
approximating fyagy is initialized to an extreme learning machine
model with random input layer weights and random values for the
covariance matrices and output layer weights.

All the nonlinear models consist of 100 hidden units with fixed
randomized input layer parameters. About 11,000 cycles of data is
considered one-by-one as it is sampled by the engine data
acquisition and model parameters updated in a sequential manner.
After the training phase, the parameter update is switched off and
the models are evaluated for the next 5100 cycles of data for one
step ahead predictions. Further, to evaluate if the learned models
represent the actual HCCI dynamics, the multi-step ahead pre-
diction of the models are compared using about 600 cycles of data.
It should be noted that both the one-step ahead and multi-step
ahead evaluations are done using data unseen during the
training phase.

The parameters of each of the models are tuned for the given
dataset. As recommended by OS-ELM [17], the model is initialized
prior to online learning using about 800 cycles of data (see Egs.
(14) and (15)). The initialization was performed using the batch
ELM algorithm [30]. In order to have a fair comparison, the Wy is
used as an initial condition for both OS-ELM and SG-ELM. The only
parameter of SG-ELM, namely the gradient step size was tuned to
be I'sc =0.0008 Igp for best accuracy.

The performance of the models are measured using normalized
root mean squared error (RMSE) given by

RMSE = (38)

where both y} and yJ' are normalized to lie between -1 and +1.
5.2. Results and discussion

On performing online learning, it can be observed from Fig. 2
that the parameters of OS-ELM grow more aggressively as com-
pared to the SG-ELM. In spite of both models having the same
initial conditions, the step size parameter ['sc for SG-ELM gives
additional control over the parameter growth and keeps them
bounded as shown in Section 3.2. On the other hand, OS-ELM does
not have any control over the parameter evolution. It is governed
by the evolution of the co-variance matrix M (see Eq. (14)). It is
expected that the co-variance matrix M would add stability to the
parameter evolution but in practice, it tends to be more aggressive
especially when having correlated data and over-parameterized
models, leading to potential instabilities as reported in
[24,25,20,26,27]. As a consequence, the parameter values for SG-
ELM remain small compared to the OS-ELM (the norm of esti-
mated parameters for OS-ELM is 16.64 and SG-ELM is 3.71). This
has a significant implication in the statistical learning theory [33].
A small norm of model parameters implies a simpler model which
results in good generalization. Although this effect is slightly
reflected in the results summarized in prediction results sum-
marized in Table 2 (see SG-ELM having the lowest MSAP RMSE), it
is not significantly better for this problem possibly because of
insufficient data for convergence. The value of I'sc has to be tuned
correctly along with sufficient training data in order to ensure
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Fig. 2. Comparison of parameter evolution for the OS-ELM and SG-ELM algorithms during online learning (each engine cycle corresponds to a sample of engine data
processed by the models). A zoomed-in plot (figures to the right) shows that the parameter update for OS-ELM is more aggressive compared to SG-ELM. Although both OS-
ELM and SG-ELM parameters are initialized to the same values, the parameters of OS-ELM continue to grow aggressively compared to the SG-ELM. Note that small parameter
values indicate good regularization. This plot gives a qualitative visualization of this behavior.

Table 2

Performance comparison of OS-ELM and SG-ELM for the HCCI online regression
learning problem. A baseline linear model and an offline trained ELM model (O-
ELM) are also included for comparison. The offline O-ELM algorithm has access to
all the data and can use the available memory and computational power, so its
training time is not compared with the online algorithms. The RMSE values are
averaged over 100 different trials.

training OSAP MSAP

Time? in s RMSE RMSE
Linear 1.0111 0.1277 0.1859
0S-ELM 9.6563 0.0952 0.1018
SG-ELM 1.5624 0.1050 0.0955
0-ELM - 0.1018 0.1027

parameter convergence. Ultimately, the online learning mechan-
ism is aimed to run along with the engine and hence the slow
convergence may not be an issue in a real application.

