
Convergence of latent mixing measures in
finite and infinite mixture models

Long Nguyen

Department of Statistics
University of Michigan

BNP Workshop, ICERM 2012

Nguyen@BNP (ICERM’12) 1 / 29



Outline

1 Identifiability and consistency in mixture model-based clustering
convergence of mixing measures

2 Wasserstein metric

3 Posterior concentration rates of mixing measures
finite mixture models
Dirichlet process mixture models

4 Implications and proof ideas

Nguyen@BNP (ICERM’12) 2 / 29



Clustering problem

How do we subdivide D = {X1, . . . ,Xn} in Rd into clusters?

Assume that data X1, . . . ,Xn are iid sample from a mixture model

pG (x) =
k∑

i=1

pi f (x |θi )

How do we guarantee consistent estimates for mixture components
θ = (θ1, . . . , θk) and p = (p1, . . . , pk)?
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Bayesian nonparametric approach

Define mixing distribution:

G =
k∑

i=1

piδθi

Endow G with a prior distribution on the space of probability measures Ḡ(Θ)

for finite mixtures, k is given
use parametric priors on mixing probabilities p and θ

for infinite mixtures, k is unknown
use a nonparametric prior such as the Dirichlet process:

G ∼ DP(γ,H)

Compute posterior distribution of G given data, Π(G |X1, . . . ,Xn)

We are interested in concentration behavior of the posterior of G
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Posterior concentration of mixing measure G

Let X1, . . . ,Xn be an iid sample from the mixture density

pG (x) =

∫
f (x |θ)G (dθ)

f is known, while G = G0 unknown discrete mixing measure

Questions

when does the posterior distribution Π(G |X1, . . . ,Xn) concentrate most of
its mass around the “truth” G0?

what is the rate of concentration (convergence)?
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Related Work

Significant advances in posterior asymptotics (i.e., posterior consistency and
convergence rates)

general theory: Barron, Shervish & Wasserman (1999), Ghosal, Ghosh &
van der Vaart (2000), Shen & Wasserman (2000), Walker (2004), Ghosal &
van der Vaart (2007), Walker, Lijoi & Prunster (2007), ... going back to
work of Schwarz (1965) and Le Cam (1973)

mixture models: Ghosal, Ghosh & Ramamoorthi (1999), Genovese &
Wasserman (2000), Ishwaran & Zarepour (2002), Ghosal & van der Vaart
(2007), ...

These work focus mostly on the posterior concentration behavior of the
data density pG , not mixing measure G per se
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Related Work on mixture models

Convergence of parameters p and θ in certain finite mixture settings:

polynomial-time learnable settings: Kalai, Moitra, and Valiant (2010),
Belkin & Sinha (2010); going back to Dasgupta (2000)

overfitted setting: Rousseau & Mengersen (JRSSB, 2011)

Convergence of mixing measure G in a univariate finite mixture:

settled by Jiahua Chen (AOS, 1995), who established optimal rate n−1/4

Bayesian asymptotics by Ishwaran, James and Sun (JASA, 2001)

Literature on deconvolution in kernel density estimation, in ’80 and early ’90
(Hall, Carroll, Fan, Zhang, ...)

Posterior concentration behavior of mixing measures in multivariate finite
mixtures, and infinite mixtures remains unresolved
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Optimal transportation problem (Monge/Kantorovich, cf. Villani, ’03)

How to optimally transport to goods from a collection of producers to a collection
of consumers, all of which are located in some space?

squares: locations of producers; circles: locations of consumers

The optimal cost of transportation defines a (Wasserstein) distance between
“production density” and “consumption density”.
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Wasserstein metric (cont)
Let G =

∑k
i=1 piδθi

, G ′ =
∑k′

j=1 p′jδθ′j . A coupling between p and p′ is a joint

distribution q on [1, . . . , k]× [1, . . . , k ′] whose marginals are p and p′.
That is, for any (i , j) ∈ [1, . . . , k]× [1, . . . , k ′],

k∑
i=1

qij = pj ;
k′∑

j=1

qij = pi .

Definition

Let ρ be a distance function on Θ, the Wasserstein distance is defined by:

dρ(G ,G ′) = inf
q

∑
i,j

qijρ(θi , θ
′
j).