The prediction results as well as training time> for the online
models are compared in Table 2 where each algorithm is run for
100 trials and the average RMSE is reported. It can be observed
that the computational time for SG-ELM is significantly less (about
6.2 times) compared to OS-ELM showing the time gain in elim-
inating the covariance estimation step. The reduction in compu-
tation is expected to be more pronounced as the dimension and
complexity of the data increase. It could be seen from Table 2 that
the one-step ahead prediction accuracies (OSAP RMSE) of the
nonlinear models are similar, and OS-ELM winning marginally. On
the other hand, the multi-step prediction accuracies (MSAP RMSE)
are similar for the nonlinear models with SG-ELM performing
marginally better. The MSAP accuracy reflect the generalization
performance of the model and is more crucial for the modeling

3 The training time is the time taken for training without considering tuning of
hyper-parameters such as number of hidden neurons, etc.

problem as the models ultimately feed its prediction to a pre-
dictive control framework that requires accurate and robust pre-
dictions of the engine several steps ahead of time. From our
understanding on model complexity and generalization error, a
model that is less complex (indicated by minimum norm of
parameters [30,33]) tend to generalize better, which is again
demonstrated by SG-ELM. The performance of the linear baseline
model is significantly low compared to the nonlinear models jus-
tifying the need for nonlinear models for the HCCI system. In order
to show that the results of SG-ELM are statistically significant with
respect to OS-ELM, a pairwise t-test is performed [42,43] using 100
bootstrapped sub-sample instances®. The p-values of the pairwise
t-test for the OSAP RMSE and MSAP RMSE are 2.9632E—96 and
3.8491E — 76, indicating that the results of the SG-ELM is statisti-
cally significant from that of the OS-ELM with a very low sig-
nificance level (high probability that the two algorithms are sta-
tistically significant).

The MSAP predictions of the models are summarized in Fig. 3
(a)-(d) where model predictions for NMEP and CA50 are com-
pared against real experimental data. Here the model is initialized
using the experimental data at the first instant and allowed to
make predictions recursively for several steps ahead. It can be seen
that the nonlinear models outperform the linear model and at the
same time the online learning models perform similar to the off-
line trained models indicating that online learning can fully
identify the engine behavior at the operating condition where the
data is collected. It should be noted that this task is a case of multi-

4 For the pairwise t-test, the proposed SG-ELM is compared with the com-
peting OS-ELM algorithm and a statistical test is performed with the null
hypothesis being that the two algorithms are not statistically significant. About 100
trials were performed with a subset of data being sampled with replacement from
the training data set for both algorithms and the OSAP RMSE and MSAP RMSE were
measured. Using the 100 values of OSAP and MSAP RMSE for both SG-ELM and OS-
ELM, the pairwise t-test was carried out.
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Fig. 3. (a) OS-ELM MSAP prediction, (b) O-ELM MSAP prediction, (c) Linear MSAP prediction. 600-step ahead prediction results of OS-ELM, SG-ELM, O-ELM and the linear
model are compared. The OS-ELM, SG-ELM and linear models are learned online using 11,000 cycles of data while the O-ELM model is trained using the same data but in an
offline manner. The 600-step ahead prediction is performed on an unseen dataset. For each of the models, NMEP and CA50 predictions are compared to the experimentally
recorded values. It has to be noted that the control inputs at the 600 cycles are used while NMEP and CA50 are recurrently fed back to the model to perform multi-step ahead

predictions.

input multi-output modeling which adds some limitations to the
SG-ELM methods. When the model complexity increases, the SG-
ELM may require more excitations for convergence, as opposed to
0OS-ELM which converges more aggressively (although possibly
losing stability). Further, tuning the learning rate /"sc may be time-
consuming for models predicting multiple outputs with different
noise characteristics and stability requirements.

6. Application case study 2: online classification learning (with
class imbalance) for identifying the dynamic operating envel-
ope of an HCCI engine

The problem considered in this case study is to model the
dynamic operating envelope of the HCCI engine using online
learning. The dynamic operating envelope of an engine can be
defined as the stable operating space of the engine. The sig-
nificance of the operating envelope and data based modeling
approaches were recently introduced [13] where an offline model
was developed using archived data. In this paper, an online
learning framework for modeling the operating envelope of HCCI
engine is developed is shown to be as good as the offline models in
determining the HCCI operating envelope.

We consider the operating envelope defined by two common
HCCI unstable modes - a complete misfire and a high variability
combustion (a more detailed description is given in Section 4.2) is
studied. The problem of identifying the HCCI operating envelope
using experimental data can be posed as a binary classification
problem. The engine sensor data can be labeled as being stable or
unstable depending on some engine based heuristics [13]. Further,
the engine dynamic data consists of a large number of stable class
data compared to unstable class data, which introduces a class
imbalance. A cost-sensitive approach that modifies the objective
function of the learning system to weigh the minority class data
more heavily, is preferred over under-sampling and over-sampling
approaches [13] and is used in this study.

The proposed SG-ELM is applied and is compared against OS-
ELM for classification performance. A linear classification model
and an offline trained nonlinear ELM model similar to the one in
[13] are included as baselines to make similar justifications as in
the previous case study. The linear baseline model is included to
justify the benefits of adopting a nonlinear model while the offline
trained model is included to show the effectiveness of online
algorithms in capturing the underlying behavior fully in spite of
processing data sequentially.
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Table 3

Performance comparison of the nonlinear models (OS-ELM and SG-ELM) for the
online class imbalance learning problem. A baseline linear model and an offline
trained ELM model (O-ELM) are also used for comparison. The O-ELM results are
included for comparing classification accuracies. The offline O-ELM algorithm has

Table 4

Comparison of best performance of the nonlinear models after fine tuning the
parameters and with a good set of initial conditions. These models are used for final
prediction of the operating envelope of the HCCI engine.

access to all the data and can use the available memory and computational power, Algorithms Training TPR TNR Total GM
so its training time is not compared with the online algorithms. All values reported Time® in s Accuracy Accuracy
are averaged over 100 different trials.
OS-ELM 1.8374 0.8328 0.8341 0.8335 0.8335
Algorithms Training TPR TNR Total GM SG-ELM 0.9822 0.9876 0.7707 0.8792 0.8725
time® in s accuracy accuracy O-ELM - 0.8265 0.8569 0.8417 0.8416
Linear 1.8648 0.9996 0.5665 0.7830 0.7524
OS-ELM 1.8443 0.7000 0.8713 0.7857 0.7791
SG-ELM 1.6011 0.8605 0.6923 0.7764 0.7714 be +1 which is obviously undesirable. Hence the following eva-
0-ELM - 0.7530 0.8426 0.7978 0.7947

6.1. Model setup and evaluation metric

The HCCI operating envelope is a function of the engine control
inputs and engine physical variables such as temperature, pres-
sure, flow rate, etc. Also, the envelope is a dynamic system and so
a predictive model requires the measurement history up to an
order of Nj,. The dynamic classifier model can be given by

Vier1=5gn(f(x)) (39)

where sgn(.) represents the sign function, y,,; indicates model
prediction for the future cycle k+1, f(.) can take any structure
depending on the learning algorithm and x, is given by

X, =[IVO,EVC,FM, SOL, T}y, Py, M,
Tex, Pex, Tc, FA, IMEP, CA50]" (40)

at cycle k up to cycle k—Np,+1. In the following sections, the
function f(.) is learned using the available engine experimental
data using OS-ELM and SG-ELM algorithms. The engine measure-
ments and their time histories (defined by x;) are considered
inputs to the model while the stability labels are considered out-
puts. The feature vector is of dimension n =39 includes sensor
measurements such as FM, IVO, EVC, SOI, T¢, Tin, Pin, Min, Tex» Pex.
IMEP, CA50 and FA along with N, =1 cycles of history (see (40)).
The engine experimental data is split into training and testing sets.
The training set consists of about 14300 cycles of data processed
one-by-one as sampled by the engine data acquisition. After the
training phase, the parameter update is switched off and the
models are evaluated for the next 6200 cycles of data for one step
ahead classification. The ratio of number of majority class data to
number minority class data (r) for the training set is about 4.5 and
for the testing set is 9. The nonlinear model approximating f(.) is
initialized to an extreme learning machine model with random
input layer weights and random values for the covariance matrices
and output layer weights. All the nonlinear models consist of 10
hidden units with fixed randomized input layer parameters.
Similar to the previous case study, a small portion of the training
data is used to initialize the ELM model parameters as well as the
covariance matrix. The SG-ELM parameter /[ s; is tuned to be 0.001

I10 using trial and error. A weighted classification version of the
algorithms is developed to handle the class imbalance problem.
The minority class data is weighted higher by r times f, where r is
the imbalance ratio of the training data and is computed online as
the ratio of the number of majority class to number of minority
class data until that instant.