When Θ ⊂ Rd , ρ is Euclidean metric on Rd , for r ≥ 1, use ρr as a distance
function on Rd to obtain Lr Wasserstein metric:

Wr (G ,G ′) :=

[
inf
q

∑
i,j

qij‖θi − θ′j‖r
]1/r

.
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Examples and Facts

Wasserstein distance Wr metrizes weak convergence in the space of probability
measures on Θ.

If Θ = R, then W1(G ,G ′) = ‖CDF (G )− CDF (G ′)‖1.

If G0 = δθ0 and G =
∑k

i=1 piδθi
, then

W1(G0,G ) =
k∑

i=1

pi‖θ0 − θi‖.

If G =
∑k

i=1
1
k δθi

, G ′ =
∑k

j=1
1
k δθ′j , then

W1(G ,G ′) = inf
π

k∑
i=1

1

k
‖θi − θ′π(i)‖,

where π ranges over the set of permutations on (1, . . . , k).
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Relations between Wasserstein distances and divergences
If W2(G ,G ′) = 0, then clearly G = G ′ so that

V (pG , pG ′) = h(pG , pG ′) = K (pG , pG ′) = 0.

It can be shown that an f -divergence (e.g., variational distance V , Hellinger h,
Kullback-Leibler distance K ) between pG , pG ′ is always bounded from above by a
Wasserstein distance

if f (x |θ) is Gaussian with mean parameter θ, then

h(pG , pG ′) ≤W2(G ,G ′)/2
√
2.

if f (x |θ) is Gamma with location parameter θ, then

K (pG ||pG ′) = O(W1(G ,G ′)).

Conversely: if the distance between pG , p
′
G is small, can we ensure that

W2(G ,G ′) (or W1(G ,G ′), etc) be small?
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Identifiability in mixture models

The family {f (·|θ), θ ∈ Θ} is identifiable if for any G ,G ′ ∈ G(Θ),
|pG (x)− pG ′(x)| = 0 for almost all x implies that G = G ′.

G(Θ) is space of discrete measures with finite support points on Θ, Ḡ(Θ) is
space of all discrete measures on Θ

Stronger notion of identifiability (due to Chen (1995) for univariate case)

Strong identifiability

Let Θ ⊆ Rd . The family {f (·|θ), θ ∈ Rd} is strongly identifiable if f (x |θ) is twice
differentiable in θ, and for any finite k and distinct θ1, . . . , θk , the equality

sup
x∈X

∣∣∣∣ k∑
i=1

αi f (x |θi ) + βT
i Df (x |θi ) + γT

i D2f (x |θi )γi

∣∣∣∣ = 0 (1)

implies that αi = 0, βi = γi = 0 ∈ Rd for i = 1, . . . , k . Here, Df (x |θi ) and
D2f (x |θi ) denote the gradient and the Hessian at θi of f (x |·), resp.
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Wasserstein identifiability: finite mixtures

Suppose that

Θ is a compact subset of Rd

the family {f (·|θ)} is strongly identifiable

the Hessian matrix D2f (x |θ) satisfies a uniform Lipschitz condition

Gk(Θ) denotes the space of discrete measures with at most k <∞ support
points in Θ.

Theorem 1 (Nguyen, 2012)

For any G0 ∈ Gk(Θ), there is a constant C0 = C0(k ,G0) > 0 such that

W 2
2 (G0,G ) ≤ C0 × V (pG0 , pG ) ∀G ∈ Gk(Θ)

V (·, ·) denotes the variational distance between two densities.
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Wasserstein identifiability: infinite mixtures

Let G ∈ Ḡ(Θ) (i.e., G has potentially unbounded number of support points)

We are restricted to convolution mixture models, i.e., f (x |θ) takes the form
f (x − θ) for some multivariate density function f on Rd , so that

pG (x) = G ∗ f (x) =
∑

i

pi f (x − θi ).

Suppose that

Θ is a bounded subset of Rd

f is a density function on Rd that is symmetric around 0.

Fourier transform f̃ (ω) 6= 0 for all ω ∈ Rd .
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Theorem 2 (Nguyen, 2012)

Given assumptions on Θ and f in the previous page.

(1) Ordinary smooth likelihood. If |f̃ (ω)
∏d

j=1 |ωj |β | ≥ d0 as ωj →∞,
(j = 1, . . . , d) for some positive constants d0 and β.

Then for any m < 4/(4 + (2β + 1)d), there is some constant
C1 = C1(d , β,m) > 0 such that for any G ,G ′ ∈ Ḡ(Θ),

W 2
2 (G ,G ′) ≤ C1 × V (pG , pG ′)

m.

(2) Supersmooth likelihood. If |f̃ (ω)
∏d

j=1 exp(|ωj |β/γ)| ≥ d0 as ωj →∞,
(j = 1, . . . , d) for some positive constants β, γ, d0.

Then there is some constant C1 = C1(d , β) > 0 such that for any
G ,G ′ ∈ Ḡ(Θ),

W 2
2 (G ,G ′) ≤ C1 × (− logV (pG , pG ′))−2/β .
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Examples.

If f is the standard normal density on Rd , f̃ (ω) =
∏d

j=1 e−ω
2
i /2, we obtain that

W 2
2 (G ,G ′) .

1

log(1/V (pG , pG ′))
.

If f is a Laplace density on R, e.g., f̃ (ω) = 1
1+ω2 , then

W 2
2 (G ,G ′) . V (pG , pG ′)

m

for any m < 4/9.
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Main result: Finite mixtures
k <∞ is known, Π is a prior distribution of mixing measures in Gk(Θ).

Suppose that the “truth” G0 =
∑k

i=1 p∗i δθ∗i ∈ Gk(Θ). Moreover,

(A1) Θ is compact subset of Rd , and the family of likelihood functions f (·|θ) is
strongly identifiable.

(A2) under prior Π, all pi are bounded away from 0, and all pairwise distances
‖θi − θj‖ are bounded away from 0.

(A3) some additional mild conditions on Π

Theorem 3

Let X1, . . . ,Xn be an iid sample from PG0 , where G0 ∈ Gk(Θ). Under
Assumptions (A1–A3), there is a constant M > 0 such that

Π(W2(G0,G ) ≥ Mn−1/4|X1, . . . ,Xn)→ 0

in PG0 -probability, as n→∞.
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Main result: Dirichlet process mixtures

Given the “true” discrete measure G0 =
∑k

i=1 p∗i δθ∗i ∈ Gk(Θ), but k is unknown
(potentially infinite)

Endow G ∈ Ḡ(Θ) with Dirichlet process prior G ∼ DP(ν,P0) for some ν > 0 and
non-atomic P0 ∈ P(Θ).

Furthermore,

(B1) Θ ⊂ Rd is compact, and P0 has a Lebesgue density that is bounded away
from zero.

(B2) For some constants C1,m1 > 0, K (fi , f
′
j ) ≤ C1ρ

m1(θi , θ
′
j) for any θi , θ

′
j ∈ Θ.

For any G ∈ spt(Π),
∫

pG0(log(pG0/pG ))2 ≤ C2K (pG0 , pG )m2 for some
constants C2,m2 > 0.
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Theorem 4

Let X1, . . . ,Xn be an iid sample from PG0 , where G0 ∈ Ḡ(Θ). Given Assumptions
(B1) and (B2) and the smoothness conditions for the likelihood family, there is a
sequence βn ↘ 0 such that

Π(W2(G0,G ) ≥ βn|X1, . . . ,Xn)→ 0

in PG0 probability. Specifically,

(1) for ordinary smooth likelihood functions, take βn � (log n/n)
2

(d+2)(4+(2β+1)d)+δ ,
for any small δ > 0.

(2) for supersmooth likelihood functions, take βn � (log n)−1/β .