For the class imbalance problem considered here, a conven-
tional classifier metric like the overall misclassification rate cannot
be used as it would find a biased classifier, i.e., it would find a
classifier that ignores the minority class data. For instance, a data
set that has 95% of majority class data (with label +1) would
achieve 95% classification accuracy by predicting all the labels to

luation metric used for skewed data sets is considered. Let TP and
TN represent the total number of positive (stable operation) and
negative class (unstable modes) data classified correctly by the
classifier. If N* and N~ represent the total number of positive and
negative class data respectively, the true positive rate (TPR) and
true negative rate (TNR), geometric mean (GM) of TPR and TNR,
and the total accuracy (TA) of the classifier can be defined as fol-
lows [44]. It should be noted that the total accuracy and geometric
mean weights the accuracy of majority and minority classes
equally, i.e., they have high values only when both classes of data
are classified correctly.

TP
TPR = NT
TN
TNR ==
GM = VTPR x TNR
TA = 0.5(TPR+TNR). (41)

6.2. Results and discussion

The results of online imbalance classification can be summar-
ized in Table 3 where computational time as well as classification
performance can be compared based on 100 different trials. It can
be observed that for the HCCI classification problem, all the
models perform with similar average accuracies. Both OS-ELM and
SG-ELM achieve results similar to an offline model indicating
completeness of learning. The SG-ELM has a slight advantage in
terms of training time because of the simplicity of SG-ELM com-
pared to OS-ELM.

In the experiments above, it should be noted that for different
initializations of the 100 trials, the model's hyper-parameters are
not fine-tuned and so it may be possible to achieve better per-
formance by fine-tuning. A further experiment is conducted where
the hyper-parameters of each algorithm are fine-tuned for one
particular initialization so that the best model is identified for
further engine controls development. Ignoring the results of the
linear model (that had a large imbalance in TPR and TNR similar to
the average results in Table 3), the results of the fine-tuned non-
linear models are reported in Table 4. It can be seen that the
accuracies of all the algorithms improved significantly with SG-
ELM slightly better and with a stability guarantee, indicates the
suitability of SGD based online learning for the HCCI problem. A
subtle advantage observed for the OS-ELM is that, although the
combined accuracy is slightly inferior to that of the SG-ELM, the
accuracies of the positive examples and negative examples are
very close to each other indicating that the model is well balanced
to predict both majority class as well as minority class data well.
The SG-ELM on the other hand, in spite of fine-tuning the para-
meters, fails to achieve this. A further tuning can be done to
improve the accuracy of a particular class of data, typically sacri-
ficing some accuracy predicting the other. In order to show that
the results of SG-ELM are statistically significant with respect to
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Fig. 4. (a) OS-ELM (dataset 1) and (b) SG-ELM (dataset 1). Online classification results of OS-ELM and SG-ELM models showing CA50, NMEP and one input variable (fueling)
for 2 different unseen data sets. The color code indicates model prediction - green (and red) indicate stable (and unstable) prediction by the model. The horizontal dotted line
in the NMEP plot indicates misfire limit, dotted ellipse in CA50 plot indicates high variability instability mode while dotted rectangle shows false alarms by model.(For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

0S-ELM, a pairwise t-test is performed [42,43] using 100 boot-
strapped sub-sample instances’. The p-value of the pairwise t-test
is 0.0208 which indicates that the results of the SG-ELM is sta-
tistically significant from that of the OS-ELM with a significance
level of 5%.