Nguyen@BNP (ICERM’12) 21 / 29



Outline

1 Identifiability and consistency in mixture model-based clustering

2 Wasserstein metric

3 Posterior concentration rates of mixing measures

4 Implications and proof ideas

Nguyen@BNP (ICERM’12) 22 / 29



Key elements of proof

We follow standard method of proof (cf., Ghosal, Ghosh & van der Vaart (2000),
Ghosh & Ramamoorthi (2002))

existence of tests that discriminate a mixing measure G from the
complement of a ball

the (induced) prior distribution on pG is sufficiently dense in
Kullback-Leibler distance

Technical challenges: the analysis has to be done in Wasserstein metric W2 on G ,
as opposed to the standard Hellinger metric h for data density pG
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Existence of tests

Suppose that G0 has k support points. Let G ⊂ Ḡ(Θ).
The Hellinger information of W2 metric for G is

Ck(G, r) = inf
G∈G:W2(G0,G)≥r

h2(pG0 , pG ).

both G and Ck(G, ·) may be non-convex.

behavior near 0 of Ck(G, ·) depends on both f (x |θ) and G
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A test ϕn is an indicator function of the iid sample X1, . . . ,Xn.

Lemma

Let D(ε) be the covering number in Wasserstein metric of a certain subset of
Ḡ(Θ). There exist tests ϕn such that for any small ε > 0,

PG0ϕn ≤ D(ε)

ddiam(Θ)/εe∑
t=1

exp[−nCk(G, tε)/8]

sup
G∈G:W2(G0,G)>ε

PG (1− ϕn) ≤ exp[−nCk(G, ε)/8].

If G is convex, then D(ε) is the ε/2-covering number of the “ring set”:

S := {G : W2(G0,G ) ∈ [ε, 2ε]}

If G is non-convex, then D(ε) is the ε′-covering number of set S, where

ε′ � C
1/4
k (G, ε/2).
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For convex G, D(ε) is the number blue balls, of radius ε/2, that cover ring set S.

For non-convex G, D(ε) is the number of red balls, of radius C
1/4
k (G, ε/2).

for finite mixtures, C
1/4
k (G, ε/2) = O(ε), but typically C

1/4
k (G, ε/2) = o(ε)
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Entropy bounds

Since Wasserstein metric inherits the geometry of the space of atoms Θ, it is
simple to obtain bounds on the covering number in Wasserstein space:

Lemma

(a) logN(2ε,Gk(Θ), dρ) ≤ k(logN(ε,Θ, ρ) + log(e + e diam(Θ)/ε)).

(b) logN(2ε, Ḡ(Θ), dρ) ≤ N(ε,Θ, ρ) log(e + e diam(Θ)/ε).

(c) Let G0 =
∑k

i=1 p∗i δθ∗i ∈ Gk(Θ). Assume that M = maxk
i=1 1/p

∗
i <∞ and

m = mini,j≤k ρ(θ∗i , θ
∗
j ) > 0. Then,

logN(ε/2, {G ∈ Gk(Θ) : dρ(G0,G ) ≤ 2ε}, dρ)

≤ k(sup
Θ′

logN(ε/4,Θ′, ρ) + log(32k diam(Θ)/m)),

where the supremum in the right side is taken over all bounded subsets
Θ′ ⊆ Θ such that diam(Θ′) ≤ 4Mε.
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Kullback-Leibler dense property

The Kullback-Leibler dense property, which provides a lower bound on the
probability that the Kullback-Leibler distance to a given mixture density pG0 is
small can be derived from “small ball probability”:

Lemma

Let G ∼ DP(ν,P0), where P0 is a non-atomic base probability measure on a
compact set Θ. For a small ε > 0, let D = D(ε,Θ, ρ) denote the packing number
of Θ under ρ metric. Then, under the Dirichlet process distribution,

Π(G : W2(G0,G ) ≤
√
5ε) ≥ Γ(ν)[ε2(2D)−1 diam(Θ)−2]D−1νD

D∏
i=1

P0(Si ).

Here, (S1, . . . ,SD) denotes the D disjoint ε/2-balls that form a maximal packing
of Θ. Γ(·) is the gamma function.
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Summary

The question of posterior concentration of mixing measures is useful especially for
clustering applications

Wasserstein metric provides a natural way to explore this question

rates established for both finite and Dirichlet process mixtures

minimax optimal rates?

For details, see:

X. Nguyen, “Convergence of latent mixing measures in finite and infinite
mixture models”. Technical Report available at

www.stat.lsa.umich.edu/∼xuanlong
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