The models developed using OS-ELM and SG-ELM algorithms
are used to make predictions on unseen engine inputs and class
predictions are summarized in Fig. 4, while quantitative results are
included in Table 3. As mentioned earlier, the operating envelope
is a decision boundary in the input space within which any input
operates the HCCI in a stable manner and any input outside the
envelope might operate the engine in an unstable manner. The
HCCI state variables such as IMEP, CA50 and engine sensor
observations such as Tj,, Piy, iy, Tex, Pex, Tc at time instant k, along
with engine control inputs such as FM, EVC, SOI at time instant
k+1, are given as input to the models (see (40)). The model pre-
dictions at time k+1 are obtained. The engine's actual response at
time k+1 is also recorded. A data point is marked in red if the
model predicts the engine operation to be unstable (labeled as
—1) while it is marked in green if the model predicts the data
point to be stable (labeled as +1). In the figures, a dotted line in
the NMEP plot indicates the misfire limit, a dotted ellipse in CA50
plot indicates high variability instability mode while a dotted
rectangle indicates misclassified predictions by model. To under-
stand the variation of NMEP and CA50 with changes in control
inputs, the fueling input (abbreviated as FM) is also included in the
plots. It should be noted that FM is not the only input for pre-
diction and the signals are defined as in Eq. (40) but only the
fueling input is shown in the plots owing to space constraints.

It can be seen from the above plots that as a whole, both OS-
ELM and SG-ELM models classify the HCCI engine data fairly well
in spite of the high amplitude noise inherent in the HCCI experi-
mental data. The data consists of step changes in FM, EVC and SOI
and whenever a ‘bad’ combination of inputs is chosen, the engine
either misfires completely (see NMEP fall below misfire limit) or
exhibits high variability combustion (see dotted ellipses). The goal

5 For the pairwise t-test, the proposed SG-ELM is compared with the com-
peting OS-ELM algorithm and a statistical test is performed with the null
hypothesis being that the two algorithms are not statistically significant. About 100
trials were performed with a subset of data being sampled with replacement from
the full data set for both algorithms and the total accuracy was measured. Using the
100 values of total accuracy for both SG-ELM and OS-ELM, the pairwise t-test was
carried out.

of this work as stated previously, is to predict if a future HCCI
combustion event is stable or unstable based on available mea-
surements. The results summarized in Table 3 indicates that the
developed models indeed accomplished the goal with a reason-
able accuracy. From Fig. 4, it is observed that the OS-ELM has some
clear false alarms in predicting stable class data (see dotted rec-
tangles in the plots) while this is not observed for SG-ELM. This is
not surprising as the false alarm rate of SG-ELM (see Table 3) is
very low®. On the other hand, the SG-ELM has an inferior TNR. By
adjusting the weighting factor /7;,;, in Eq. (20), one can achieve a
required tradeoff between TPR and TNR as desired in the
application.

7. Conclusion

A stochastic gradient descent based online learning algorithm
for ELM has been developed, that guarantees stability in parameter
estimation suitable for control purposes. Further, the SG-ELM
demands less computation compared to the OS-ELM algorithm,
as the covariance estimation step is eliminated. A stability proof is
developed based on Lyapunov approach. However, the SG-ELM
algorithm might involve tedious tuning of step-size parameter as
well as suffer from slow convergence. The tuning of step-size
parameter and convergence properties of SG-ELM will be con-
sidered for future work.

The SG-ELM and OS-ELM algorithms are applied to develop
online models for state variables and dynamic operating envelope
of a HCCI engine to assist in model based control. The results from
this paper suggest that good generalization performance can be
achieved using both OS-ELM and SG-ELM methods but the SG-
ELM might have an advantage in terms of stability, crucial for
designing robust control systems.

Although the SG-ELM appears to perform well in the HCCI
identification problem, a comprehensive analysis and evaluation
on several benchmark data sets is required and will be considered
for future. From an application perspective, interesting areas for
exploration include implementing the algorithm in real-time

5 The false alarm rate of SG-ELM is about 1.24%. In this study, the label of —1
corresponds to a ‘bad’ data and so false alarm rate corresponds to false negative
rate which is 1-TPR
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hardware, exploring a wide operating range of HCCI operation and
development of controllers.
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